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Abstract
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to converge to the standard normal distribution when the models are nested rather than non-
nested.  Building on McCracken’s (1999) results for equal accuracy tests, this paper derives the
asymptotic distributions for a set of standard encompassing tests and one new encompassing test.
Numerical simulations are used to generate the appropriate asymptotic critical values.  Monte
Carlo simulations are then used to evaluate the size and power of a battery of equal forecast
accuracy and encompassing tests, as well as standard F-tests of causality.  In these experiments,
forecasts from an estimated VAR model are compared to those from a null estimated AR model.
The simulation results indicate that McCracken’s out-of-sample F-type test of equal accuracy
and the encompassing test proposed in this paper can be more powerful than standard F-tests of
causality.  The Monte Carlo simulations also show that using invalid asymptotic critical values
can produce misleading inferences.
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1.  INTRODUCTION

As evident from recent studies such as Amano and van Norden (1995), Blomberg and

Hess (1997), Bram and Ludvigson (1998), Krueger and Kuttner (1996), and Mark (1995),

interest often lies in examining whether one variable helps predict another, both in-sample or

out-of-sample.  The standard in-sample metric is a simple Granger causality test.  Out-of-sample

predictive ability is usually gauged by first constructing forecasts from models that include and

exclude the variable that may have predictive capacity and then testing for equal accuracy or

encompassing.  Typically, there is concern that in-sample Granger causality tests may lead to

overfitting of the model.  Out-of-sample forecast comparison is widely viewed as a more

stringent test of the relationship between the variables.  Moreover, Ashley, Granger, and

Schmalensee (1980) argue that it is more in the spirit of their “reasonable” definition of Granger

causality to employ post-sample forecast tests than to employ the standard in-sample tests of

causality.1  According to Ashley, et. al., if forecasts of y from a VAR in x and y are superior to

forecasts from an AR model for y, then x carries information about y and hence x causes y.

This paper examines the ability of different post-sample forecast tests to determine

whether one variable has predictive ability for another.  Particularly, this paper examines the

asymptotic and finite-sample properties of tests for equal accuracy and encompassing applied to

nested models.  Used with nested forecasts from models such as a VAR vs. an AR, the tests can

be viewed as Granger causality tests.  However, many of the standard tests of equal accuracy and

encompassing are designed for forecasts from non-nested, rather than nested, models.  Many of

the standard test statistics – such as the Diebold and Mariano (1995) equal accuracy and the

Harvey, Leybourne, and Newbold (1998) encompassing statistics – fail to converge to the

                                               
1  Diebold and Mariano (1995) also suggest using out-of-sample forecast tests to examine Granger causality.
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standard normal distribution when the models are nested rather than non-nested.2  Therefore, the

standard asymptotic critical values are invalid with nested models.

This study’s analysis of the use of equal accuracy and encompassing tests for nested

forecasts complements the non-nested forecast analyses of, among others, Corradi, Swanson, and

Olivetti (1998), Diebold and Mariano (1995), Harvey, Leybourne, and Newbold (1997, 1998),

West (1996), West and McCracken (1998) and McCracken (1998).  In another related analysis,

Swanson, Ozyildirim, and Pisu (1996) examine the finite-sample performance – principally, the

size – of different Granger causality tests and Diebold-Mariano equal accuracy tests with both

stationary and non-stationary data.  The equal accuracy tests they consider, however, are all

compared against standard asymptotic critical values that are invalid because the models are

nested.  The same problem applies to the Monte Carlo results of Corradi, et. al. (1998) on how

Diebold and Mariano tests perform when applied to models with cointegrating relationships.

Building on McCracken’s (1999) results for equal accuracy tests, this paper first derives

the asymptotic distributions for a set of standard encompassing tests and one new encompassing

test.  The standard encompassing tests for which this paper derives asymptotic distributions are

the Harvey, et. al. (1998) and Ericsson (1992) statistics.  The set of standard statistics also

includes the Chong and Hendry (1986) test, which remains asymptotically normal when applied

to nested rather than non-nested forecasts.  The new test proposed below is a variant of the

Harvey, et. al. statistic.  As in Corradi, et. al. (1998), McCracken (1999), West (1996), and West

and McCracken (1998), the derived distributions of the tests explicitly account for the

uncertainty introduced by model estimation.  In order to facilitate the use of the limiting

distributions derived here, asymptotically valid critical values are generated numerically and

                                               
2  Most of the other available tests of forecast accuracy or encompassing – such as the Mizrach (1992) and Granger
and Newbold (1977) tests of equal accuracy – are also asymptotically invalid when applied to nested forecasts.
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reported in appendix tables.  The equal accuracy tests include an out-of-sample F-type test of

equal mean squared error (MSE) developed in McCracken (1999) and the Diebold and Mariano

(1995) test of equal MSE, statistics for which McCracken develops the correct asymptotic

distributions and provides critical values.

In order to evaluate the finite-sample size and size-adjusted power of these tests we

conduct a series of Monte Carlo simulations based on VAR data-generating processes.  For

comparison, the set of tests considered also includes standard F-tests of Granger causality.  In

addition, in order to evaluate the extent to which using invalid critical values can produce

misleading inferences, results are presented for Diebold and Mariano (1995), Harvey, et. al.

(1998), and Ericsson (1992) statistics compared to the distributions that would be appropriate if

the forecasts were from non-nested models.  To further illustrate how the different tests perform

in practical settings, the battery of tests is applied to determining whether the unemployment rate

has predictive power for inflation in quarterly U.S. data.

Results summary.  Asymptotics.  Finite-sample.  Monte Carlo simulations show that

using invalid asymptotic critical values can produce misleading inferences in small samples.  The

simulations also indicate that out-of-sample F-type and encompassing tests can be more powerful

than standard, in-sample F-tests of causality.

The remainder of the paper will proceed as follows.  Section two introduces the notation

and general environment under which the forecasts are generated and the tests of forecast

accuracy and encompassing are constructed.  Section three, and its subsections, introduce the test

statistics considered and provide the asymptotic results under the null.  In section four we present

a collection of Monte Carlo experiments designed to determine the finite-sample size and power

properties of the test statistics.  Section five contains an empirical application of the tests to the
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problem of determining whether the unemployment rate has predictive power for inflation in

quarterly U.S. data.  Section six concludes.  All proofs are contained within the Appendix.

2.  General Environment

In order to present the tests considered we first provide some general notation, describe

the forecasting schemes, and present the assumptions under which the asymptotic results are

derived.  The sample of data 1T
1j

'
jj }x,y{ +

=  is divided into in-sample and out-of-sample portions.

The in-sample observations span 1 to R.  Letting P denote the number of 1-step ahead

predictions constructed, the out-of-sample observations span 1R +  through PR + .  The total

number of observations in the sample is then 1TPR +=+ .  The largest number of observations

used to estimate the model under the forecast schemes considered is 1PRT −+= .

The scalar variable to be predicted is yt+1, t = R,… ,T.  Forecasts of yt+1 are generated

using parametric models )(g),x(g *
i1t,i

*
i1ti β≡β ++  denoted by i = 1 and 2, each of which is

estimated.  Model 2 is the unrestricted model, which nests the restricted model 1.  Under the null

hypothesis, model 2 includes 2k  excess parameters.  Without loss of generality let

'
k1k1

*'
1

*
2 )0 ,(

21 ××β=β  (k1 + k2 = k×1) such that for all t, )(g *
11t,1 β+  = )(g *

21t,2 β+ .  Under the

alternative hypothesis, the k2 restrictions are not true, and model 2 is correct.  Note that while

models 1 and 2 take the form of AR and VAR models in the Monte Carlo analysis, the

asymptotic results permit the use of nonlinear models.

Following West and McCracken (1998), three forecast schemes are considered.  Under

the recursive scheme, each model's parameters, *
iβ  i = 1,2, are estimated with added data as

forecasting moves forward.  The first prediction, )ˆ(g R,i1R,i β+ , is created using model parameter
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estimates R,îβ  estimated using data from 1 to R, the second prediction )ˆ(g 1R,i2R,i ++ β  is created

using model parameter estimates 1R,î +β  estimated using data from 1 to 1R + , etc.  In general, for

t = R,… ,T, the prediction of yt+1, )ˆ(g t,i1t,i β+ , from time t is created using model parameter

estimates t,îβ  estimated using data from 1 to t.

Under the rolling forecast scheme, the model is estimated using only the most recent R

observations.  The first rolling prediction, )ˆ(g R,i1R,i β+ , is created using model parameter

estimates R,îβ  estimated using data from 1 to R, the second prediction )ˆ(g 1R,i2R,i ++ β  is created

using model parameter estimates 1R,î +β  estimated using data from 2 to 1R + , etc.  In general, for

t = R,… ,T, the prediction of yt+1, )ˆ(g t,i1t,i β+ , from time t is created using model parameter

estimates t,îβ  estimated using data from t− R+1 to t.  Note that under the rolling scheme the

parameter estimates t,îβ  should also be subscripted by R in order to reflect the size of the sample

window.  To reduce notation we leave that subscript implicit.

