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Abstract

This paper examines the asymptotic and finite-sample properties of out-of-sample tests
for equal accuracy and encompassing as applied to nested models. With nested models, these
tests can be viewed as Granger causality tests. Applied to nested models, however, the standard
asymptotic critical values for many tests of equal accuracy and encompassing are invalid.
Statistics such as those proposed by Diebold and Mariano (1995) and Harvey, et. a. (1998) fail
to converge to the standard normal distribution when the models are nested rather than non-
nested. Building on McCracken’s (1999) results for equal accuracy tests, this paper derivesthe
asymptotic distributions for a set of standard encompassing tests and one new encompassing test.
Numerical simulations are used to generate the appropriate asymptotic critical values. Monte
Carlo simulations are then used to evaluate the size and power of a battery of equal forecast
accuracy and encompassing tests, as well as standard F-tests of causality. In these experiments,
forecasts from an estimated VAR model are compared to those from a null estimated AR model.
The simulation results indicate that McCracken’s out-of-sample F-type test of equal accuracy
and the encompassing test proposed in this paper can be more powerful than standard F-tests of
causality. The Monte Carlo simulations also show that using invalid asymptotic critical values
can produce misleading inferences.
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1. INTRODUCTION

As evident from recent studies such as Amano and van Norden (1995), Blomberg and
Hess (1997), Bram and Ludvigson (1998), Krueger and Kuttner (1996), and Mark (1995),
interest often lies in examining whether one variable helps predict another, both in-sample or
out-of-sample. The standard in-sample metric is a simple Granger causality test. Out-of-sample
predictive ability is usually gauged by first constructing forecasts from models that include and
exclude the variable that may have predictive capacity and then testing for equal accuracy or
encompassing. Typically, there is concern that in-sample Granger causality tests may lead to
overfitting of the model. Out-of-sample forecast comparison is widely viewed as a more
stringent test of the relationship between the variables. Moreover, Ashley, Granger, and
Schmalensee (1980) argue that it is more in the spirit of their “reasonable” definition of Granger
causality to employ post-sample forecast tests than to employ the standard in-sample tests of
causality.® According to Ashley, et. al., if forecasts of y froma VAR in x and y are superior to
forecasts from an AR model for y, then x carries information about y and hence x causes'y.

This paper examines the ability of different post-sample forecast teststo determine
whether one variable has predictive ability for another. Particularly, this paper examines the
asymptotic and finite-sample properties of tests for equal accuracy and encompassing applied to
nested models. Used with nested forecasts from models such asa VAR vs. an AR, the tests can
be viewed as Granger causality tests. However, many of the standard tests of equal accuracy and
encompassing are designed for forecasts from non-nested, rather than nested, models. Many of
the standard test statistics — such as the Diebold and Mariano (1995) equal accuracy and the

Harvey, Leybourne, and Newbold (1998) encompassing statistics — fail to converge to the

! Diebold and Mariano (1995) also suggest using out-of-sample forecast tests to examine Granger causality.



standard normal distribution when the models are nested rather than non-nested.? Therefore, the
standard asymptotic critical values are invalid with nested models.

This study’ s analysis of the use of equal accuracy and encompassing tests for nested
forecasts complements the non-nested forecast analyses of, among others, Corradi, Swanson, and
Olivetti (1998), Diebold and Mariano (1995), Harvey, Leybourne, and Newbold (1997, 1998),
West (1996), West and McCracken (1998) and McCracken (1998). In another related analysis,
Swanson, Ozyildirim, and Pisu (1996) examine the finite-sample performance — principally, the
size — of different Granger causality tests and Diebold-Mariano equal accuracy tests with both
stationary and non-stationary data. The equal accuracy tests they consider, however, are all
compared against standard asymptotic critical values that are invalid because the models are
nested. The same problem appliesto the Monte Carlo results of Corradi, et. a. (1998) on how
Diebold and Mariano tests perform when applied to models with cointegrating relationships.

Building on McCracken’s (1999) results for equal accuracy tests, this paper first derives
the asymptotic distributions for a set of standard encompassing tests and one new encompassing
test. The standard encompassing tests for which this paper derives asymptotic distributions are
the Harvey, et. a. (1998) and Ericsson (1992) statistics. The set of standard statistics also
includes the Chong and Hendry (1986) test, which remains asymptotically normal when applied
to nested rather than non-nested forecasts. The new test proposed below is a variant of the
Harvey, et. d. statistic. Asin Corradi, et. a. (1998), McCracken (1999), West (1996), and West
and McCracken (1998), the derived distributions of the tests explicitly account for the
uncertainty introduced by model estimation. In order to facilitate the use of the limiting

distributions derived here, asymptotically valid critical values are generated numerically and

2 Most of the other available tests of forecast accuracy or encompassing — such as the Mizrach (1992) and Granger
and Newbold (1977) tests of equal accuracy — are also asymptotically invalid when applied to nested forecasts.



reported in appendix tables. The equal accuracy tests include an out-of-sample F-type test of
equal mean squared error (M SE) developed in McCracken (1999) and the Diebold and Mariano
(1995) test of equal MSE, statistics for which McCracken develops the correct asymptotic
distributions and provides critical values.

In order to evaluate the finite-sample size and size-adjusted power of these tests we
conduct a series of Monte Carlo simulations based on VAR data-generating processes. For
comparison, the set of tests considered also includes standard F-tests of Granger causality. In
addition, in order to evaluate the extent to which using invalid critical values can produce
misleading inferences, results are presented for Diebold and Mariano (1995), Harvey, €t. d.
(1998), and Ericsson (1992) statistics compared to the distributions that would be appropriate if
the forecasts were from non-nested models. To further illustrate how the different tests perform
in practical settings, the battery of testsis applied to determining whether the unemployment rate
has predictive power for inflation in quarterly U.S. data.

Results summary. Asymptotics. Finite-sample. Monte Carlo simulations show that

using invalid asymptotic critical values can produce misleading inferences in small samples. The
simulations also indicate that out-of-sample F-type and encompassing tests can be more powerful
than standard, in-sample F-tests of causality.

The remainder of the paper will proceed as follows. Section two introduces the notation
and general environment under which the forecasts are generated and the tests of forecast
accuracy and encompassing are constructed. Section three, and its subsections, introduce the test
statistics considered and provide the asymptotic results under the null. 1n section four we present
acollection of Monte Carlo experiments designed to determine the finite-sample size and power

properties of the test statistics. Section five contains an empirical application of the tests to the



problem of determining whether the unemployment rate has predictive power for inflation in

quarterly U.S. data. Section six concludes. All proofs are contained within the Appendix.

2. General Environment
In order to present the tests considered we first provide some general notation, describe

the forecasting schemes, and present the assumptions under which the asymptotic results are
derived. The sample of data{y,,x;}; is divided into in-sample and out-of-sample portions.
The in-sample observations span 1 to R. Letting P denote the number of 1-step ahead
predictions constructed, the out-of-sample observations span R +1 through R+ P. Thetotal
number of observations in the ssmpleisthen R+ P=T +1. Thelargest number of observations
used to estimate the model under the forecast schemes consideredis T=R+P- 1.

The scalar variable to be predicted isyi+1, t = R,...,T. Forecastsof y;.; are generated
using parametric models g; (X.,,b;) © g;..(b;) denoted by i = 1 and 2, each of which is

estimated. Model 2 is the unrestricted model, which nests the restricted model 1. Under the null

hypothesis, model 2 includes k, excess parameters. Without loss of generality let
b, = (b1, 0ry,) (ki+k2=k 1) suchthat for al t, g, (b;) = g,,.4(b3). Under the

aternative hypothesis, the k» restrictions are not true, and model 2 is correct. Note that while
models 1 and 2 take the form of AR and VAR models in the Monte Carlo analysis, the
asymptotic results permit the use of nonlinear models.

Following West and McCracken (1998), three forecast schemes are considered. Under

the recursive scheme, each model's parameters, b, i = 1,2, are estimated with added data as

forecasting moves forward. Thefirst prediction, giyRﬂ(ﬁiyR) , iIs created using model parameter



estimates BLR estimated using data from 1 to R, the second prediction g; z., (BiyRﬂ) is created
using model parameter estimates BiyRﬂ estimated using datafrom1to R +1, etc. Ingenerd, for
t=R,...,T, the prediction of yi.1, gim(ﬁiyt) , fromtimet is created using model parameter
estimates Bi,t estimated using datafrom 1 to t.

Under the rolling forecast scheme, the model is estimated using only the most recent R
observations. The first rolling prediction, giyRﬂ(ﬁiyR) , iIs created using model parameter
estimates BLR estimated using data from 1 to R, the second prediction g; z., (BiyRﬂ) is created
using model parameter estimates BiyRﬂ estimated using datafrom2to R +1, etc. Ingenerd, for
t=R,...,T, the prediction of yi.1, gim(ﬁiyt) , fromtimet is created using model parameter

estimates Bi,t estimated using data from t- R+1 to t. Note that under the rolling scheme the

parameter estimates Bi,t should also be subscripted by R in order to reflect the size of the sample

window. To reduce notation we leave that subscript implicit.

Under the fixed scheme, all forecasts are generated using models estimated with data

from 1 to R. Hence for each prediction of yi.1, gi,t+l(6i,t) = gim(ﬁiyR) , fromtimet=R,...,T,
the prediction is created using the same model parameter estimate Bi,t = BLR estimated using

datafrom1to R. Aswasthe case for the rolling scheme, the parameter estimates Bi,t under the

fixed scheme should also be subscripted by R to reflect the sample window. To reduce notation
we also leave this subscript implicit.

For each of the three forecasting schemes, the 1-step ahead forecast errors are

Ui = Yo - gl,t+l(61,t) and U,y = Yo - gZ,t+1(62,t) for models 1 and 2, respectively. Using



the two sequences of P forecast errors the out-of-sample tests of forecast accuracy and
encompassing are constructed. In al cases the out-of-sample statistics rely on sums of functions
of these forecast errors. To simplify notation, for any variable z; we will let &,z, denotethe
summation & .z, . For example, the mean squared error (MSE) for model i is MSE; ©

19 T ~> 2

-1 9 ~
P a .U =P latum-
Before getting to the assumptions some final notation is needed. Let g; .., (b;) =

2
ﬂ_:ligi,tﬂ(bi)’ qi,t+1(bi) = gi,t+1,b (bi)g;,tﬂ,b (bi) - (Yt+1 - gi,t+1(bi))ﬁgi,t+l(bi)’ fi,t+l =

fiea(0)) and f, =1, forany functionf, hy ., (0;) = (Vous - 9101 (0))G; pan (B)) , Bi =

(Eqim)'l, W(s) isa (k2" 1) vector standard Brownian Motion, and for any (m” n) matrix A with

column vectors & let vec(A) denote the (mn” 1) vector [a,,a,,...,a,] .

Given the definitions and the three forecasting schemes described above, the following
five assumptions are those used to derive the limiting distributions of encompassing tests
presented in Theorems 3.4, 3.5, and 3.6. The assumptions are also sufficient for the results of
McCracken (1999) when M SE is the measure of predictive ability. These assumptions are not
intended to be necessary and sufficient, only sufficient. All proofs can be found within the

Appendix.

Assumption 1: The parameter estimates Bi,t’ i=12,t=R,...,T, satisfy Bi,t - b, = B, (t)H, (t)

where for b, , on theline between b, and b;, B, (t)H, (t) equals



(1850, (0,)) Tt & jah, ), (R85 rad (0,)) (& rah ;) and
(RM&%,q;,(0,,)) "(R&% ;) respectively for the recursive, rolling and fixed schemes.
Thisfirst assumption provides us with one primary piece of information. Analytically it
tells usthat the parameters are estimated by OLS, NLLS, or maximum likelihood under
normality assumptions. Inthe case where a VAR is being used, the system must be exactly
identified and estimated by multivariate OLS. Thistype of restriction isimposed to insure that
the statistics in Theorems 3.4-3.6 are pivotal. Asin McCracken (1999), achieving a limiting
distribution that does not depend upon the data-generating process requires that the loss function
used to estimate the parameters be closely related to the loss function used to measure predictive
ability. Each of the statistics in Theorems 3.4-3.6 isin one way or another testing whether the
two models have equal mean square errors. In order then to achieve a pivotal statistic the
parameters must be estimated using mean square error as the loss function. Although this
assumption is restrictive in how the parameters are estimated, it otherwise does not place any
restrictions on the type of model. Single and multiple equation models as well as linear and

nonlinear models are permitted.

Assumption 2: Fori=1,2, (8 b, T Q,, Q compact, (b) E[y, - i (b,)]? is uniquely minimized
ab 1 Q, with Eq;, nonsingular, (c) In some open neighborhood N; around b, and with
probability one [y, - g;,(b;)]? istwice continuously differentiable, (d) In the open

neighborhood N;, and for all t there exists a positive constant | and a positive random variable

m, suchthat |q; (b,)- q,,(b;) [Em, |b, - b] | with Em, <¥ and ] <¥ .



Most of Assumption 2 isimposed in order to insure that the parameters are identified and
are consistently estimated. It is directly comparable to Theorem (2.1) of Newey and McFadden

(1994). The substantive components of this assumption are that the predictive function, g; ,(b;).

is the conditional mean function and that the conditional mean function is twice continuously

differentiable.

Assumption 3: Let U, ° [h,,vec(hh, - s?B™*) ,vec(q, - B™*)]. (8 EU;=0, (b) Ut is

uniformly L® bounded, (c) For some 8 > d > 2, Uy is strong mixing with coefficients of size

E;_—&;, (d) imTPE&L,U;U; = W <¥.

Assumption 4: (a) Eh,h, = s’Eq, ° s’B™*, (b) E(h, |h,;,q,;,]=12..) =0.

Both Assumptions 3 and 4 largely consist of technical conditions sufficient for the
application of an invariance principle. Moreover they are sufficient for joint weak convergence
of partia sums and averages of these partial sums to Brownian Motion and integrals of these
Brownian Motion. Assumption 3 is directly comparable to the assumptions in Hansen (1992)
and hence we are able to apply his Theorems (2.1) and (3.1).

The reasons for imposing Assumption 4 are much the same as Assumption 1. In order to
insure that the limiting distribution does not depend upon the underlying data generating process
we must impose some extra conditions. Here we essentially require that the disturbances form a

conditionally homoskedastic martingale difference sequence.



Assumption 5: limP/R=p,0<p<¥,| ° 1+p)*.

This final assumption introduces the means by which the asymptotics are achieved. Asin
Hoffman and Pagan (1989), West (1996), and White (1998) the limiting distribution results are
derived by imposing a slightly stronger condition than simply that the sample size, T+1, becomes
arbitrarily large. Here we impose the additional condition that both the number of in-sample (R)
and out-of-sample (P) observations also become arbitrarily large at the samerate. Inthisway we
insure that the parameters estimated in-sample and certain out-of-sample averages are both
consistent estimators of their population level analogs.

It should be noted that the assumption that p is bounded from above and below is not
trivial. Certainly in practice P/R will be bounded but whether it is near zero or much larger
could affect how well the asymptotic approximation behaves in finite samples. If P/R is small
then the parameters may be well estimated but, for example, the out-of-sample M SE will be
estimated by too few observations for the empirical MSE to form a strong estimate of the
population MSE. If P/R islarge then we cannot expect the parameters to be well approximated,
especially under the fixed scheme, and thus regardless of the out-of-sample size the empirical
MSE may form a poor estimate of the population MSE. Hence when choosing how to split the
sample into in-sample and out-of-sample portions one should consider choosing a split that
leaves a sizable number of observations in each of the in-sample and out-of-sample portions.

Unless otherwise noted, the notation and assumptions presented in this section hold

throughout the remainder of the paper.

3. TESTS



While Ashley, et. a. (1980) specifically advocate using tests of equal forecast accuracy to
examine causality, given their definition of causality, any test designed to examine whether x
carries information about y could reasonably be used. Accordingly, this paper considers the
ability of simple Granger causality tests, equal forecast accuracy tests, and forecast
encompassing tests to determine whether one variable has predictive power for another. Since a
large number of tests for equal accuracy and encompassing already exist, for tractability the set
examined is limited based on considerations of computational simplicity and performance in the
non-nested investigations of Clark (1999), Diebold and Mariano (1995), and Harvey, Leybourne,
and Newbold (1997, 1998). The set of testsincludes: simple Granger causality statistics;
McCracken's (1999) out-of-sample F-type test for equal MSE; Diebold and Mariano’s statistic
for equal MSE; the Harvey, et. a. (1998) encompassing test; the Ericsson (1992) encompassing
statistic; a modified, asymptotically valid version of the Harvey, et. al. test developed below; and
the Chong and Hendry (1986) encompassing statistic.

In the results below, the tests are applied to 1-step ahead forecasts. When multi-step
forecasts from nested models are used, the asymptotic distributions of the tests appear to depend
on the parameters of the data-generating process. For practical purposes, such dependence
eliminates the possibility of using asymptotic approximations to test for equal accuracy or
encompassing. Lutkepohl and Burda (1997) note similar difficulties associated with in-sample
tests involving multi-step forecasts. Our belief is that researchers comfortable with assuming
linear models should be adequately served by tests based on 1-step ahead forecasts. With linear
models, multi-step forecasts are simply linear combinations of 1-step ahead forecasts. Hence
there does not appear to be any reason to expect tests based on multi-step forecasts to be better at

determining predictive power than tests based on 1-step ahead forecasts.
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3.1 Simple Granger Causality (GC) Tests

The emphasis of this paper is on using ex-ante forecasts, rather than ex-post predictions,
to test for forecast accuracy and encompassing. Even so, we include simple F-type Granger
causality testsin the Monte Carlo simulations. We do so because they are the most commonly
used statistics for testing for causality. We construct these statistics using both in-sample and
out-of-sample data, using R observations in the former case and P observations in the latter.

In the results of section 4, the tests are computed as simple F-statistics for exclusion
restrictions.® When lag lengths are set using data-based procedures, the out-of-sample GC tests
rely on the lag order determined using the in-sample data. While standard GC tests are rarely
applied to out-of-sample data, they are no less valid for the purpose of testing causality in out-of-
sample data than are forecast accuracy or encompassing tests. Like out-of-sample accuracy and
encompassing tests, simple out-of-sample GC tests may be less prone to spurious results due to

overfitting than are in-sample causality tests.