Under the fixed scheme, all forecasts are generated using models estimated with data

from 1 to R.  Hence for each prediction of yt+1, )ˆ(g t,i1t,i β+  = )ˆ(g R,i1t,i β+ , from time t = R,… ,T,

the prediction is created using the same model parameter estimate t,îβ  = R,îβ  estimated using

data from 1 to R.  As was the case for the rolling scheme, the parameter estimates t,îβ  under the

fixed scheme should also be subscripted by R to reflect the sample window.  To reduce notation

we also leave this subscript implicit.

For each of the three forecasting schemes, the 1-step ahead forecast errors are

)ˆ(ˆ ,11,111,1 tttt gyu β+++ −=  and )ˆ(ˆ ,21,211,2 tttt gyu β+++ −=  for models 1 and 2, respectively.  Using
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the two sequences of P forecast errors the out-of-sample tests of forecast accuracy and

encompassing are constructed.  In all cases the out-of-sample statistics rely on sums of functions

of these forecast errors.  To simplify notation, for any variable zt we will let ∑ t tz  denote the

summation ∑ =
T

Rt tz .  For example, the mean squared error (MSE) for model i is MSEi ≡

∑ =
− T

Rt tiuP 2
,

1 ˆ  = ∑−
t tiuP 2

,
1 ˆ .

Before getting to the assumptions some final notation is needed.  Let )(g i,1t,i ββ+  =

)(g i1t,i
i

β
β∂
∂

+ , )(q i1t,i β+  = )(g))(gy()(g)(g i1t,i'
ii

2

i1t,i1ti
'

,1t,ii,1t,i β
β∂β∂

∂β−−ββ +++β+β+ , 1t,if +  =

)(f *
i1t,i β+  and 1tf +  = 1t,2f +  for any function f, )(h i1t,i β+  = )(g))(gy( i,1t,ii1t,i1t ββ− β+++ , Bi =

1
1t,i )Eq( −

+ , W(s) is a (k2×1) vector standard Brownian Motion, and for any (m×n) matrix A with

column vectors ai let vec(A) denote the (mn×1) vector ''
n

'
2

'
1 ]a,...,a,a[ .

Given the definitions and the three forecasting schemes described above, the following

five assumptions are those used to derive the limiting distributions of encompassing tests

presented in Theorems 3.4, 3.5, and 3.6.  The assumptions are also sufficient for the results of

McCracken (1999) when MSE is the measure of predictive ability.  These assumptions are not

intended to be necessary and sufficient, only sufficient.  All proofs can be found within the

Appendix.

Assumption 1: The parameter estimates t,îβ , i = 1,2, t = R,… ,T, satisfy *
it,î β−β  = )t(H)t(B ii

where for t,iβ&  on the line between t,îβ  and *
iβ , )t(H)t(B ii  equals
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)ht())(qt( t
1j j,i

11t
1j t,ij,i

1 ∑∑ β =
−−

=
− & , )ht())(qR( t

1Rtj j,i
11t

1Rtj t,ij,i
1 ∑∑ β +−=

−−
+−=

− &  and

)hR())(qR( R
1j j,i

11R
1j t,ij,i

1 ∑∑ β =
−−

=
− &  respectively for the recursive, rolling and fixed schemes.

This first assumption provides us with one primary piece of information.  Analytically it

tells us that the parameters are estimated by OLS, NLLS, or maximum likelihood under

normality assumptions.  In the case where a VAR is being used, the system must be exactly

identified and estimated by multivariate OLS.  This type of restriction is imposed to insure that

the statistics in Theorems 3.4-3.6 are pivotal.  As in McCracken (1999), achieving a limiting

distribution that does not depend upon the data-generating process requires that the loss function

used to estimate the parameters be closely related to the loss function used to measure predictive

ability.  Each of the statistics in Theorems 3.4-3.6 is in one way or another testing whether the

two models have equal mean square errors.  In order then to achieve a pivotal statistic the

parameters must be estimated using mean square error as the loss function.  Although this

assumption is restrictive in how the parameters are estimated, it otherwise does not place any

restrictions on the type of model.  Single and multiple equation models as well as linear and

nonlinear models are permitted.

Assumption 2: For i = 1,2, (a) ii Θ∈β , Θ i compact, (b) 2
it,it )](gy[E β−  is uniquely minimized

at i
*
i Θ∈β  with t,iEq  nonsingular, (c) In some open neighborhood Ni around *

iβ , and with

probability one 2
it,it )](gy[ β−  is twice continuously differentiable, (d) In the open

neighborhood Ni, and for all t there exists a positive constant ϕ  and a positive random variable

tm  such that ϕβ−β≤β−β ||m |)(q)(q| *
iit

*
it,iit,i  with tEm  < ∞  and ∞<ϕ .
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Most of Assumption 2 is imposed in order to insure that the parameters are identified and

are consistently estimated.  It is directly comparable to Theorem (2.1) of Newey and McFadden

(1994).  The substantive components of this assumption are that the predictive function, )(g it,i β ,

is the conditional mean function and that the conditional mean function is twice continuously

differentiable.

Assumption 3: Let ''1
t

'12'
tt

'
tt ])Bq(vec,)Bhh(vec,h[U −− −σ−≡ .  (a) EUt = 0, (b) Ut is

uniformly L8 bounded, (c) For some 8 > d > 2, Ut is strong mixing with coefficients of size

d8
d8

−
−

, (d) ∑ =
−

∞→
T

1j
'
jj

1

T
UUETlim  = Ω  < ∞ .

Assumption 4: (a) '
tt hEh  = t

2 Eqσ  ≡ 12B −σ , (b) 1,2,...)=j ,q,h|h(E jtjtt −−  = 0.

Both Assumptions 3 and 4 largely consist of technical conditions sufficient for the

application of an invariance principle.  Moreover they are sufficient for joint weak convergence

of partial sums and averages of these partial sums to Brownian Motion and integrals of these

Brownian Motion.  Assumption 3 is directly comparable to the assumptions in Hansen (1992)

and hence we are able to apply his Theorems (2.1) and (3.1).

The reasons for imposing Assumption 4 are much the same as Assumption 1.  In order to

insure that the limiting distribution does not depend upon the underlying data generating process

we must impose some extra conditions.  Here we essentially require that the disturbances form a

conditionally homoskedastic martingale difference sequence.



9

Assumption 5: π=
∞→

R/Plim
T

, 0 < π < ∞ , 1)1( −π+≡λ .

This final assumption introduces the means by which the asymptotics are achieved.  As in

Hoffman and Pagan (1989), West (1996), and White (1998) the limiting distribution results are

derived by imposing a slightly stronger condition than simply that the sample size, T+1, becomes

arbitrarily large.  Here we impose the additional condition that both the number of in-sample (R)

and out-of-sample (P) observations also become arbitrarily large at the same rate.  In this way we

insure that the parameters estimated in-sample and certain out-of-sample averages are both

consistent estimators of their population level analogs.

It should be noted that the assumption that π is bounded from above and below is not

trivial.  Certainly in practice P/R will be bounded but whether it is near zero or much larger

could affect how well the asymptotic approximation behaves in finite samples.  If P/R is small

then the parameters may be well estimated but, for example, the out-of-sample MSE will be

estimated by too few observations for the empirical MSE to form a strong estimate of the

population MSE.  If P/R is large then we cannot expect the parameters to be well approximated,

especially under the fixed scheme, and thus regardless of the out-of-sample size the empirical

MSE may form a poor estimate of the population MSE.  Hence when choosing how to split the

sample into in-sample and out-of-sample portions one should consider choosing a split that

leaves a sizable number of observations in each of the in-sample and out-of-sample portions.

Unless otherwise noted, the notation and assumptions presented in this section hold

throughout the remainder of the paper.

3.  TESTS
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While Ashley, et. al. (1980) specifically advocate using tests of equal forecast accuracy to

examine causality, given their definition of causality, any test designed to examine whether x

carries information about y could reasonably be used.  Accordingly, this paper considers the

ability of simple Granger causality tests, equal forecast accuracy tests, and forecast

encompassing tests to determine whether one variable has predictive power for another.  Since a

large number of tests for equal accuracy and encompassing already exist, for tractability the set

examined is limited based on considerations of computational simplicity and performance in the

non-nested investigations of Clark (1999), Diebold and Mariano (1995), and Harvey, Leybourne,

and Newbold (1997, 1998).  The set of tests includes: simple Granger causality statistics;

McCracken’s (1999) out-of-sample F-type test for equal MSE; Diebold and Mariano’s statistic

for equal MSE; the Harvey, et. al. (1998) encompassing test; the Ericsson (1992) encompassing

statistic; a modified, asymptotically valid version of the Harvey, et. al. test developed below; and

the Chong and Hendry (1986) encompassing statistic.