3.2 The Out-of-Sample F (OOSF) Test

McCracken (1999) develops an out-of-sample F-type test of equal MSE, given by

19 A 19 A
M$l = M$2 _ P VP latulz,t‘H. - P latuzz,t+l (1)
= —6 X .
M$2 P latuzz,t+l

OOSF =Px

This statistic is comparable to the simple F-test form of the standard in-sample GC test and offers

the advantage of being particularly smple to compute if forecast summary statistics are aready
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available. Using assumptions broadly similar to those used in this paper, McCracken shows that
the OOS F statistic converges to a function of stochastic integrals of quadratics of Brownian
motion. The limiting distribution under the null, which varies with the forecasting scheme, is a
function of the ratio of post-sample to in-sample observations, p, and excess parameters, ko, in
model 2.

In the results of section 4, the test statistic is compared against asymptotically valid
critical values tabulated by McCracken. Since the models are nested, the null hypothesisis
MSE, £ MSE,, and the dternativeis MSE, > MSE,. The alternative is one-sided because, if
the restrictions imposed on model 1 are not true, there is no reason to expect forecasts from

model 1 to be superior to those from model 2.

3.3 TheDiebold-Mariano (DM) Test
Define d,,, =07, - 0Z,, and d=P'4&,d,, =MSE, - MSE,. The Diebold and

Mariano (1995) test for equal MSE isformed as

MSE,- MSE, _ d d

DM = = = :
JVa(MSE, - MSE,)  flard) |[P?3,(d,,- d)?

(2)

While the DM statistic is asymptotically standard normal when applied to non-nested forecasts
(see Diebold and Mariano (1995) and West (1996)), the asymptotic distribution is non-normal

when the forecasts are nested under the null hypothesis.

Theroot of the problemisthat, under the null, g, ,.,(b;) = g,...(b>) and thus both

Uptar = Yia - 91,t+1(b1*) ° Uy, and Uy = Vi - gz,t+1(b;) = Yo - 91,t+1(b1*) ° U.,. Hence a

3 Computing the tests as Wald statistics and comparing them against the chi-square distribution would make the tests
robust to non-normally distributed data. However, using the Wald statistics produces results very similar to those
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least heuristically, asymptotically the difference in squared forecast errorsis exactly 0, with O
variance. The usual DM test —in which the statistic is compared against the standard normal
distribution — is therefore asymptotically invalid. McCracken (1999) shows that, for forecasts
from nested models, the DM test statistic converges to a function of stochastic integrals of
guadratics of Brownian motion. This limiting distribution depends on the forecasting scheme, p,
and ko.

In the results of section 4, the test statistic is compared against asymptotically valid
critical values tabulated by McCracken. Because models 1 and 2 are nested rather than non-
nested, the alternative hypothesisis one-sided instead of two-sided. Under the null,

MSE, £ MSE,; under the alternative, MSE, > MSE,,.

To evaluate how using invalid asymptotic critical values would affect inference, results
are also reported for aversion of the test comparing the DM statistic against the t,_, distribution.
While the DM statistic is asymptotically standard normal when the forecasts are non-nested,
Harvey, et. a. (1997) find that comparing the DM statistic against the t_, distribution yields
better small-sample properties. In the reported results, the invalid version of the test (but not the

asymptotically valid version) also incorporates an adjustment, developed in Harvey, et. a (1997),

to correct for biasin the estimated variance of d. This adjustment takes the form of multiplying

the test statistic (2) by /(P - 1)/P.

3.4 TheHarvey, et. al. (HLN) Test
Harvey, et. a. (1998) use the basic methodology of Diebold and Mariano (1995) to

develop atest of forecast encompassing drawn from the conditional efficiency framework of

reported, with the difference that the empirical size is slightly higher.
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Granger and Newbold (1973) and Nelson (1972).* Conditional efficiency is tested with the
OL S-based regression

g =1 (Oppg - Upeg) thig ©)
If | =0, forecast 2 carries no useful information not already in forecast 1, so forecast 1 is
conditionally efficient. If | > 0, forecasts from model 2 do carry information not already in
forecasts from model 1.

Harvey, et. a. (1998) propose testing encompassing with a t-statistic for the covariance

between G,,,, and Uy, - U,,,, rather than with at-statistic for the regression coefficient . Let
Coy = Uy (Gyhy - Uyphy) =02, - Uy, .., and C©=P'4,c,. TheHarvey, et. al. encompassing
t+1 1t+1\M1t+1 2t+1 1t+1 1t+12,t+1 t™te ’ - -

test is formed as

.19

19 A
c = 9 :P}éy Platulzv“l- P at
~ 5 0 — .
\/VH(C) \/P 2at(ct - C)2 \/P_lét{(alz,tﬂ - L’jl,t+1021+1) B 6}2

A

l,t+lu2,t +1

[

HLN = 4)

Under the null that model 1 forecast encompasses model 2, the covariance between u,,
and u,, - u,, will belessthan or equal to O, while under the aternative that model 2 contains

added information, the covariance should be positive. The test is one-sided when applied to
either nested or non-nested forecasts.

While the HLN statistic is asymptotically standard normal when applied to non-nested
forecasts, the asymptotic distribution is non-normal when the forecasts are nested under the null.

The actual limiting distribution is provided in Theorem 3.4.

* Condition efficiency in turn draws from the forecast combination literature, started by Bates and Granger (1969).
The regression (5) can be used to determine the optimal combining weight. The linear combination of forecasts 1
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Theorem 3.4: For HLN defined in (4), HLN ® | (Cﬁ where ¢, equals
o

2

39S 'W ' (9)dW(s) for the recursive scheme,

-4 W() - W( )} W(l ) for the fixed scheme,

|1 o{W(S) - W(s- | )} dW(s) for the rolling scheme,
and c, equals

39S W' (S)W(s)ds for the recursive scheme,

plI W (1HWw() for the fixed scheme,

| 25{W(9) - W(s- 1)} {W(s)- W(s- | )}ds for the rolling scheme.

There are a couple things to notice about Theorem 3.4. Thefirst isthat for each
forecasting scheme the statistic is pivotal. This fact is not particularly useful if asymptotic
critical values, associated with the limiting distributions, are used to construct asymptotically
valid tests. If the bootstrap is used, asin Ashley (1998), then we know from Hall (1992) that the
bootstrap provides refinements to first order asymptotics and hence in finite samples may
provide more accurate inference.

Though the null limiting distributions do not depend upon the data generating process
itself, the distributions are dependent upon two parameters. Thefirst is the number of excess

parameters ko. It arises since the vector Brownian Motion, W(s), is (k2" 1). The second

parameter, p, also affects the null limiting distribution. It affects the limiting distribution in two

and 2 will have asmaller MSE than forecast 1 unless the covariance between &, ,; and ;.1 - €4, and,
equivalently, the coefficient | , are 0.
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ways. It directly affects the weights on each of the components of the statistics (recall that | =
(1+p)h). It aso affects the range of integration on each of the stochastic integrals through .
Since the limiting distribution of the HLN statistic is nonstandard (i.e. neither normal nor
chi-square) we provide asymptotically valid critical valuesin Tables A1-A3. These were
generated numerically using the limiting distribution in Theorem 3.4 and hence can be
considered estimates of the true asymptotic critical values. The reported critical values are the

Cl
(c,)

90™ 95" and 99" percentiles of 5000 independent draws from the distribution of for a

0.5

given value of k, and p. Generating these draws proceeded as follows. Weights that depend
upon p were estimated in the obvious way using p = P/ R. The necessary k, Brownian Motions
were simulated as random walks each using an independent sequence of 10,000 i.i.d. N(0,T%°)
increments. The integrals were emulated by summing the relevant weighted quadratics of the
random walks from the R+1% observation to the T" observation. The random number generator
was seeded so that all k, and p pairs and all sampling schemes use the same 5000 draws of k;
sequences of 10,000 i.i.d. N(0,T°°) increments.

A brief listing of critical valuesis provided in Tables A1, A2, and A3. Each of the tables
corresponds to either the recursive, rolling, or fixed forecasting scheme. Within each table there
are 330 critical values. Each of these correspond to one permutation of three parameters: k, =
{1,2,3,...,910},p={0.1,0.2,04,..., 1.0, 1.2,..., 2.0} and nominal size of the test = {0.01,
0.05, 0.10}. Tablesthat allow for larger values of both k, and p are available upon request.

In the results of section 4, the HLN statistic is compared against the asymptotically valid
critical values tabulated in Tables A1-A3. To evaluate how using invalid asymptotic critical

values would affect inference, results are also reported for a version of the test comparing the
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HLN statistic against the t, , distribution. For non-nested models, Harvey, et. a. (1998) find
that comparing the HLN statistic against the t_, distribution, rather than the standard normal,
yields better small-sample properties. In the reported results, the invalid version of the test (but
not the asymptotically valid version) also incorporates an adjustment, developed in Harvey, et. a

(1997), to correct for biasin the estimated variance of d. This adjustment takes the form of

multiplying the test statistic (4) by /(P- 1)/P.

3.5 A New Encompassing (CM) Test

As discussed below, Monte Carlo simulations suggest that the denominators of tests like
the DM statistic (2) and the HLN statistic (4) adversely affect the small-sample properties of the
tests. The denominator of the HLN statistic, for example, is the sample variance of G
(normalized by P), which is asymptotically equal to 0. In parallel to the OOS F test, this paper
proposes a variant of the HLN statistic in which € is scaled by the variance of one of the
forecast errors rather than an estimate of the variance of ¢.

This statistic, which we will refer to asthe CM statistic, takes the form

.19 ~ D .19 ~ ~
c P a . 0..- P a, i,
CM :PVM$ =P x t 1;:)]:10 — t oLt+l 2tl. (5)
2 atuz,tﬂ

The numerator isthe object of interest in the HLN test — the covariance between u,, and
Uy, - U,,. Thedenominator, MSE,, servesasascale correction. Aswasthe case for the HLN

statistic, the limiting distribution is non-normal when the forecasts are nested under the null. The

actual limiting distribution is provided in Theorem 3.5.
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Theorem 3.5: For CM defined in (5) and c, defined in Theorem3.4,CM ® , c,.

Given Theorem 3.4, thisresult is not surprising. The sole difference between the HLN
and CM statistics is the denominator. Hence we expect their limiting distributions to be
somewhat related. Aswas the case for the HLN statistic, the limiting distribution is pivotal and
relies upon the parameters k, and p.

In the results of section 4, the CM statistic is compared against asymptotically valid
critical values tabulated in Tables A4-A6. Aswas done for Tables A1-A3, these were generated
numerically using the limiting distribution in Theorem 3.5 and hence can be considered estimates
of the true asymptotic critical values. The numerical methods used to construct 5000
independent draws from the distribution of ¢, wereidentical to those used to construct Tables
A1-A3. Moreover the random number generator was seeded o that the same ¢, values were
used in the construction of both Tables A1-A3 and A4-A6. Tables A4-A6 contain the same 330
permutations of ky, p and nominal size that are used in Tables A1-A3. Tablesthat allow for

larger values of both k, and p are available upon request.

3.6 The Ericsson (ERIC) Test
Ericsson’'s (1992) forecast-differential encompassing test takes the same form as the

conditional efficiency regression presented above:

01,t+1 =1 (01,t+l - 02,t+1) +hy,,. (6)

® As presented in Ericsson (1992) and used by others, the test often is expressed as a regression of the error from
model 1 on the difference in forecasts rather than forecast errors. But that regression is equivalent to (6), with the
appropriate sign change.
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The test statistic is Ssmply the t-statistic for the OL S-based regression coefficient |, which can

be expressed as

1/2
P a,

ERIC =
[al,TaZ,T - a(ZJ,T]O'S

(7)

—_pl& n ~ ~ —_p-18 m ~ 2 —-pli 2
where Q1 = P atul,t+1(u1,t+1 - u2,t+l)’ Qr = P at(ul,tﬂ - uz,t+1) and Qr = P atul,tﬂ'

Under the null that model 1 forecast encompasses model 2, the covariance between u,, and
Uy, - U,, will belessthan or equal to 0, while under the alternative that model 2 contains added

information, the covariance should be positive. The test is one-sided when applied to either
nested or non-nested forecasts.

Once again the ERIC dtatistic is asymptotically standard normal when applied to non-
nested forecasts but the asymptotic distribution is non-normal when the forecasts are nested

under the null. The actual limiting distribution is provided in Theorem 3.6.

©__ defined in Theorem 3.4, ERIC ® , —1 _

Theorem 3.6: For ERIC defined in (7) and o5
(c,) (c,)”

In Theorem 3.6 we find that the ERIC and HLN statistics have the same limiting
distribution under the null.® Hence we can use Tables A1-A3 to construct asymptotically valid
tests of forecast encompassing when the ERIC statistic is used. It should be mentioned however,
that this does not imply that the two statistics will have similar finite sample properties. It isfor
this reason that we include both the HLN and ERIC statistics in the Monte Carlo experiments of

section 4.
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In the results of section 4, the ERIC statistic is compared against asymptotically valid
critical values tabulated in Tables A1-A3. To evaluate how using invalid asymptotic critical
values would affect inference, results are also reported for a version of the test comparing the

ERIC statistic against the standard normal distribution.

3.7 The Chong-Hendry (CH) Test
Under the null that the restrictions on model 2 are correct, model 1 forecast encompasses
model 2. The Chong and Hendry (1986) test of encompassing is formed as the t-statistic on a

from the OL S-based regression
Uy = agz,t+l(62,t) N s (8)
where gzytﬂ(ﬁzyt) denotes the model 2 forecast.” It follows from West and McCracken (1998)

that the CH statistic is asymptotically standard normal even when the models considered are
nested. Accordingly, the t-statistic on & is compared against the standard normal distribution.
Aswith the DM, HLN, and ERIC statistics, to allow for non-normal data, the estimated variance
of & isrobust to heteroskedasticity. Since the nesting of the models has no clear implications

for the sign of &, thenull a = 0 istested against atwo-sided alternative.

4. MONTE CARLO RESULTS
Results on the small-sample properties of the tests described in section 3 are generated

using a bivariate VAR data generating process, with forecasts of the variable of interest from an

® Thereisaparallel to thisin McCracken (1999). Thereit is shown that the DM statistic has the same limiting
distribution as the regression-based test for equal MSE by Granger and Newbold (1977).

" For the basic models considered below a modified CH test, that takes the form of the covariance between the LHS
and RHS of (8) divided by an estimate of the standard error of the covariance, has modestly better size properties but
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estimated AR model (model 1) compared to forecasts fromaVAR (model 2). The presented
results are based on data generated from the normal distribution. The results are essentially
unchanged when data are generated from a heavier-tailed distribution, suggested by Diebold and

Mariano (1995), in which one forecast error follows a t distribution and the other is alinear

combination of t variables.

4.1 Experiment Design
In the presented results (currently), data are generated using one artificial VAR(1) model
and one empirical VAR(2) model. The artificial VAR(1) takes the form

Y, =03y, +bx., +uy, (9-10)
X, =05x_, +U,,,

where y, isthe variable to be forecast and x, is an auxiliary variable. The error terms are
independent standard normal variables. To evaluate size in finite samples, the coefficient b is set
at 0. To evaluate power, bisset at 0.1, 0.2, and 0.4. Simulations based on VAR(2) models
taking a comparable form, and simulations based on the trivariate stationary VAR(1) and
VAR(3) models of Swanson, et. a. (1996), produced results in line with those from the bivariate
VAR(D).

Alternative models. 1. Modelsthat generate larger size biases for in-sample GC tests due

to pure pre-test bias effects (models with just much richer dynamics?). |l. Misspecified models:
(@) A VAR(2) in which the true model isan AR(2) iny and x(t-1) is strongly correlated with y(t-
2). (b) Forecastsfrom bivariate VAR and AR when the true model is trivariate. (¢) Forecasts

from VAR and AR when the true model isaVARMA.

modestly lower power. Thisform of the test statistic parallels the Harvey, et. al. (1998) modification of the Ericsson
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The empirical VAR isfit from quarterly data on the change in core CPI inflation and the
change in the prime-age male unemployment rate, where the change in core inflation is the
variable to be forecast. While the integration orders of these data are admittedly debatable, the
use of changesis based on the results of unit root tests and produces autoregressive roots well
within the unit circle. Consistent with the empirical application considered in section 5, the
models are fit exclusively with in-sample data that span 1958:Q3-1987:Q12 Under the null that
unemployment does not affect inflation, the estimated model used in a size experiment is

(11-12)

Dinfl =.024 - .2880Infl,_, - .237DInfl,_, + u,
DUnemp =-.009 +.057DInfl,_, +.015Dinfl,_, +.703DUnemp, , - .182DUnemp,_, +V,
var(u,) = 2.795, var(v,) =.107,cov(u,,v,) = - .084.

With unemployment affecting inflation, the estimated model used in a power experiment is
(13-14)

Dinfl =.033- .391DInfl,_, - .266DInfl,_, - 1.207DUnemp,_, - .137DUnemp,_, + U,
DUnemp =-.009 +.057DInfl,_, +.015Dinfl,_, +.703DUnemp, _, - .182DUnemp,_, +V,
var(u,) = 2.519, var(v,) =.107,cov(u,,v,) = - .084.

The lag lengths of both models were selected to minimize the Akaike criterion, allowing a
maximum of four lags.

Letting R denote the number of in-sample observations and P represent the number of
predictions, Monte Carlo methods are used to generate atotal of R + P +4 observations.’ The
additional four observations generated allow for data-determined lag lengths in the forecasting

models estimated in each simulation. Letting L denote the lag length of the data-generating

regression test.
8 Using Kilian's (1998) bootstrap method to adjust the coefficients of the models produces essentially the same
Monte Carlo results.
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process (DGP), the first L observations are generated by drawing from the unconditional normal
distribution implied by the model parameterization. The remaining R+ P+ 4- L observations
are constructed using the autoregressive model structure and draws of the error terms from the
normal distribution.

With observations 1 through 4 reserved as initial observations necessary to allow for as
many as four lags in the estimated models, aVAR iny and x (or DInfl and DUnemp) and an AR
model for y (or DInfl) are fit over the in-sample period spanning observations 5 through R + 4.
In the interest of brevity the lag length of each estimated model was set at the "true" order, L, of
the data generating process.”® Results for forecasts based on lags set at the order minimizing the
in-sample Akaike criterion for the VAR or the AR model are essentially the same** In one
unsurprising exception, the in-sample GC test tends to have dightly greater size and lower power
than the presented results when the lag length is set to minimize the in-sample Akaike criterion
for the VAR. Observations R +5 through R + P + 4 are then used to form P 1-step ahead

forecasts. Thefirst forecast isfor period R+ 4; the last isfor period R+ P+ 4. For brevity,

® For the empirical model, using bootstrap methods to generate artificial data produces results much like those
reported for Monte Carlo-generated data.