In the results below, the tests are applied to 1-step ahead forecasts.  When multi-step

forecasts from nested models are used, the asymptotic distributions of the tests appear to depend

on the parameters of the data-generating process.  For practical purposes, such dependence

eliminates the possibility of using asymptotic approximations to test for equal accuracy or

encompassing.  Lutkepohl and Burda (1997) note similar difficulties associated with in-sample

tests involving multi-step forecasts.  Our belief is that researchers comfortable with assuming

linear models should be adequately served by tests based on 1-step ahead forecasts.  With linear

models, multi-step forecasts are simply linear combinations of 1-step ahead forecasts.  Hence

there does not appear to be any reason to expect tests based on multi-step forecasts to be better at

determining predictive power than tests based on 1-step ahead forecasts.
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3.1 Simple Granger Causality (GC) Tests

The emphasis of this paper is on using ex-ante forecasts, rather than ex-post predictions,

to test for forecast accuracy and encompassing.  Even so, we include simple F-type Granger

causality tests in the Monte Carlo simulations.  We do so because they are the most commonly

used statistics for testing for causality.  We construct these statistics using both in-sample and

out-of-sample data, using R observations in the former case and P observations in the latter.

In the results of section 4, the tests are computed as simple F-statistics for exclusion

restrictions.3  When lag lengths are set using data-based procedures, the out-of-sample GC tests

rely on the lag order determined using the in-sample data.  While standard GC tests are rarely

applied to out-of-sample data, they are no less valid for the purpose of testing causality in out-of-

sample data than are forecast accuracy or encompassing tests.  Like out-of-sample accuracy and

encompassing tests, simple out-of-sample GC tests may be less prone to spurious results due to

overfitting than are in-sample causality tests.

3.2 The Out-of-Sample F (OOS F) Test

McCracken (1999) develops an out-of-sample F-type test of equal MSE, given by

.
ˆ

ˆˆ
 2

1,2
1

2
1,2

12
1,1

1

2

21

∑
∑∑
+

−
+

−
+

− −
⋅=−⋅=

t t

t tt t

uP

uPuP
P

MSE
MSEMSE

PFOOS (1)

This statistic is comparable to the simple F-test form of the standard in-sample GC test and offers

the advantage of being particularly simple to compute if forecast summary statistics are already
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available.  Using assumptions broadly similar to those used in this paper, McCracken shows that

the OOS F statistic converges to a function of stochastic integrals of quadratics of Brownian

motion.  The limiting distribution under the null, which varies with the forecasting scheme, is a

function of the ratio of post-sample to in-sample observations, π, and excess parameters, k2, in

model 2.

In the results of section 4, the test statistic is compared against asymptotically valid

critical values tabulated by McCracken.  Since the models are nested, the null hypothesis is

,MSEMSE 21 ≤  and the alternative is .MSEMSE 21 >   The alternative is one-sided because, if

the restrictions imposed on model 1 are not true, there is no reason to expect forecasts from

model 1 to be superior to those from model 2.

3.3 The Diebold-Mariano (DM) Test

Define 2
1,2

2
1,11 ˆˆ +++ −= ttt uud  and .MSEMSEdPd 21t 1t

1 −=∑= +
−   The Diebold and

Mariano (1995) test for equal MSE is formed as

.
)()ar(v̂)ar(v̂ 2

1
2

21

21

∑ −
==

−
−=

+
−

t t ddP

d

d

d
MSEMSE

MSEMSE
DM (2)

While the DM statistic is asymptotically standard normal when applied to non-nested forecasts

(see Diebold and Mariano (1995) and West (1996)), the asymptotic distribution is non-normal

when the forecasts are nested under the null hypothesis.

The root of the problem is that, under the null, )(g *
11t,1 β+  = )(g *

21t,2 β+  and thus both

)( *
11,111,1 β+++ −= ttt gyu  ≡ 1+tu  and )()( *

11,11
*
21,211,2 ββ +++++ −=−= ttttt gygyu  ≡ 1+tu .  Hence, at

                                                                                                                                                      
3 Computing the tests as Wald statistics and comparing them against the chi-square distribution would make the tests
robust to non-normally distributed data.  However, using the Wald statistics produces results very similar to those
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least heuristically, asymptotically the difference in squared forecast errors is exactly 0, with 0

variance.  The usual DM test – in which the statistic is compared against the standard normal

distribution – is therefore asymptotically invalid.  McCracken (1999) shows that, for forecasts

from nested models, the DM test statistic converges to a function of stochastic integrals of

quadratics of Brownian motion.  This limiting distribution depends on the forecasting scheme, π,

and k2.

In the results of section 4, the test statistic is compared against asymptotically valid

critical values tabulated by McCracken.  Because models 1 and 2 are nested rather than non-

nested, the alternative hypothesis is one-sided instead of two-sided.  Under the null,

;MSEMSE 21 ≤  under the alternative, .MSEMSE 21 >

To evaluate how using invalid asymptotic critical values would affect inference, results

are also reported for a version of the test comparing the DM statistic against the 1Pt −  distribution.

While the DM statistic is asymptotically standard normal when the forecasts are non-nested,

Harvey, et. al. (1997) find that comparing the DM statistic against the 1Pt −  distribution yields

better small-sample properties.  In the reported results, the invalid version of the test (but not the

asymptotically valid version) also incorporates an adjustment, developed in Harvey, et. al (1997),

to correct for bias in the estimated variance of d .  This adjustment takes the form of multiplying

the test statistic (2) by .P)1P( −

3.4 The Harvey, et. al. (HLN) Test

Harvey, et. al. (1998) use the basic methodology of Diebold and Mariano (1995) to

develop a test of forecast encompassing drawn from the conditional efficiency framework of

                                                                                                                                                      
reported, with the difference that the empirical size is slightly higher.
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Granger and Newbold (1973) and Nelson (1972).4  Conditional efficiency is tested with the

OLS-based regression

.)ˆˆ(ˆ 11,21,11,1 ++++ +−= tttt uuu ηλ (3)

If λ = 0, forecast 2 carries no useful information not already in forecast 1, so forecast 1 is

conditionally efficient.  If λ > 0, forecasts from model 2 do carry information not already in

forecasts from model 1.

Harvey, et. al. (1998) propose testing encompassing with a t-statistic for the covariance

between 1,1̂ +tu  and 1,21,1 ˆˆ ++ − tt uu  rather than with a t-statistic for the regression coefficient .̂λ   Let

1,21,1
2

1,11,21,11,11 ˆˆˆ)ˆˆ(ˆ +++++++ −=−= ttttttt uuuuuuc  and .cPc t t
1∑= −   The Harvey, et. al. encompassing

test is formed as

{ }
.

)ˆˆˆ(

ˆˆˆ

)()ar(v̂ 2
1,21,1

2
1,1

1

1,21,1
12

1,1
1

2
1

22 ∑
∑∑

∑ −−

−
⋅=

−
==

+++
−

++
−

+
−

−

t ttt

t ttt t

t t cuuuP

uuPuP
P

ccP

c
c

c
HLN (4)

Under the null that model 1 forecast encompasses model 2, the covariance between tu ,1

and tt uu ,2,1 −  will be less than or equal to 0, while under the alternative that model 2 contains

added information, the covariance should be positive.  The test is one-sided when applied to

either nested or non-nested forecasts.

While the HLN statistic is asymptotically standard normal when applied to non-nested

forecasts, the asymptotic distribution is non-normal when the forecasts are nested under the null.

The actual limiting distribution is provided in Theorem 3.4.

                                               
4 Condition efficiency in turn draws from the forecast combination literature, started by Bates and Granger (1969).
The regression (5) can be used to determine the optimal combining weight.  The linear combination of forecasts 1
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Theorem 3.4: For HLN defined in (4), HLN 5.0
2

1
d )(χ

χ→  where 1χ  equals

)s(dW)s(Ws '1 1∫λ
− for the recursive scheme,

)(W)}(W)1(W{ '1 λλ−λ− for the fixed scheme,

∫ λ−−λ λ
− 1 '1 )s(dW)}s(W)s(W{ for the rolling scheme,

and 2χ  equals

ds)s(W)s(Ws '1 2∫λ
− for the recursive scheme,

)(W)(W '1 λλπ λ− for the fixed scheme,

∫ λ−−λ−−λ λ
− 1 '2 ds)}s(W)s(W{)}s(W)s(W{ for the rolling scheme.

There are a couple things to notice about Theorem 3.4.  The first is that for each

forecasting scheme the statistic is pivotal.  This fact is not particularly useful if asymptotic

critical values, associated with the limiting distributions, are used to construct asymptotically

valid tests.  If the bootstrap is used, as in Ashley (1998), then we know from Hall (1992) that the

bootstrap provides refinements to first order asymptotics and hence in finite samples may

provide more accurate inference.

Though the null limiting distributions do not depend upon the data generating process

itself, the distributions are dependent upon two parameters.  The first is the number of excess

parameters k2.  It arises since the vector Brownian Motion, W(s), is (k2×1).  The second

parameter, π, also affects the null limiting distribution.  It affects the limiting distribution in two

                                                                                                                                                      
and 2 will have a smaller MSE than forecast 1 unless the covariance between 1t,1ê +  and 1t,21t,1 êê ++ −  and,

equivalently, the coefficient λ, are 0.
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ways.  It directly affects the weights on each of the components of the statistics (recall that λ =

1)1( −π+ ).  It also affects the range of integration on each of the stochastic integrals through λ.

Since the limiting distribution of the HLN statistic is nonstandard (i.e. neither normal nor

chi-square) we provide asymptotically valid critical values in Tables A1-A3.  These were

generated numerically using the limiting distribution in Theorem 3.4 and hence can be

considered estimates of the true asymptotic critical values.  The reported critical values are the

90th, 95th and 99th percentiles of 5000 independent draws from the distribution of 5.0
2

1

)(χ
χ

 for a

given value of k2 and π.  Generating these draws proceeded as follows.  Weights that depend

upon π were estimated in the obvious way using R/Pˆ =π .  The necessary k2 Brownian Motions

were simulated as random walks each using an independent sequence of 10,000 i.i.d. N(0,T-0.5)

increments.  The integrals were emulated by summing the relevant weighted quadratics of the

random walks from the R+1st observation to the Tth observation.  The random number generator

was seeded so that all k2 and π pairs and all sampling schemes use the same 5000 draws of k2

sequences of 10,000 i.i.d. N(0,T-0.5) increments.

A brief listing of critical values is provided in Tables A1, A2, and A3.  Each of the tables

corresponds to either the recursive, rolling, or fixed forecasting scheme.  Within each table there

are 330 critical values.  Each of these correspond to one permutation of three parameters: k2 =

{1, 2, 3,… , 9, 10}, π = {0.1, 0.2, 0.4,… , 1.0, 1.2,… , 2.0} and nominal size of the test = {0.01,

0.05, 0.10}.  Tables that allow for larger values of both k2 and π are available upon request.

In the results of section 4, the HLN statistic is compared against the asymptotically valid

critical values tabulated in Tables A1-A3.  To evaluate how using invalid asymptotic critical

values would affect inference, results are also reported for a version of the test comparing the
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HLN statistic against the 1Pt −  distribution.  For non-nested models, Harvey, et. al. (1998) find

that comparing the HLN statistic against the 1Pt −  distribution, rather than the standard normal,

yields better small-sample properties.  In the reported results, the invalid version of the test (but

not the asymptotically valid version) also incorporates an adjustment, developed in Harvey, et. al

(1997), to correct for bias in the estimated variance of d .  This adjustment takes the form of

multiplying the test statistic (4) by .P)1P( −

3.5  A New Encompassing (CM) Test

As discussed below, Monte Carlo simulations suggest that the denominators of tests like

the DM statistic (2) and the HLN statistic (4) adversely affect the small-sample properties of the

tests.  The denominator of the HLN statistic, for example, is the sample variance of ct

(normalized by P), which is asymptotically equal to 0.  In parallel to the OOS F test, this paper

proposes a variant of the HLN statistic in which c  is scaled by the variance of one of the

forecast errors rather than an estimate of the variance of .c

This statistic, which we will refer to as the CM statistic, takes the form

.
ˆ

ˆˆˆ
2

1,2
1

1,21,1
12

1,1
1

2 ∑
∑∑

+
−

++
−

+
− −

⋅=⋅=
t t

t ttt t

uP

uuPuP
P

MSE
c

PCM (5)

The numerator is the object of interest in the HLN test – the covariance between tu ,1  and

tt uu ,2,1 − .  The denominator, ,MSE 2  serves as a scale correction.  As was the case for the HLN

statistic, the limiting distribution is non-normal when the forecasts are nested under the null.  The

actual limiting distribution is provided in Theorem 3.5.
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Theorem 3.5: For CM defined in (5) and 1χ  defined in Theorem 3.4, CM 1d χ→ .

Given Theorem 3.4, this result is not surprising.  The sole difference between the HLN

and CM statistics is the denominator.  Hence we expect their limiting distributions to be

somewhat related.  As was the case for the HLN statistic, the limiting distribution is pivotal and

relies upon the parameters k2 and π.

In the results of section 4, the CM statistic is compared against asymptotically valid

critical values tabulated in Tables A4-A6.  As was done for Tables A1-A3, these were generated

numerically using the limiting distribution in Theorem 3.5 and hence can be considered estimates

of the true asymptotic critical values.  The numerical methods used to construct 5000

independent draws from the distribution of 1χ  were identical to those used to construct Tables

A1-A3.  Moreover the random number generator was seeded so that the same 1χ  values were

used in the construction of both Tables A1-A3 and A4-A6.  Tables A4-A6 contain the same 330

permutations of k2, π and nominal size that are used in Tables A1-A3.  Tables that allow for

larger values of both k2 and π are available upon request.

3.6 The Ericsson (ERIC) Test

Ericsson’s (1992) forecast-differential encompassing test takes the same form as the

conditional efficiency regression presented above:5

.)ˆˆ(ˆ 11,21,11,1 ++++ +−= tttt uuu ηλ (6)

                                               
5 As presented in Ericsson (1992) and used by others, the test often is expressed as a regression of the error from
model 1 on the difference in forecasts rather than forecast errors.  But that regression is equivalent to (6), with the
appropriate sign change.
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The test statistic is simply the t-statistic for the OLS-based regression coefficient λ̂, which can

be expressed as

5.02
T,0T,2T,1

T,0
2/1

]aaa[
aP

ERIC
−

= (7)

where )ˆˆ(ˆ 1,21,11,1
1

,0 +++
− −= ∑ ttt tT uuuPa , ∑ ++

− −=
t ttT uuPa 2

1,21,1
1

,1 )ˆˆ(  and ∑ +
−=

t tT uPa 2
1,1

1
,2 ˆ .

Under the null that model 1 forecast encompasses model 2, the covariance between tu ,1  and

tt uu ,2,1 −  will be less than or equal to 0, while under the alternative that model 2 contains added

information, the covariance should be positive.  The test is one-sided when applied to either

nested or non-nested forecasts.

Once again the ERIC statistic is asymptotically standard normal when applied to non-

nested forecasts but the asymptotic distribution is non-normal when the forecasts are nested

under the null.  The actual limiting distribution is provided in Theorem 3.6.

Theorem 3.6: For ERIC defined in (7) and 5.0
2

1

)(χ
χ

 defined in Theorem 3.4, ERIC 5.0
2

1
d )(χ

χ→ .

In Theorem 3.6 we find that the ERIC and HLN statistics have the same limiting

distribution under the null.6  Hence we can use Tables A1-A3 to construct asymptotically valid

tests of forecast encompassing when the ERIC statistic is used.  It should be mentioned however,

that this does not imply that the two statistics will have similar finite sample properties.  It is for

this reason that we include both the HLN and ERIC statistics in the Monte Carlo experiments of

section 4.
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In the results of section 4, the ERIC statistic is compared against asymptotically valid

critical values tabulated in Tables A1-A3.  To evaluate how using invalid asymptotic critical

values would affect inference, results are also reported for a version of the test comparing the

ERIC statistic against the standard normal distribution.

3.7 The Chong-Hendry (CH) Test

Under the null that the restrictions on model 2 are correct, model 1 forecast encompasses

model 2.  The Chong and Hendry (1986) test of encompassing is formed as the t-statistic on α̂

from the OLS-based regression

1,21,21,1 )ˆ(ˆ +++ += tttt ngu βα , (8)

where )ˆ(g t,21t,2 β+  denotes the model 2 forecast.7  It follows from West and McCracken (1998)

that the CH statistic is asymptotically standard normal even when the models considered are

nested. Accordingly, the t-statistic on α̂  is compared against the standard normal distribution.

As with the DM, HLN, and ERIC statistics, to allow for non-normal data, the estimated variance

of α̂  is robust to heteroskedasticity.  Since the nesting of the models has no clear implications

for the sign of α̂ , the null α = 0 is tested against a two-sided alternative.

4.  MONTE CARLO RESULTS

Results on the small-sample properties of the tests described in section 3 are generated

using a bivariate VAR data generating process, with forecasts of the variable of interest from an

                                                                                                                                                      
6 There is a parallel to this in McCracken (1999).  There it is shown that the DM statistic has the same limiting
distribution as the regression-based test for equal MSE by Granger and Newbold (1977).
7  For the basic models considered below a modified CH test, that takes the form of the covariance between the LHS
and RHS of (8) divided by an estimate of the standard error of the covariance, has modestly better size properties but
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estimated AR model (model 1) compared to forecasts from a VAR (model 2).  The presented

results are based on data generated from the normal distribution.  The results are essentially

unchanged when data are generated from a heavier-tailed distribution, suggested by Diebold and

Mariano (1995), in which one forecast error follows a 6t  distribution and the other is a linear

combination of 6t  variables.