191 the case of the smple VAR(1) model, when b is non-zero, the true VAR implies that the true univariate model
for y, isan ARMA(2,1). For the models considered here, however, inverting the MA component to rewrite the

ARMA(2,1) in AR form yields very small coefficients on lags greater than 1, so the true (infinite order) AR model is
very closeto an AR(1). Accordingly, in the Monte Carlos the selected AR lag length is 1 in about 75 percent of the
power simulations.

1 |n computing power when the lags are data-determined, the test statistic in simulation i, for which the selected lag
isj, iscompared against the distribution of test statistics from the set of simulations under the null in which the lag
was selected to bej. For example, if lag j was selected in J of the 50,000 size simulations of a given experiment,
empirical critical values for lag j were calculated from just those J simulated test statistics. In a corresponding
power experiment, for those simulations in which the lag was selected to be j, the test statistics were compared
against these critical values. Since longer lags tend to be somewhat infrequently rejected, 50,000 simulations were
used in the size experiments to ensure the accuracy of the results with data-determined lags.
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results are only presented for recursive forecasts, as the basic conclusions are essentially the
same for rolling and fixed forecasts.*?

Results are reported for simple, empirically relevant combinations of P and R such that
p° P/R takesavalueof 0.1, 0.2, 0.4, 0.6, 1.0, or 2.0. Specifically, in one set of experiments
based on the artificial VAR(1), R = 100 and P = 10, 20, 40, 60, 100, and 200. In another set
using the VAR(1), R =200 and P = 20, 40, 80, 120, 200, and 400. In experiments based on the
inflation-unemployment model, as suggested above P and R are chosen to be consistent with the
empirical application considered in section 5. Particularly, R = 115 and P = 46, for which

p=04.

4.2 Size Results

Table 1 presents the empirical sizes of Granger causdality, equal accuracy, and
encompassing tests for data from the VAR(1) of equations (9)-(10), using a nominal size of 10%.
The general results are the same at the nominal size of 5%. In these size experiments, data are
generated imposing the null of b =0, under which the AR and VAR forecasts of y have equal
MSE (asymptotically), and the AR forecast encompasses the VAR forecast.

Four general results are evident from Table 1. First, OOS F and CM tests perform quite
well, suffering only dight size distortions. For example, when R =100 and P = 20, the
empirical sizes of the OOS F and CM tests are 10.7% and 11.0% respectively. Given R, any
distortionsin the OOS F and CM tests generally decline as P rises. Second, the asymptotically

valid versions of the DM and ERIC statistics and the CH test are modestly oversized in finite

12 While results for rolling forecasts are very similar to those for recursive forecasts, results for fixed forecasts do
differ dightly. For example, with fixed forecasts, the size distortions of the asymptotically valid DM test are
smaller, while the size distortions of the CM test are a bit bigger.
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samples. For example, when R =100 and P = 20, the empirical sizes of the asymptotically
valid DM, ERIC, and CH tests are 13.5%, 14.2%, and 15.5%, respectively. The distortions
decline as P rises for agiven R.*® With R =100 and P =200, for instance, the ERIC test is
essentially correctly sized, rejecting the null in 10.4% of the simulations.

The third general result isthat comparing the DM, HLN, and ERIC tests against invalid
asymptotic critical values will generally lead to too-infrequent rejections, the DM test more so
than the HLN test and the HLN test somewhat more so than the ERIC test. In the cases of the
DM and HLN statistics, using the incorrect asymptotic distribution causes the tests to be
undersized for all sample sizes, and the tests become more undersized as P rises given R. For
instance, with R =100 and P =20, the DM and HLN tests reject the null in, respectively, 5.5%
and 8.3% of the simulations. With P increased to 40, the DM and HLN sizesfall to 3.8% and
7.4%, respectively. Inthe case of the ERIC statistic, the invalid version of the test is oversized
for very small samples but undersized for larger samples. With R =100, for instance, the size of
the test falls from 13.5% when P =10 to 6.6% when P =100.

Finally, simple GC tests are sometimes slightly oversized when the number of
observations is small, but about correctly sized otherwise. The out-of-sample GC test used with
P =20, for example, has an empirical size of 11.6%, and the in-sample GC test with R =100
has size of essentially 10%. While not shown in the interest of brevity, when the model lags are
chosen to minimize the Akaike criterion for the in-sample VAR, the in-sample GC test suffers

modest size distortions, while the size of the out-of-sample GC test is about the same as when the

3 | ncreasing P, however, does not necessarily make the empirical distribution of the test statistic quickly approach a
normal distribution. CH test rejections occur more frequently in the left tail than in the right tail. When a nominal
size a% is used, right tail rejections occur in less than a/2% of the simulations. As P rises, right tail rejections occur
even less frequently and account for most of the observed improvement in the empirical size of the CH test.
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lag is fixed at the DGP order.** With R =100 and P = 20, setting the lags of the AR and VAR
models at the optimal VAR lag yields an in-sample GC test size of 13.7 percent, up from 10.4
percent in the fixed-lag results. The out-of-sample GC test size is 11.8% and 11.6% with the
optimal VAR lag and fixed lag, respectively.

Table 2 presents size results based on the restricted VAR(2) model for the changesin
core inflation and unemployment, equations (11) and (12). Inthis size experiment, data are
generated imposing the null that unemployment does not affect inflation. Thisimpliesthat AR
and VAR forecasts of Dinfl have equal MSE (asymptotically), and that the AR forecast
encompasses the VAR forecast. Using this empirical model produces results the same as those
for the artificial VAR(1). Again, the performance of the OOS F and CM tests is quite good, with
both each essentially correctly sized. The asymptotically valid versions of the DM and ERIC
statistics and the CH test are subject to modestly larger distortions. Comparing the DM, HLN,
and ERIC tests against invalid asymptotic critical values continues to produce too-infrequent
rejections, with the DM test more undersized than the HLN or ERIC tests. Finally, for the R and
P combination used in this experiment, standard GC tests are about correctly sized when the lag
length is set at the true order. Inresults not reported, however, the in-sample GC test is still
subject to modest distortions when the lag length is determined with data-based criteria.

| nterpretation/explanation of results.

4.3 Power Results
Tables 3-5 present results on the power of simple Granger causality, equal accuracy, and

encompassing tests for data from the simple VAR(1), equations (9)-(10). In these power

% However, if the lags of the AR and VAR models are set at the order minimizing the Akaike criterion for the in-
sample AR model, the in-sample GC test is essentially correctly sized, just aswhen the lag is set at the true order.
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experiments, data are generated using b = 0.1, 0.2, and 0.4, so VAR forecasts of y have lower
MSE than AR forecasts, and the AR forecast does not encompass the VAR forecast. Because the
tests are, to varying degrees, subject to size distortions, the reported power figures are based on
empirical critical values and therefore size-adjusted.™® With empirical rather than asymptotic
critical values used, there is no distinction between the valid and invalid versions of the DM,
HLN, and ERIC tests. The size of the testsis 10%; using 5% produces essentially the same
results. For the OOS F, DM, CM, HLN, and ERIC tests, which are one-sided, the null is rejected
if the test statistic is greater than the 90% fractile of the statistic in the corresponding size
experiment (for the same R and P) with b = 0. The same appliesto the GC tests. For the CH
test, which istwo-sided, the null is rgjected if the test statistic lies outside the 5% and 95%
fractiles of the empirical distribution generated in the corresponding size experiment.

Several genera results are evident in Tables 3-5. First, the powersof the tests permit
some simple rankings: (1) CM > OOS F > DM > CH; (2) OOS F > out-of-sample GC; and (3)
CM > ERIC 3 HLN >DM. Inthe VAR experiment design, the CM test for encompassing is
clearly the most powerful out-of-sample test of predictive power in finite samples. Both the CM
encompassing and OOS F accuracy tests dominate GC tests applied to just the out-of-sample
data. For example, as shownin Table 3, withb= 0.1, R =100, and P =40, the CM test rgjects
the null in 32.4% of the simulations, compared to 28.0% for the OOS F test and 18.1% for the
out-of-sample GC test. Moreover, when the explanatory power of the Granger-causal variable is
weak, aswhen b = 0.1, the power of the CM test sometimes exceeds that of the in-sample GC
test. This holds even though the CM uses fewer observations than does the in-sample GC test.

In the preceding example, the in-sample GC test rejects the null in 30.9% of the simulations.

'3 For those tests subject to small size distortions, particularly the OOS F and CM tests, power based on asymptotic
critical valuesis very similar to the reported size-adjusted power.
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The power of the DM and CH testsis lower, often substantially, than the other equal accuracy
and encompassing tests. The HLN and ERIC encompassing tests have power somewhere in
between the power of the CM and DM tests.

The second general result isthat, given R, power riseswith P. For example, as shown in

Table 4, withb=0.2 and R =100, the power of the OOS F test increases from 48.4% when

P =20 to 58.1% when P = 40. Third and finally, power increases with the coefficient b, which
determines the explanatory power of the causal variable. Power is systematically higher when
b =0.4 than when b=0.2 and, inturn, than when b =0.1.

Table 6 presents size-adjusted power based on the VAR(2) for the changesin core
inflation and unemployment, equations (13)-(14). Inthe DGP underlying this power experiment,
unemployment does affect inflation, so VAR forecasts of Dinfl have lower MSE than AR
forecasts (asymptotically), and the AR forecast does not encompass the VAR forecast. The
critical values used to evaluate power are calculated from the distribution of statistics generated
in the Table 2 size experiment. Using the empirical model produces results the same as those for
the artificial VAR(1). Therankings (1) CM > OOSF > DM > CH, (2) OOS F > out-of-sample
GC, and (3) CM > ERIC 3 HLN > DM till apply. Inthis example, the power of the CM test is
not only greater than that of an out-of-sample GC test but also essentially the same as an in-
sample GC test, despite the fact that P < R. These results suggest that, if the DGP were the true
model, statistics like the CM test would be amost sure to correctly pick up the predictive power
of unemployment.

I nterpretations and explanations.

5. EMPIRICAL EXAMPLE
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To provide a sense of the ability of the different tests to determine predictive power in
practice, this section presents results on a question that many studies have examined: whether
unemployment has predictive power, in-sample and post-sample, for inflation. Recent examples
of studies addressing this question include Cecchetti (1995) and Staiger, Stock, and Watson
(1997). Inthisanalysis, tests on Granger causality, equal forecast accuracy, and forecast
encompassing are applied to data on core CPI inflation and the prime-age male unemployment
rate.

In the specification used here, both inflation and unemployment are differenced,
consistent with the results of augmented Dickey-Fuller tests for unit roots. The quarterly data
available from 1957:Q1-1998:Q4 are divided into an in-sample portion and an out-of-sample
portion of modest length, so asto produce a p = P/R value for which McCracken (1999) reports
asymptotic critical values. Allowing for data differencing and a maximum of four lagsin
determining the model’ s lag order, the in-sample period spans 1958:Q3-1987:Q1, atotal of R =
115 observations. The out-of-sample period spans 1987:Q2-1998:Q3, yielding atotal of P = 46
1-step ahead predictions. For this split, p=0.4. Over the in-sample period, the Akaike criterion
for both the AR and the VAR is minimized at two lags.

Table 7 presents in-sample estimates of an AR(2) fit to changesin core CPI inflation and
aVAR(2) fit to changes in core CPI inflation and prime-age male unemployment. The R?’sand
GC tests reported in the table suggest that, over the in-sample period, unemployment has
predictive power for inflation. The out-of-sample evidence, however, is weaker*® The CM
encompassing test, shown above to be more powerful than al the other post-sample tests,

indicates that unemployment has predictive power for inflation. The ERIC test, which has lower
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power than the CM test but higher power than the DM test, aso rejects the null when compared
against the empirical critical value. Surprisingly, the CH test, generally the weakest, also
suggests unemployment has predictive power. None of the other tests reject the null of no
predictive content in unemployment.

These results might lead to the conclusion that unemployment in fact has no predictive
power for inflation. In thisview the in-sample results, and out-of-sample test results suggesting
otherwise, are spurious. The problem with this interpretation is that the Monte Carlo
experiments of section 4 suggest that any size biases in in-sample Granger causality tests and, in
particular, the out-of-sample CM test, should be small, even with data-determined lags.
Accordingly, the in-sample GC and CM dtatistics strongly reject the null when compared against
both asymptotic and empirical critical values.

A more reasonable interpretation of the results is that unemployment does have predictive
power for inflation, power perhaps weakened by model instabilities. Both an in-sample GC test
and the CM test for forecast encompassing overwhelmingly indicate that unemployment has
predictive content. The Monte Carlo results in section 4 indicate these tests have the greatest
power in finite samples. Nonetheless, the failure of other out-of-sample teststo detect any
predictive power, despite the strong in-sample predictive power of unemployment, suggests there
is a difference between the in-sample and out-of-sample predictive content of unemployment.

This difference may reflect model instabilities. Neither the AR model nor the VAR pass the

' The forecasts are slightly biased. However, demeaning the errors prior to calculating the test statistics has little
effect on the results.
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supremum Wald or exponential Wald tests for stability developed in Andrews (1993) and

Andrews and Ploberger (1994), respectively.'’

6. CONCLUSIONS

¥ The models do, however, pass the Nyblom (1989) test for stability and Chow tests for a shift in the parameter
estimates between 1958:Q3-87:Q1 and 1987:Q2-97:Q3. Following Diebold and Chen (1996), the stahility test
results are based on bootstrap critical values.
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Appendix

Lemmas Al - A1l dso appear in McCracken (1999) with a dightly different numerical
ordering. Inorder to facilitate reference, but aso conserve space, those Lemmas are repeated
below without proof. Lemmas A12 - A14 are new and hence their proofs are provided.

Throughout the remainder the following notation will be used: J denotes the selection matrix

(I, Ok,) (K" k, k>ky), b denotes weak convergence, S; denotes the summation S/_ ., for

any function f;;(b) i =1,2 we will usually denote f, (b,) as f,, for matrices A and C defined in

LemmaA2 ﬁm denotes s *A'CB%°h,,,, H;(1) equals t '8, h,, R &L g ad

R*&&,h, for therecursive, rolling and fixed schemes respectively, ﬁ(t) denotes

s A'CBSH(t), b, issome vector on the line between b;, and b}, Ng,, ., denotes

g;,b,t+1(bi,t)(6i,t - b:)

Lemma Al: For al al [0,0.5) and eachi=1.2, (a) sup, |b,, - b’ | = 0,(1), (b)
sup, | B, (1) - B, | = 04(1), (c) sup, t*|U(t)|=0, (1), (d) sup, t*|D;, - b} | = 0,(1), (€)

sup, | T°°(vedB; (1)] - vedB;])| = Oy(D).

LemmaA2: (a) Let - JB,J+B, =M and B,"’MB,"? = Q, then Q isidempotent. (b) Let A be

a (k" ko) matrix with 1, ., onthe upper (k2" k) block and zeroes elsewhere. There exists a

symmetric orthonormal matrix C suchthat Q = CAA C.
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LemmaA3: For sl [I 4], (8 T"*2& 1,0, b W(9), (b) (%)T'l’za}:{ﬁj b s'W(s), (0

(%)T'“Za}:t.m'ﬁ,- b 17 {W(9)- W(s- 1)}

LemmaA4: 4,H (tHh,, ® , c, where ¢, equals

39S 'W ' (s)dW(9) for the recursive scheme,
W@ - W)}y W() for the fixed scheme,
I '1${W(s) - W(s- | )}'dW(s) for the rolling scheme.

LemmaA5: &, H (hH(t)® , ¢, where ¢, equals
39S W' (S)W(s)ds for the recursive scheme,
pl "W (1W(l) for the fixed scheme,

| 2 5{W(s) - W(s- D} {W(s) - W(s- ?)}ds for therolling scheme.

LemmaA6: & {- h;,,JB,()H(t) + h,BOHD}Y? = &,{- h,IB,H(®) +h,,BH®)? +

0p(1).

LemmaA7: & {- h;,,JB,IH(t) + |, ,BH}? = & {A()N,.}°.

LemmaA8: & {H(t)h,}? ®,c, for c, definedin LemmaAS.
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LemmaA9: &, UpuGipea(®;)B (DH; (1) = &, h;.iBiH; (1) +0y(1).

Lemma A10: Forij =12, & H,(t)B; (1)1 (0;)9) 50 (B, )B; (DH, (1) =

a, H‘i (1)B; E(gi,b,tﬂg‘j,b,tﬂ)Bj H i (t) +0p(1).

Lemma ALL: &, (Uy e (by,) - Uye(,))? @ 4 s7C,.

LemmaA12: For dl al [0,0.5), sup, | T*NQ; ... | = 0x(1).
Proof of Lemma A12: If we take afirst order Taylor expansion of g;,...(0;,) about b; we
immediately know that for some b, , on the line between b, and b},
sup, | T°Ng; .y | £
Sup, [ T2(0, - b7) a0, )B, - b)) | + SUp, | TG0 (b, - b))
£ sup, [T2(0, - ;) 0 s (B, )0, - )] +
K(SUP, G0 D(sUD, [ T2 (D, - b)) ).
Adding and subtracting q i1, ther.h.s. of the final inequality is then less than or equal to
k?(sup, B, - b} DS, 164y (By) - G s NP, [T2(D;, - b)) D) +
k?(sup, [D;, - by (sup, 19, Dsup, [ T*(b, - b)) +

K(SUP, |90 D(SUP, [ T2(B,, - b)) ).
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That sup, |d; ., | @d sup, |G, | are Opy(1) follows from Assumption 3. That

sup, | T2(b, , - b;) | isoy(1) follows from LemmaAl. Since sup, | T*(b,, - b})| £

sup, |Ta(6iyt - b;) | it follows from Lemma Al that sup, |Te‘(biyt - b’) | is0,(1). Theresult
then follows since by Assumption 2 and Lemma Al, sup, |qi,t+1(6i,t)_ Qi l £

(sup, |m, (sup, [ T*(B;, - b;) )" £ (sup, Im, D(sup, | T*(D;, - b;)])' = Ox(L)0n(D).