4.1 Experiment Design

In the presented results (currently), data are generated using one artificial VAR(1) model

and one empirical VAR(2) model.  The artificial VAR(1) takes the form

,5.0

3.0

,1

,11

txtt

tyttt

uxx

ubxyy

+=
++=

−

−− (9-10)

where ty  is the variable to be forecast and tx  is an auxiliary variable.  The error terms are

independent standard normal variables.  To evaluate size in finite samples, the coefficient b is set

at 0.  To evaluate power, b is set at 0.1, 0.2, and 0.4.  Simulations based on VAR(2) models

taking a comparable form, and simulations based on the trivariate stationary VAR(1) and

VAR(3) models of Swanson, et. al. (1996), produced results in line with those from the bivariate

VAR(1).

Alternative models.  I.  Models that generate larger size biases for in-sample GC tests due

to pure pre-test bias effects (models with just much richer dynamics?).  II.  Misspecified models:

(a) A VAR(2) in which the true model is an AR(2) in y and x(t-1) is strongly correlated with y(t-

2).  (b)  Forecasts from bivariate VAR and AR when the true model is trivariate. (c)  Forecasts

from VAR and AR when the true model is a VARMA.

                                                                                                                                                      
modestly lower power.  This form of the test statistic parallels the Harvey, et. al. (1998) modification of the Ericsson
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The empirical VAR is fit from quarterly data on the change in core CPI inflation and the

change in the prime-age male unemployment rate, where the change in core inflation is the

variable to be forecast.  While the integration orders of these data are admittedly debatable, the

use of changes is based on the results of unit root tests and produces autoregressive roots well

within the unit circle.  Consistent with the empirical application considered in section 5, the

models are fit exclusively with in-sample data that span 1958:Q3-1987:Q1.8  Under the null that

unemployment does not affect inflation, the estimated model used in a size experiment is

(11-12)

.084.)v,ucov(,107.)vvar(,795.2)uvar(
vUnemp182.Unemp703.Infl015.Infl057.009.Unemp

uInfl237.Infl288.024.Infl

tttt

t2t1t2t1t

t2t1t

−===
+∆−∆+∆+∆+−=∆

+∆−∆−=∆
−−−−

−−

With unemployment affecting inflation, the estimated model used in a power experiment is

(13-14)

.084.)v,ucov(,107.)vvar(,519.2)uvar(
vUnemp182.Unemp703.Infl015.Infl057.009.Unemp

uUnemp137.Unemp207.1Infl266.Infl391.033.Infl

tttt

t2t1t2t1t

t2t1t2t1t

−===
+∆−∆+∆+∆+−=∆

+∆−∆−∆−∆−=∆
−−−−

−−−−

The lag lengths of both models were selected to minimize the Akaike criterion, allowing a

maximum of four lags.

Letting R denote the number of in-sample observations and P represent the number of

predictions, Monte Carlo methods are used to generate a total of 4PR ++  observations.9  The

additional four observations generated allow for data-determined lag lengths in the forecasting

models estimated in each simulation.  Letting L denote the lag length of the data-generating

                                                                                                                                                      
regression test.
8 Using Kilian’s (1998) bootstrap method to adjust the coefficients of the models produces essentially the same
Monte Carlo results.
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process (DGP), the first L observations are generated by drawing from the unconditional normal

distribution implied by the model parameterization.  The remaining L4PR −++  observations

are constructed using the autoregressive model structure and draws of the error terms from the

normal distribution.

With observations 1 through 4 reserved as initial observations necessary to allow for as

many as four lags in the estimated models, a VAR in y and x (or ∆Infl and ∆Unemp) and an AR

model for y (or ∆Infl) are fit over the in-sample period spanning observations 5 through 4R + .

In the interest of brevity the lag length of each estimated model was set at the "true" order, L, of

the data generating process.10  Results for forecasts based on lags set at the order minimizing the

in-sample Akaike criterion for the VAR or the AR model are essentially the same.11  In one

unsurprising exception, the in-sample GC test tends to have slightly greater size and lower power

than the presented results when the lag length is set to minimize the in-sample Akaike criterion

for the VAR.  Observations 5R +  through 4PR ++ are then used to form P 1-step ahead

forecasts.  The first forecast is for period 4+R ; the last is for period 4PR ++ .  For brevity,

                                                                                                                                                      
9 For the empirical model, using bootstrap methods to generate artificial data produces results much like those
reported for Monte Carlo-generated data.
10 In the case of the simple VAR(1) model, when b is non-zero, the true VAR implies that the true univariate model
for ty  is an ARMA(2,1).  For the models considered here, however, inverting the MA component to rewrite the
ARMA(2,1) in AR form yields very small coefficients on lags greater than 1, so the true (infinite order) AR model is
very close to an AR(1).  Accordingly, in the Monte Carlos the selected AR lag length is 1 in about 75 percent of the
power simulations.
11 In computing power when the lags are data-determined, the test statistic in simulation i, for which the selected lag
is j, is compared against the distribution of test statistics from the set of simulations under the null in which the lag
was selected to be j.  For example, if lag j was selected in J of the 50,000 size simulations of a given experiment,
empirical critical values for lag j were calculated from just those J simulated test statistics.  In a corresponding
power experiment, for those simulations in which the lag was selected to be j, the test statistics were compared
against these critical values.  Since longer lags tend to be somewhat infrequently rejected, 50,000 simulations were
used in the size experiments to ensure the accuracy of the results with data-determined lags.
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results are only presented for recursive forecasts, as the basic conclusions are essentially the

same for rolling and fixed forecasts.12

Results are reported for simple, empirically relevant combinations of P and R such that

RPˆ≡π  takes a value of 0.1, 0.2, 0.4, 0.6, 1.0, or 2.0.  Specifically, in one set of experiments

based on the artificial VAR(1), R = 100 and P = 10, 20, 40, 60, 100, and 200.  In another set

using the VAR(1), R = 200 and P = 20, 40, 80, 120, 200, and 400.  In experiments based on the

inflation-unemployment model, as suggested above P and R are chosen to be consistent with the

empirical application considered in section 5.  Particularly, R = 115 and P = 46, for which

4.0ˆ=π .

4.2 Size Results

Table 1 presents the empirical sizes of Granger causality, equal accuracy, and

encompassing tests for data from the VAR(1) of equations (9)-(10), using a nominal size of 10%.

The general results are the same at the nominal size of 5%.  In these size experiments, data are

generated imposing the null of 0b = , under which the AR and VAR forecasts of y have equal

MSE (asymptotically), and the AR forecast encompasses the VAR forecast.

Four general results are evident from Table 1.  First, OOS F and CM tests perform quite

well, suffering only slight size distortions.  For example, when 100R =  and ,20P =  the

empirical sizes of the OOS F and CM tests are 10.7% and 11.0% respectively.  Given R, any

distortions in the OOS F and CM tests generally decline as P rises.  Second, the asymptotically

valid versions of the DM and ERIC statistics and the CH test are modestly oversized in finite

                                               
12 While results for rolling forecasts are very similar to those for recursive forecasts, results for fixed forecasts do
differ slightly.  For example, with fixed forecasts, the size distortions of the asymptotically valid DM test are
smaller, while the size distortions of the CM test are a bit bigger.
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samples.  For example, when 100R =  and ,20P =  the empirical sizes of the asymptotically

valid DM, ERIC, and CH tests are 13.5%, 14.2%, and 15.5%, respectively.  The distortions

decline as P rises for a given R.13  With 100R =  and ,200P =  for instance, the ERIC test is

essentially correctly sized, rejecting the null in 10.4% of the simulations.

The third general result is that comparing the DM, HLN, and ERIC tests against invalid

asymptotic critical values will generally lead to too-infrequent rejections, the DM test more so

than the HLN test and the HLN test somewhat more so than the ERIC test.  In the cases of the

DM and HLN statistics, using the incorrect asymptotic distribution causes the tests to be

undersized for all sample sizes, and the tests become more undersized as P rises given R.  For

instance, with 100R =  and 20P = , the DM and HLN tests reject the null in, respectively, 5.5%

and 8.3% of the simulations.  With P increased to 40, the DM and HLN sizes fall to 3.8% and

7.4%, respectively.  In the case of the ERIC statistic, the invalid version of the test is oversized

for very small samples but undersized for larger samples.  With 100R = , for instance, the size of

the test falls from 13.5% when 10P =  to 6.6% when 100P = .