LemmaAl13: Fori,j =12, &,u?;Ng; ..Ng, ... = &, H,(t) Bh, . ,h;..BH; () +0y(1).
Proof of Lemma A13: First rewrite &,u?,,Ng, .,Ng, ., as
&H (1B (t)- B)+B[(UpaTipa(0) - Niua) +hy ]
[(UnaTpa(0) - Na) +0 G TT(B (1) - B +BIH (1)
Expanding the above equation we then know that & ,u?,Ng; .,Ng, ., equals
a.H;()Bh, ;h; B H, (1) +
&.H; (1)(B; (t)- B))h; .1, BH, () +
& H (DB, (UiTip () - Nia)h| aBjH (1) +
&, H;()Bh, .;h, 1 (B (t)- B))H (1) +
&H (DB D 1 (Ui Gjpa®)) - Ny g) BJH (1) +
& H (DB (1) - B)(Up1Gi 1 (01) - hi ) aBiH (1) +
& H (B (1) - BN, 1y (UaG 0 (0, - N g) BIH (1) +

a.H (B, (1)- B))h; ,;h; ., (B;(t)- B)H,(t) +
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& H (DB (Uaip000(050) - Nia) (UG 0a (05 - D) BiH () +

& H (0B, (U8 pea ) - hw)hwa (B (1) - B)H, () +

& H (0B 0, 1 (Ui8pa 05)- 0y a) (B (1) - B)H (1) +

& H (OB (1) - B)(UpaGipu1®i) - D) U8 pea ) - 0y a) BiH () +

& H (DB (1) - B)(Upaipa(0;) - hia)hj (B (1) - BOH (1) +

& H (OB (1) - BN, 1y (U801 - hja) (B (1) - B)H (1) +

& H (0B, (Uia8ipea (1) - 1) (Uia)p0a0;) - ha) (B (D)- BOH (1) +

& H (OB (1) - B)(UpaTip0a (D) - D)’

(UeaaGjp0a (01,0 - ya) (B (D) - B)H (1)
The result will follow if the latter fifteen terms are each 0 4(1). The proof of each islargely the
same hence we will do so only for the final term. The absolute value of the final termisless than
or equal to
k®(sup, [ T*°H; (1) )(sup, | T**H; (t) )(sup, | B; (t)- B; D(sup, |B;(t)- B; )’
(SUP; [UeaaGipe1 (D10 = i a D(SUP, [Uia D 0sa (010 = D D

That sup, | T°°H;(t)| and sup, | T**H(t) | are each Oy(1) follows from Assumption 3 and
Theorem 3.1 of Hansen (1992). That sup, |B;(t)- B; | and sup, |B,(t) - B; | are each 0,(1)
follows from LemmaAl. It remainsto show that both sup, |ut+1gi,b,t+1(bi,t)_ h; .. | ad

sup, |ut+1gj,b,t+l(bj,t)_ h, . | are Op(1). Wewill do so for the former. If we take afirst order
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Taylor expanson of g;, ., (b;,) about b; weimmediately know that for some b, , on theline
between b, , and b} ,
SUP, U Qi b, (010 = Miar | £ (SUP, Uy D(SUP 10 aa (B ) (05 - D7) )
£ K(SUp, [Upy (SUP, 10 g D(SUP, [B; - b7 |) +
K(sup, | U (SUP, |Gl a (05, - O g N(SUP, [b - b7 ).
That sup, |u,, | and sup, |q; ., | are Oy(1) follows from Assumption 3. That sup, |bi,t -b; |is
0,(1) follows from Lemma Al since sup, |bi,t -b; | £ sup, |6Lt - b; | = 0,(1). Theresult then

follows from Assumption 2 and Lemma Al since they imply that  sup, |q; ., (Bi,t)_ Qi l £

(sup, |m, (sup, |B,, - b; )' £ (sup, |m, (sup, |b,, - b} )’ =Ou(1)ay(d).

LemmaAl4: &, (U2, (1) - Uy 0y U, e (0,,))% ® 4 s'C,.
Proof of Lemma A14: If we take first order Taylor expansions of both u, ., (BM) and
U, (D,,) around b and b}, respectively, we have
8 (UF 1 (Br) - Uy (03 U (D5,))7 =
[-28 U NG, 0} + 48, uL{Ng, 1} (NG, ) - 28,00 {Ng, ., HNG, 1}
+ 8 {Ng, .} - 28{NG, ..} (NG, 0} + 28 (NG, 1} (NG, 032 ]

+ [é-tutzﬂ{Ngl,tﬂ}z - Zé-tut2+1{Ngl,t+1}{Ngz,t+l} + é-tut2+l{Ngz,t+l}2]

©rir+r2T,
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That r,r= s*& {H(t)h,}? ®,s*c, followsfrom Lemmas A6-A8 and A13. The remainder

of the proof then consists of showing that each of the six termsinr ;1 are oy(1). We will do so for

the first, the remaining terms follow from smilar arguments. Taking absolute values we know
that |8, U, {Ng,; ..} ° | £ (sup, [T°Ng, s )°(sUp, [Upy [). Thet sup, | T°Ng, ., | isoy(1)

follows from Lemma A12; that sup, |u,,, | IS Oy(1) follows from Assumption 3.

Proof of Theorem 3.4: (HLN) Given LemmaA14 and Theorem 3.5, the result follows from

Theorem 2.1 of Hansen (1992) and the Continuous Mapping Theorem.

Proof of Theorem 3.5: (CM) If we take first order Taylor expansions of both ulm(ﬁn) and
U, (D,,) around b and b}, respectively, we have
8 U7 (B10) - Uya (0, )U 0 (B,) = (1)
& {- UpaG1p,00 (01)B1 (DIH(E) +U 1G5 10 (05 )BIOH(D)} -
& {- H(t)' I By (1)T1p101 (01)G1p.10 (D1 ) B () IH(E) +
H(t)' IBy ()G 101 (010G 01 (02 )BOH (1)}
for b,, ontheline between b, , and b; respectively. By Lemmas A2 and A9 we know that the

first bracketed term on the r.h.s. of (1) equalss &, H (t)h,,, + 0,(1). By LemmaA10 we know
both
é-t_ H(t)l‘]lBl(t)gl,b,tﬂ(bl,t)g‘l,b,t+1(bl,t)Bl(t)JH(t) = é-t_ H(t)l‘]l Bl‘]H(t) + Op(l)

and
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& H(U'IB; (19,111 (1192501 (02, )BOH(D) =
& H(1)' I B, E(9yp,1119201)BH() +0p().
But E(9p 1025 11) = JE(Usp11025:) = B . Hencethe last bracketed term on ther.h.s. of

(9) isoy(1). Theresult then follows from Lemma A4.

Proof of Theorem 3.6: (Eric) Given Theorem 3.5, the Continuous Mapping Theorem and

Theorem 2.1 of Hansen (1992) it sufficesto show a,-a,; - a;; ® 4 s“c, for c, definedin
LemmaA5. That a,; ® , s follows from Theorem 4.1 of West (1996). To show that Pag; =
0p(1) note that Theorem 2.6 impliesthat Pa,; = O,(1). The result follows since by LemmaAll,

2
Pa,; ®,s°c,.



Notes:

1. The DGP is

where the error terms are independent standard normal variables and, in these size experiments, b = 0.
simulation, 1-step ahead forecasts of y are formed from an estimated AR model for y and an estimated VAR in y and .

Table 1
Empirical Size
Artificial VAR(1)
Recursive Forecasts
Nominal Size = 10%

R =100
|P=10|P=20|P=40| P=60 | P=100] P =200

Tests Compared Against Valid Asymptotic Critical Values

OOS F 113 107 .100 .105 .106 .099
DM 163 135 120 110 107 .099
CM 118 110 .103 .106 .105 .100
HLN 162 .140 121 113 11 104
ERIC 170 142 120 113 A11 104
CH .200 155 132 122 116 110
GC, 00S 135 116 110 .108 .106 .103
GC, in-smpl. .103 104 .103 .105 104 104
Tests Compared Against Invalid Asymptotic Critical Values
DM .075 .055 .038 .029 .019 .010
HLN .095 .083 .074 .069 .064 .057
ERIC 135 101 .080 .073 .066 .058
R =200

| P=20|P=40| P=80| P=120] P =200 P =400

Tests Compared Against Valid Asymptotic Critical Values

OOS F 0.107 104 .096 104 .102 .097
DM 0.137 122 110 .105 .103 .097
CM 0.111 .106 .099 .106 .101 .098
HLN 0.136 125 .109 .109 .105 .100
ERIC 0.140 126 .109 .109 104 .100
CH 0.152 126 113 .109 .105 .105
GC, 00S 0.116 110 .103 104 .102 101
GC, in-smpl. | 0.102 .099 102 .102 .102 102
Tests Compared Against Invalid Asymptotic Critical Values
DM 0.067 .049 .034 .027 .018 .010
HLN 0.087 .076 .067 .066 .060 .056
ERIC 0.105 .084 .070 .068 .060 .056

(5)=(0 5) () (),

2. In each simulation, the lag lengths of the estimated models are set at one, the order of the DGP.
3. R and P refer to the number of in—sample observations and post—sample predictions, respectively.

4. Section 2 in the text defines the test statistics. The statistics included in the above set of asymptotically valid tests
are compared to the correct asymptotic distributions, described in Section 2. The statistics in the set of asymptotically
invalid tests are compared to the distributions that would be appropriate if the forecasting models were non—nested but

are inappropriate for nested models.
5. The number of simulations is 50,000.
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Table 2
Empirical Size
VAR(2) in Inflation and Unemployment
Recursive Forecasts
Nominal Size = 10%
R =115, P =146
Tests Compared Against Valid

Asymptotic Critical Values

OOS F .108
DM 116
CM .108
HLN 118
ERIC 120
CH 139
GC, 0O0S .104
GC, in-smpl. .101

Tests Compared Against Invalid
Asymptotic Critical Values

DM .032
HLN .081
ERIC .089
Notes:
1. The DGP is

Afnflt = —.024 — .288A[nflt,1 - .237Alnflt,2 + Uy

AUnemp, = —.009 + .057AInfl;_1 + .015AInfl;_o + .7T03AUnemp;—1 — .182AUnemp;_2 + vy

Var(ug) = 2.795, , Var(v;) = .107, Cov(uy, v) = —.084.

In each simulation, 1-step ahead forecasts of the change in inflation are formed from an estimated AR model for the
change in inflation and an estimated VAR in the changes in inflation and unemployment.

2. In each simulation, the lag lengths of the estimated models are set at two, the order of the DGP.

3. R and P refer to the number of in—sample observations and post—sample predictions, respectively.

4. Section 2 in the text defines the test statistics. The statistics included in the above set of asymptotically valid tests
are compared to the correct asymptotic distributions, described in Section 2. The statistics in the set of asymptotically
invalid tests are compared to the distributions that would be appropriate if the forecasting models were non—nested but
are inappropriate for nested models.

5. The number of simulations is 50,000.
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Table 3
Size—Adjusted Power
Artificial VAR(1), b = .1
Recursive Forecasts
10% Signif. Empirical Critical Values
R =100
P=10| P=20| P=40| P=60 | P=100 | P =200
OOS F 212 .238 .280 313 .382 .538
DM 135 176 225 257 .338 .509
CM .230 272 .324 .367 .455 .613
HLN .149 .202 .266 .308 .405 .594
ERIC 158 .201 .266 .308 .405 .595
CH 11 17 124 142 157 182
GC, 00S .109 .138 181 .208 .292 .482
GC, in-smpl. .308 312 .309 .301 .304 .297
R =200
P=20|P=40| P=80| P=120| P =200 | P =400
OOS F .299 .345 416 .486 .593 757
DM 181 234 315 .390 .526 723
CM .338 413 512 584 .705 .854
HLN 212 .287 404 .493 .640 .829
ERIC 215 .290 404 .493 .639 .829
CH .108 116 .136 144 .181 227
GC, 00S 141 172 .260 .340 .501 732
GC, in-smpl. 476 .489 482 484 .488 .493

Notes:
1. The DGP is

() =05 5) () ()

where the error terms are independent standard normal variables and, in these power experiments, b = .1. In each
simulation, 1-step ahead forecasts of y are formed from an estimated AR model for y and an estimated VAR in y and .
2. In each simulation, the lag lengths of the estimated models are set at one, the order of the DGP.

3. R and P refer to the number of in—sample observations and post—sample predictions, respectively.

4. Section 2 in the text defines the test statistics.

5. The number of simulations is 5,000.
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Table 4
Size—Adjusted Power
Artificial VAR(1), b= .2
Recursive Forecasts
10% Signif. Empirical Critical Values
R =100
P=10| P=20| P=40| P=60 | P=100 | P =200
OOS F .405 484 581 .667 .780 .929
DM .205 .293 .430 523 .689 .897
CM .486 .598 .728 .815 .910 .983
HLN .260 .388 BT .695 .855 977
ERIC 276 .395 579 .699 .856 977
CH 140 182 .240 .301 .401 572
GC, 00S 146 227 375 .508 715 .938
GC, in-smpl. 713 712 721 714 .723 719
R =200
P=20|P=40| P=80| P=120| P =200 | P =400
OOS F .558 .644 .766 .853 .932 .990
DM 277 .408 597 718 .867 .984
CM .692 .820 .925 .970 .994 1.000
HLN .393 .588 .803 914 .981 1.000
ERIC .408 594 .805 917 .981 1.000
CH 155 .206 315 .394 .555 .70
GC, 00S .226 375 .627 .792 .937 .998
GC, in-smpl. .937 .938 .936 .938 .938 .940

Notes:
1. The DGP is

() =05 5) () ()

where the error terms are independent standard normal variables and, in these power experiments, b = .2. In each
simulation, 1-step ahead forecasts of y are formed from an estimated AR model for y and an estimated VAR in y and .
2. In each simulation, the lag lengths of the estimated models are set at one, the order of the DGP.

3. R and P refer to the number of in—sample observations and post—sample predictions, respectively.

4. Section 2 in the text defines the test statistics.

5. The number of simulations is 5,000.
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Table 5
Size—Adjusted Power
Artificial VAR(1), b= 4
Recursive Forecasts
10% Signif. Empirical Critical Values
R =100
P=10| P=20| P=40| P=60 | P=100 | P =200
OOS F .658 .T67 .889 .943 .988 .999
DM 317 .488 715 .856 .968 .999
CM .832 .930 .088 .999 1.000 1.000
HLN .482 .738 .940 .988 .999 1.000
ERIC 523 754 .942 .988 .999 1.000
CH .266 .400 .635 776 911 .991
GC, 00S .282 525 .820 .945 .995 1.000
GC, in-smpl. .995 .995 .995 .996 .996 .997
R =200
P=20|P=40| P=80| P=120| P =200 | P =400
OOS F .786 .902 .969 .992 .999 1.000
DM .465 .684 .896 .970 .999 1.000
CM .952 .994 1.000 1.000 1.000 1.000
HLN 745 .939 .997 1.000 1.000 1.000
ERIC 752 .943 997 1.000 1.000 1.000
CH 372 .590 .844 .936 .989 1.000
GC, 00S .526 .831 .981 .999 1.000 1.000
GC, in-smpl. | 1.000 1.000 1.000 1.000 1.000 1.000

Notes:
1. The DGP is

() =05 5) () ()

where the error terms are independent standard normal variables and, in these power experiments, b = .4. In each
simulation, 1-step ahead forecasts of y are formed from an estimated AR model for y and an estimated VAR in y and .
2. In each simulation, the lag lengths of the estimated models are set at one, the order of the DGP.

3. R and P refer to the number of in—sample observations and post—sample predictions, respectively.

4. Section 2 in the text defines the test statistics.

5. The number of simulations is 5,000.
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Table 6
Size—Adjusted Power
VAR(2) in Inflation and Unemployment
Recursive Forecasts
10% Signif. Empirical Critical Values
R =115, P =46

OOS F 726
DM .560
CM .907
HLN .783
ERIC .785
CH .388
GC, 0O0S 547
GC, in-smpl. 913

Notes:
1. The DGP is

Alnfly = —.033 — .391AInfl; 1 — .266AInfl,_o — 1.207TAUnemp;_1 — .137TAUnemp;_o + ug

AUnemp; = —.009 + .057AInfl;_1 + .015AInfl;—s + .7T03AUnemp;—1 — 182AUnemp;—s + vy

Var(uy) = 2.519, , Var(v;) = .107, Cov(ug, vy) = —.084.

In each simulation, 1-step ahead forecasts of the change in inflation are formed from an estimated AR model for the
change in inflation and an estimated VAR in the changes in inflation and unemployment.

2. In each simulation, the lag lengths of the estimated models are set at two, the order of the DGP.

3. R and P refer to the number of in—sample observations and post—sample predictions, respectively.

4. Section 2 in the text defines the test statistics.

5. The number of simulations is 5,000.
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Notes:

1. 1-step ahead forecasts of the change in inflation are formed from an estimated AR model for the change in inflation

Table 7

Testing the Predictive Content of Unemployment for Inflation

Recursive Forecasts
R =115, P =146

In—Sample Model Estimates, 1958:Q3 to 1987:Q1

Ezxplanatory Dependent variable

variable Inflation, Inflation, Unemployment,

Constant .024 (.154) .033 (.148) -.009 (.031)

Inflation, | -.288 (.092) | -.391 (.093) .057 (.019)

Inflation,_, -.237 (.092) | -.266 (.097) .015 (.020)

Unemployment,_, -1.207 (.454) .703 (.093)

Unemployment,_, -.137 (.457) -.182 (.094)

R? .092 .166 .356

Tests of Predictive Power of Unemployment for Inflation
Test Asymptotic Empirical
statistics | critical values critical values

MSE, AR .420

MSE, VAR 412

OOS F .839 1.029 1.111

DM .100 .614 711

CM 5.186 1.019 1.080

HLN 1.124 1.282 1.191

ERIC 1.247 1.282 1.206

CH 1.853 -1.645,1.645 -2.114,1.345

GC, O0S 2.040 2.437 2.469

GC, in-smpl. 6.011 2.351 2.356

and an estimated VAR in the changes in inflation and unemployment.
2. The significance level of the tests is 10%.

3. R and P refer to the number of in—sample observations and post—sample predictions, respectively.

4. Section 2 in the text defines the test statistics.
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