Finally, simple GC tests are sometimes slightly oversized when the number of

observations is small, but about correctly sized otherwise.  The out-of-sample GC test used with

,20P =  for example, has an empirical size of 11.6%, and the in-sample GC test with 100R =

has size of essentially 10%.  While not shown in the interest of brevity, when the model lags are

chosen to minimize the Akaike criterion for the in-sample VAR, the in-sample GC test suffers

modest size distortions, while the size of the out-of-sample GC test is about the same as when the

                                               
13 Increasing P, however, does not necessarily make the empirical distribution of the test statistic quickly approach a
normal distribution.  CH test rejections occur more frequently in the left tail than in the right tail.  When a nominal
size α% is used, right tail rejections occur in less than α/2% of the simulations.  As P rises, right tail rejections occur
even less frequently and account for most of the observed improvement in the empirical size of the CH test.
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lag is fixed at the DGP order.14  With 100R =  and ,20P =  setting the lags of the AR and VAR

models at the optimal VAR lag yields an in-sample GC test size of 13.7 percent, up from 10.4

percent in the fixed-lag results.  The out-of-sample GC test size is 11.8% and 11.6% with the

optimal VAR lag and fixed lag, respectively.

Table 2 presents size results based on the restricted VAR(2) model for the changes in

core inflation and unemployment, equations (11) and (12).  In this size experiment, data are

generated imposing the null that unemployment does not affect inflation.  This implies that AR

and VAR forecasts of Infl∆  have equal MSE (asymptotically), and that the AR forecast

encompasses the VAR forecast.  Using this empirical model produces results the same as those

for the artificial VAR(1).  Again, the performance of the OOS F and CM tests is quite good, with

both each essentially correctly sized.  The asymptotically valid versions of the DM and ERIC

statistics and the CH test are subject to modestly larger distortions.  Comparing the DM, HLN,

and ERIC tests against invalid asymptotic critical values continues to produce too-infrequent

rejections, with the DM test more undersized than the HLN or ERIC tests.  Finally, for the R and

P combination used in this experiment, standard GC tests are about correctly sized when the lag

length is set at the true order.  In results not reported, however, the in-sample GC test is still

subject to modest distortions when the lag length is determined with data-based criteria.

Interpretation/explanation of results.

4.3 Power Results

Tables 3-5 present results on the power of simple Granger causality, equal accuracy, and

encompassing tests for data from the simple VAR(1), equations (9)-(10).  In these power

                                               
14 However, if the lags of the AR and VAR models are set at the order minimizing the Akaike criterion for the in-
sample AR model, the in-sample GC test is essentially correctly sized, just as when the lag is set at the true order.
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experiments, data are generated using b = 0.1, 0.2, and 0.4, so VAR forecasts of y have lower

MSE than AR forecasts, and the AR forecast does not encompass the VAR forecast.  Because the

tests are, to varying degrees, subject to size distortions, the reported power figures are based on

empirical critical values and therefore size-adjusted.15  With empirical rather than asymptotic

critical values used, there is no distinction between the valid and invalid versions of the DM,

HLN, and ERIC tests.  The size of the tests is 10%; using 5% produces essentially the same

results.  For the OOS F, DM, CM, HLN, and ERIC tests, which are one-sided, the null is rejected

if the test statistic is greater than the 90% fractile of the statistic in the corresponding size

experiment (for the same R and P) with b = 0.  The same applies to the GC tests.  For the CH

test, which is two-sided, the null is rejected if the test statistic lies outside the 5% and 95%

fractiles of the empirical distribution generated in the corresponding size experiment.

Several general results are evident in Tables 3-5.  First, the powers of the tests permit

some simple rankings:  (1) CM > OOS F > DM > CH; (2) OOS F > out-of-sample GC; and (3)

CM > ERIC ≥  HLN > DM.  In the VAR experiment design, the CM test for encompassing is

clearly the most powerful out-of-sample test of predictive power in finite samples.  Both the CM

encompassing and OOS F accuracy tests dominate GC tests applied to just the out-of-sample

data.  For example, as shown in Table 3, with b = 0.1, ,100R = and ,40P =  the CM test rejects

the null in 32.4% of the simulations, compared to 28.0% for the OOS F test and 18.1% for the

out-of-sample GC test.  Moreover, when the explanatory power of the Granger-causal variable is

weak, as when b = 0.1, the power of the CM test sometimes exceeds that of the in-sample GC

test.  This holds even though the CM uses fewer observations than does the in-sample GC test.

In the preceding example, the in-sample GC test rejects the null in 30.9% of the simulations.

                                               
15 For those tests subject to small size distortions, particularly the OOS F and CM tests, power based on asymptotic
critical values is very similar to the reported size-adjusted power.
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The power of the DM and CH tests is lower, often substantially, than the other equal accuracy

and encompassing tests.  The HLN and ERIC encompassing tests have power somewhere in

between the power of the CM and DM tests.

The second general result is that, given R, power rises with P.  For example, as shown in

Table 4, with b = 0.2 and ,100R =  the power of the OOS F test increases from 48.4% when

20P =  to 58.1% when .40P =   Third and finally, power increases with the coefficient b, which

determines the explanatory power of the causal variable.  Power is systematically higher when

4.0b =  than when 2.0b =  and, in turn, than when .1.0b =

Table 6 presents size-adjusted power based on the VAR(2) for the changes in core

inflation and unemployment, equations (13)-(14).  In the DGP underlying this power experiment,

unemployment does affect inflation, so VAR forecasts of Infl∆  have lower MSE than AR

forecasts (asymptotically), and the AR forecast does not encompass the VAR forecast.  The

critical values used to evaluate power are calculated from the distribution of statistics generated

in the Table 2 size experiment.  Using the empirical model produces results the same as those for

the artificial VAR(1).  The rankings (1) CM > OOS F > DM > CH, (2) OOS F > out-of-sample

GC, and (3) CM > ERIC ≥  HLN > DM still apply.  In this example, the power of the CM test is

not only greater than that of an out-of-sample GC test but also essentially the same as an in-

sample GC test, despite the fact that .RP <   These results suggest that, if the DGP were the true

model, statistics like the CM test would be almost sure to correctly pick up the predictive power

of unemployment.

Interpretations and explanations.

5.  EMPIRICAL EXAMPLE
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To provide a sense of the ability of the different tests to determine predictive power in

practice, this section presents results on a question that many studies have examined: whether

unemployment has predictive power, in-sample and post-sample, for inflation.  Recent examples

of studies addressing this question include Cecchetti (1995) and Staiger, Stock, and Watson

(1997).  In this analysis, tests on Granger causality, equal forecast accuracy, and forecast

encompassing are applied to data on core CPI inflation and the prime-age male unemployment

rate.

In the specification used here, both inflation and unemployment are differenced,

consistent with the results of augmented Dickey-Fuller tests for unit roots.  The quarterly data

available from 1957:Q1-1998:Q4 are divided into an in-sample portion and an out-of-sample

portion of modest length, so as to produce a RPˆ=π  value for which McCracken (1999) reports

asymptotic critical values.  Allowing for data differencing and a maximum of four lags in

determining the model’s lag order, the in-sample period spans 1958:Q3-1987:Q1, a total of R =

115 observations.  The out-of-sample period spans 1987:Q2-1998:Q3, yielding a total of P = 46

1-step ahead predictions.  For this split, .4.0ˆ=π   Over the in-sample period, the Akaike criterion

for both the AR and the VAR is minimized at two lags.

Table 7 presents in-sample estimates of an AR(2) fit to changes in core CPI inflation and

a VAR(2) fit to changes in core CPI inflation and prime-age male unemployment.  The 2R ’s and

GC tests reported in the table suggest that, over the in-sample period, unemployment has

predictive power for inflation.  The out-of-sample evidence, however, is weaker.16  The CM

encompassing test, shown above to be more powerful than all the other post-sample tests,

indicates that unemployment has predictive power for inflation.  The ERIC test, which has lower
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power than the CM test but higher power than the DM test, also rejects the null when compared

against the empirical critical value.  Surprisingly, the CH test, generally the weakest, also

suggests unemployment has predictive power.  None of the other tests reject the null of no

predictive content in unemployment.

These results might lead to the conclusion that unemployment in fact has no predictive

power for inflation.  In this view the in-sample results, and out-of-sample test results suggesting

otherwise, are spurious.  The problem with this interpretation is that the Monte Carlo

experiments of section 4 suggest that any size biases in in-sample Granger causality tests and, in

particular, the out-of-sample CM test, should be small, even with data-determined lags.

Accordingly, the in-sample GC and CM statistics strongly reject the null when compared against

both asymptotic and empirical critical values.

A more reasonable interpretation of the results is that unemployment does have predictive

power for inflation, power perhaps weakened by model instabilities.  Both an in-sample GC test

and the CM test for forecast encompassing overwhelmingly indicate that unemployment has

predictive content.  The Monte Carlo results in section 4 indicate these tests have the greatest

power in finite samples.  Nonetheless, the failure of other out-of-sample tests to detect any

predictive power, despite the strong in-sample predictive power of unemployment, suggests there

is a difference between the in-sample and out-of-sample predictive content of unemployment.

This difference may reflect model instabilities.  Neither the AR model nor the VAR pass the

                                                                                                                                                      
16  The forecasts are slightly biased.  However, demeaning the errors prior to calculating the test statistics has little
effect on the results.



31

supremum Wald or exponential Wald tests for stability developed in Andrews (1993) and

Andrews and Ploberger (1994), respectively.17

6.  CONCLUSIONS

                                               
17 The models do, however, pass the Nyblom (1989) test for stability and Chow tests for a shift in the parameter
estimates between 1958:Q3-87:Q1 and 1987:Q2-97:Q3.  Following Diebold and Chen (1996), the stability test
results are based on bootstrap critical values.
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Appendix

Lemmas A1 - A11 also appear in McCracken (1999) with a slightly different numerical

ordering.  In order to facilitate reference, but also conserve space, those Lemmas are repeated

below without proof.  Lemmas A12 - A14 are new and hence their proofs are provided.

Throughout the remainder the following notation will be used: J denotes the selection matrix

)0,I(
2111 kkkk ××  (k1×k, k > k1), ⇒  denotes weak convergence, Σt denotes the summation T

Rt =Σ , for

any function f i,t(β) i =1,2 we will usually denote )(f *
2t,2 β  as tf , for matrices A and C defined in

Lemma A2 1th
~

+  denotes 1t
5.0'1 hCBA +

−σ , )t(H i  equals ∑ =
− t

1s s,i
1 ht , ∑ +−=

− t
1Rts s,i

1 hR  and

∑ =
− R

1s s,i
1 hR  for the recursive, rolling and fixed schemes respectively, )t(H~  denotes

)t(HCBA 5.0'1−σ , t,iβ&  is some vector on the line between t,îβ  and *
iβ , 1t,,ig +β∇&  denotes

)ˆ)((g *
it,it,i

'
1t,,i β−ββ+β
& .

Lemma A1: For all )5.0,0[a ∈  and each i = 1,2, (a) |ˆ|sup *
it,it β−β  = op(1), (b)

|B)t(B|sup iit −  = op(1), (c) (1)o |U(t)|tsup p
a

t = , (d) |ˆ|tsup *
it,i

a
t β−β  = op(1), (e)

|])B[vec)]t(B[vec(T|sup ii
5.0

t −  = Op(1).

Lemma A2: (a) Let MBJB'J 21 =+−  and 2/1
2

2/1
2 MBB −−  = Q, then Q is idempotent. (b) Let A be

a (k×k2) matrix with 
22 kkI ×  on the upper (k2×k2) block and zeroes elsewhere.  There exists a

symmetric orthonormal matrix C such that Q = CCAA ' .
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Lemma A3: For ]1,[s λ∈ , (a) )s(Wh
~

T t
1j j

2/1 ⇒∑ =
− , (b) )s(Wsh

~
T)

t
T( 1t

1j j
2/1 −

=
− ⇒∑ , (c)

)}s(W)s(W{h
~

T)
R
T

( 1t
1Rtj j

2/1 λ−−λ⇒∑ −
+−=

− .

Lemma A4: 1dt 1t
' h

~
)t(H~ χ→∑ +  where 1χ  equals

)s(dW)s(Ws1 '1∫λ
−  for the recursive scheme,

)(W)}(W)1(W{ '1 λλ−λ−  for the fixed scheme,

)s(dW)}s(W)s(W{
'11 ∫ λ−−λ λ

−  for the rolling scheme.

Lemma A5: 2dt
' )t(H~)t(H~ χ→∑  where 2χ  equals

ds)s(W)s(Ws1 '2∫λ
− for the recursive scheme,

)(W)(W '1 λλπλ− for the fixed scheme,

?)}dsW(s{W(s)?)}W(s{W(s)1 '2 −−∫ −−λ λ
− for the rolling scheme.

Lemma A6: ∑ +− ++t
2'

1t1
''

1t )}t(H)t(Bh)t(JH)t(BJh{  = ∑ +− ++t
2'

1t1
''

1t )}t(BHh)t(JHBJh{  +

op(1).

Lemma A7: ∑ +− ++t
2'

1t1
''

1t )}t(BHh)t(JHBJh{  = ∑ +t
2

1t
2 }h

~
)t(H~{c .

Lemma A8: ∑ +t
2

1t }h
~

)t(H~{  2d χ→  for 2χ  defined in Lemma A5.
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Lemma A9: ∑ β+β+t iit,i
'

1t,,i1t )t(H)t(B)(gu &  = ∑ +t ii
'

1t,i )t(HBh  + op(1).

Lemma A10: For i,j = 1,2, ∑ ββ +β+βt jjt,j
'

1t,,jt,i1t,,ii
'
i )t(H)t(B)(g)(g)t(B)t(H &&  =

∑ +β+βt jj
'

1t,,j1t,,ii
'
i )t(HB)gg(EB)t(H  + op(1).

Lemma A11: 2
t t,21t,2t,11t,1 ))ˆ(u)ˆ(u(∑ β−β ++  2

2
d χσ→ .

Lemma A12: For all )5.0,0[a ∈ , |gT|sup 1t,i
a

t +∇&  = op(1).

Proof of Lemma A12: If we take a first order Taylor expansion of )(g t,i
'

1t,,i β+β
&  about *

iβ  we

immediately know that for some t,iβ&&  on the line between t,iβ&  and *
iβ ,

|gT|sup 1t,i
a

t +∇&  ≤

|)ˆ)((q)(T|sup *
it,it,i1t,i

'*
it,i

a
t β−βββ−β +

&&&  + |)ˆ(gT|sup *
it,i

'
1t,,i

a
t β−β+β

≤ |)ˆ)((q)(T|sup *
it,it,i1t,i

'*
it,i

a
t β−βββ−β +

&&&  +

|))ˆ(T||)(supg|(supk *
it,i

a
t1t,,it β−β+β .

Adding and subtracting q i,t+1, the r.h.s. of the final inequality is then less than or equal to

|))ˆ(T|sup|)(q)(q|sup|)(|(supk *
it,i

a
t1t,it,i1t,it

*
it,it

2 β−β−ββ−β ++
&&&  +

|))ˆ(T|sup|)(q|sup|)(|(supk *
it,i

a
t1t,it

*
it,it

2 β−ββ−β +
&  +

|))ˆ(T||)(supg|(supk *
it,i

a
t1t,,it β−β+β .
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That |q|sup 1t,it +  and |g|sup 1t,,it +β  are Op(1) follows from Assumption 3.  That

|)ˆ(T|sup *
it,i

a
t β−β  is op(1) follows from Lemma A1.  Since |)(T|sup *

it,i
a

t β−β&  ≤

|)ˆ(T|sup *
it,i

a
t β−β  it follows from Lemma A1 that |)(T|sup *

it,i
a

t β−β&  is op(1).  The result

then follows since by Assumption 2 and Lemma A1, |q)(q|sup 1t,it,i1t,it ++ −β&&  ≤

ϕβ−β |))(T||)(supm|(sup *
it,i

a
ttt

&  ≤ ϕβ−β |))ˆ(T||)(supm|(sup *
it,i

a
ttt  = Op(1)op(1).

Lemma A13: For i, j = 1,2, ∑ ∇∇ +++t 1t,j1t,i
2

1t ggu &&  = ∑ ++t jj
'

1t,j1t,ii
'

i )t(HBhhB)t(H  + op(1).

Proof of Lemma A13: First rewrite ∑ ∇∇ +++t 1t,j1t,i
2

1t ggu &&  as

]h)h)(gu[(]B)B)t(B[()t(H 1t,i1t,it,i1t,,i1tt iii
'

i +++β+ +−β∑ +− &  ×

)t(H]B)B)t(B[(]h)h)(gu[( jjjj
'

1t,j1t,jt,j1t,,j1t +−+−β +++β+
& .

Expanding the above equation we then know that ∑ ∇∇ +++t 1t,j1t,i
2

1t ggu &&  equals

∑ ++t jj
'

1t,j1t,ii
'
i )t(HBhhB)t(H  +

∑ − ++t jj
'

1t,j1t,iii
'
i )t(HBhh)B)t(B)(t(H  +

∑ −β +++β+t jj
'

1t,j1t,it,i1t,,i1ti
'
i )t(HBh)h)(gu(B)t(H &  +

∑ −++t jjj
'

1t,j1t,ii
'
i )t(H)B)t(B(hhB)t(H  +

∑ −β ++β++t jj
'

1t,jt,j1t,,j1t1t,ii
'
i )t(HB)h)(gu(hB)t(H &  +

∑ −β− +++β+t jj
'

1t,j1t,it,i1t,,i1tii
'
i )t(HBh)h)(gu)(B)t(B)(t(H &  +

∑ −β− ++β++t jj
'

1t,jt,j1t,,j1t1t,iii
'
i )t(HB)h)(gu(h)B)t(B)(t(H &  +

∑ −− ++t jjj
'

1t,j1t,iii
'
i )t(H)B)t(B(hh)B)t(B)(t(H  +
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∑ −β−β ++β+++β+t jj
'

1t,jt,j1t,,j1t1t,it,i1t,,i1ti
'
i )t(HB)h)(gu)(h)(gu(B)t(H &&  +

∑ −−β +++β+t jjj
'

1t,j1t,it,i1t,,i1ti
'
i )t(H)B)t(B(h)h)(gu(B)t(H &  +

∑ −−β ++β++t jjj
'

1t,jt,j1t,,j1t1t,ii
'
i )t(H)B)t(B()h)(gu(hB)t(H &  +

∑ −β−β− ++β+++β+t jj
'

1t,jt,j1t,,j1t1t,it,i1t,,i1tii
'
i )t(HB)h)(gu)(h)(gu)(B)t(B)(t(H &&  +

∑ −−β− +++β+t jjj
'

1t,j1t,it,i1t,,i1tii
'
i )t(H)B)t(B(h)h)(gu)(B)t(B)(t(H &  +

∑ −−β− ++β++t jjj
'

1t,jt,j1t,,j1t1t,iii
'
i )t(H)B)t(B()h)(gu(h)B)t(B)(t(H &  +

∑ −−β−β ++β+++β+t jjj
'

1t,jt,j1t,,j1t1t,it,i1t,,i1ti
'
i )t(H)B)t(B()h)(gu)(h)(gu(B)t(H &&  +

∑ ×−β− ++β+t 1t,it,i1t,,i1tii
'
i )h)(gu)(B)t(B)(t(H &

)t(H)B)t(B()h)(gu( jjj
'

1t,jt,j1t,,j1t −−β ++β+
& .

The result will follow if the latter fifteen terms are each o p(1).  The proof of each is largely the

same hence we will do so only for the final term.  The absolute value of the final term is less than

or equal to

|)B)t(B||)(supB)t(B||)(sup)t(HT||)(sup)t(HT|(supk jjtiitj
5.0

ti
5.0

t
5 −−  ×

|)h)(gu||)(suph)(gu|(sup 1t,jt,j1t,,j1tt1t,it,i1t,,i1tt ++β+++β+ −β−β && .

That |)t(HT|sup i
5.0

t  and |)t(HT|sup j
5.0

t  are each Op(1) follows from Assumption 3 and

Theorem 3.1 of Hansen (1992).  That |B)t(B|sup iit −  and |B)t(B|sup jjt −  are each op(1)

follows from Lemma A1.  It remains to show that both |h)(gu|sup 1t,it,i1t,,i1tt ++β+ −β&  and

|h)(gu|sup 1t,jt,j1t,,j1tt ++β+ −β&  are Op(1).  We will do so for the former.  If we take a first order
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Taylor expansion of )(g t,i
'

1t,,i β+β
&  about *

iβ  we immediately know that for some t,iβ&&  on the line

between t,iβ&  and *
iβ ,

|h)(gu|sup 1t,it,i1t,,i1tt ++β+ −β&  ≤ |)))((q||)(supu|(sup *
it,it,i1t,it1tt β−ββ++

&&&

≤ |)||)(supq||)(supu|(supk *
it,it1t,it1tt β−β++

&  +

|)||)(supq)(q||)(supu|(supk *
it,it1t,it,i1t,it1tt β−β−β +++

&&& .

That |u|sup 1tt +  and |q|sup 1t,it +  are Op(1) follows from Assumption 3.  That ||sup *
it,it β−β&  is

op(1) follows from Lemma A1 since ||sup *
it,it β−β&  ≤ |ˆ|sup *

it,it β−β  = op(1).  The result then

follows from Assumption 2 and Lemma A1 since they imply that |q)(q|sup 1t,it,i1t,it ++ −β&&  ≤

ϕβ−β |)||)(supm|(sup *
it,ittt

&&  ≤ ϕβ−β |)ˆ||)(supm|(sup *
it,ittt  = Op(1)op(1).

Lemma A14: 2
t t,21t,2t,11t,1t,1

2
1t,1 ))ˆ(u)ˆ(u)ˆ(u(∑ ββ−β +++  2

4
d χσ→ .

Proof of Lemma A14: If we take first order Taylor expansions of both )ˆ(u t,11t,1 β+  and

)ˆ(u t,21t,2 β+  around *
1β  and *

2β  respectively, we have

2
t t,21t,2t,11t,1t,1

2
1t,1 ))ˆ(u)ˆ(u)ˆ(u(∑ ββ−β +++  =

[- ∑ ∇ ++t
3

1t,11t }g{u2 &  + ∑ ∇∇ +++t 1t,2
2

1t,11t }g{}g{u4 &&  - ∑ ∇∇ +++t
2

1t,21t,11t }g}{g{u2 &&

+ ∑ ∇ +t
4

1t,1 }g{ &  - ∑ ∇∇ ++t 1t,2
3

1t,1 }g{}g{2 &&  + ∑ ∇∇ ++t
2

1t,2
2

1t,1 }g{}g{2 && ]

+ [ ∑ ∇ ++t
2

1t,1
2

1t }g{u &  - ∑ ∇∇ +++t 1t,21t,1
2

1t }g}{g{u2 &&  + ∑ ∇ ++t
2

1t,2
2

1t }g{u & ]

≡ r1,T + r2,T.
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That r2,T = ∑σ +t
2

1t
4 }h

~
)t(H~{  2

4
d χσ→  follows from Lemmas A6-A8 and A13.  The remainder

of the proof then consists of showing that each of the six terms in r 1,T are op(1).  We will do so for

the first, the remaining terms follow from similar arguments.  Taking absolute values we know

that |}g{u| t
3

1t,11t∑ ∇ ++ &  ≤ |)u|(sup|)gT|(sup 1tt
3

1t,1
3/1

t ++∇& .  That |gT|sup 1t,1
3/1

t +∇&  is op(1)

follows from Lemma A12; that |u|sup 1tt +  is Op(1) follows from Assumption 3.

Proof of Theorem 3.4: (HLN) Given Lemma A14 and Theorem 3.5, the result follows from

Theorem 2.1 of Hansen (1992) and the Continuous Mapping Theorem.

Proof of Theorem 3.5: (CM) If we take first order Taylor expansions of both )ˆ(u t,11t,1 β+  and

)ˆ(u t,21t,2 β+  around *
1β  and *

2β  respectively, we have

∑ ββ−β +++t t,21t,2t,11t,1t,1
2

1t,1 )ˆ(u)ˆ(u)ˆ(u  = (1)

)}t(H)t(B)(gu)t(JH)t(B)(gu{ t,2
'

1t,,21tt 1t,1
'

1t,,11t β∑ +β− +β++β+
&&  -

∑ ββ− +β+βt 1t,1
'

1t,,1t,11t,,11 )t(JH)t(B)(g)(g)t(B'J)'t(H{ &&  +

)}t(H)t(B)(g)(g)t(BJ)'t(H t,2
'

1t,,2t,11t,,11
' ββ +β+β

&&

for t,iβ&  on the line between t,îβ  and *
iβ  respectively.  By Lemmas A2 and A9 we know that the

first bracketed term on the r.h.s. of (1) equals ∑σ +t 1t
'2 h

~
)t(H~  + op(1).  By Lemma A10 we know

both

∑ ββ− +β+βt 1t,1
'

1t,,1t,11t,,11 )t(JH)t(B)(g)(g)t(B'J)'t(H &&  = ∑ −t 1 )t(JHB'J)'t(H  + op(1)

and
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∑ ββ +β+βt t,2
'

1t,,2t,11t,,11
' )t(H)t(B)(g)(g)t(BJ)'t(H &&  =

∑ +β+βt
'

1t,,21t,,11
' )t(BH)gg(EBJ)'t(H  + op(1).

But )gg(E '
1t,,21t,,1 +β+β  = )gg(JE '

1t,,21t,,2 +β+β  = 1JB − .  Hence the last bracketed term on the r.h.s. of

(9) is op(1).  The result then follows from Lemma A4.

Proof of Theorem 3.6: (Eric) Given Theorem 3.5, the Continuous Mapping Theorem and

Theorem 2.1 of Hansen (1992) it suffices to show 2
T,0T,2T,1 aaa −  2

4
d χσ→  for 2χ  defined in

Lemma A5.  That 2
pT,2a σ→  follows from Theorem 4.1 of West (1996).  To show that 2

T,0Pa  =

op(1) note that Theorem 2.6 implies that T,0Pa  = Op(1).  The result follows since by Lemma A11,

T,1Pa  2
2

d χσ→ .
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