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Chapter 6: Multiple regression analysis:

Further issues

What effects will the scale of the X and y vari-

ables have upon multiple regression? The co-

efficients’ point estimates are ∂y/∂Xj, so they

are in the scale of the data–for instance, dol-

lars of wage per additional year of education.

If we were to measure either y or X in differ-

ent units, the magnitudes of these derivatives

would change, but the overall fit of the regres-

sion equation would not. Regression is based

on correlation, and any linear transformation

leaves the correlation between two variables

unchanged. The R2, for instance, will be un-

affected by the scaling of the data. The stan-

dard error of a coefficient estimate is in the

same units as the point estimate, and both



will change by the same factor if the data are

scaled. Thus, each coefficient’s t− statistic

will have the same value, with the same p−
value, irrespective of scaling. The standard

error of the regression (termed “Root MSE”

by Stata) is in the units of the dependent vari-

able. The ANOVA F, based on R2, will be

unchanged by scaling, as will be all F-statistics

associated with hypothesis tests on the param-

eters. As an example, consider a regression of

babies’ birth weight, measured in pounds, on

the number of cigarettes per day smoked by

their mothers. This regression would have the

same explanatory power if we measured birth

weight in ounces, or kilograms, or alternatively

if we measured nicotine consumption by the

number of packs per day rather than cigarettes

per day.

A corollary to this result applies to a dependent

variable measured in logarithmic form. Since



the slope coefficient in this case is an elas-
ticity or semi-elasticity, a change in the de-
pendent variable’s units of measurement does
not affect the slope coefficient at all (since
log(cy) = log c + log y), but rather just shows
up in the intercept term.

Beta coefficients

In economics, we generally report the regres-
sion coefficients’ point estimates when present-
ing regression results. Our coefficients often
have natural units, and those units are mean-
ingful. In other disciplines, many explanatory
variables are indices (measures of self-esteem,
or political freedom, etc.), and the associated
regression coefficients’ units are not well de-
fined. To evaluate the relative importance of
a number of explanatory variables, it is com-
mon to calculate so-called beta coefficients–
standardized regression coefficients, from a re-
gression of y∗ on X∗, where the starred vari-
ables have been “z-transformed.” This trans-
formation (subtracting the mean and dividing



by the sample standard deviation) generates

variables with a mean of zero and a standard

deviation of one. In a regression of standard-

ized variables, the (beta) coefficient estimates

∂y∗/∂X∗ express the effect of a one standard

deviation change in Xj in terms of standard

deviations of y. The explanatory variable with

the largest (absolute) beta coefficient thus has

the biggest “bang for the buck” in terms of an

effect on y. The intercept in such a regres-

sion is zero by construction. You need not

perform this standardization in most regression

programs to compute beta coefficients; for in-

stance, in Stata, you may just use the beta op-

tion, e.g. regress lsalary years gamesyr scndbase,

beta which causes the beta coefficients to be

printed (rather than the 95% confidence in-

terval for each coefficient) on the right of the

regression output.

Logarithmic functional forms



Many econometric models make use of vari-

ables measured in logarithms: sometimes the

dependent variable, sometimes both dependent

and independent variables. Using the “double-

log” transformation (of both y and X) we can

turn a multiplicative relationship, such as a

Cobb-Douglas production function, into a lin-

ear relation in the (natural) logs of output and

the factors of production. The estimated co-

efficients are, themselves, elasticities: that is,

∂ log y/∂ log Xj, which have the units of per-

centage changes. The “single-log” transfor-

mation regresses log y on X, measured in nat-

ural units (alternatively, some columns of X

might be in logs, and some columns in lev-

els). If we are interpreting the coefficient on

a levels variable, it is ∂ log y/∂Xj, or approx-

imately the percentage change in y resulting

from a one unit change in X. We often use

this sort of model to estimate an exponen-

tial trend–that is, a growth rate–since if the



X variable is t, we have ∂ log y/∂t, or an es-

timate of the growth rate of y. The interpre-

tation of regression coefficients as percentage

changes depends on an approximation, that

log(1 + x) ≈ x for small x. If x is sizable–

and we seek the effect for a discrete change

in x− then we must take care with that ap-

proximation. The exact percentage change,

%∆y = 100
[
exp

(
bj∆Xj

)
− 1

]
, will give us a

more accurate prediction of the change in y.

Why do so many econometric models utilize

logs? For one thing, a model with a log de-

pendent variable often more closely satisfies

the assumptions we have made for the classi-

cal linear model. Most economic variables are

constrained to be positive, and their empirical

distributions may be quite non-normal (think

of the income distribution). When logs are

applied, the distributions are better behaved.

Taking logs also reduces the extrema in the



data, and curtails the effects of outliers. We

often see economic variables measured in dol-

lars in log form, while variables measured in

units of time, or interest rates, are often left

in levels. Variables which are themselves ratios

are often left in that form in empirical work

(although they could be expressed in logs; but

something like an unemployment rate already

has a percentage interpretation). We must

be careful when discussing ratios to distinguish

between an 0.01 change and a one unit change.

If the unemployment rate is measured as a dec-

imal, e.g. 0.05 or 0.06, we might be concerned

with the effect of an 0.01 change (a one per

cent increase in unemployment)–which will be

1/100 of the regression coefficient’s magni-

tude!

Polynomial functional forms

We often make use of polynomial functional

forms–or their simplest form, the quadratic–to



represent a relationship that is not likely to be

linear. If y is regressed on x and x2, it is im-

portant to note that we must calculate ∂y/∂x

taking account of this form–that is, we cannot

consider the effect of changing x while holding

x2 constant. Thus, ∂y/∂x = b1 + 2b2x, and

the slope in {x, y} space will depend upon the

level of x at which we evaluate the derivative.

In many applications, b1 > 0 while b2 < 0, so

that while x is increasing, y is increasing at a

decreasing rate, or levelling off. Naturally, for

sufficiently large x, y will take on smaller val-

ues, and in the limit will become negative; but

in the range of the data, y will often appear

to be a concave function of x. We could also

have the opposite sign pattern, b1 < 0 while

b2 > 0, which will lead to a U-shaped relation

in the {x, y} plane, with y decreasing, reaching

a minimum, and increasing–somewhat like an

average cost curve. Higher-order polynomial

terms may also be used, but they are not as

commonly found in empirical work.



Interaction terms

An important technique that allows for non-

linearities in an econometric model is the use

of interaction terms–the product of explana-

tory variables. For instance, we might model

the house price as a function of bdrms, sqft,

and sqft· bdrms, which would make the partial

derivatives with respect to each factor depend

upon the other. For instance, ∂price/∂bdrms =

bbdrms + bsqft·bdrmssqft, so that the effect of an

additional bedroom on the price of the house

also depends on the size of the house. Like-

wise, the effect of additional square footage

(e.g. an addition) depends on the number of

bedrooms. Since a model with no interaction

terms is a special case of this model, we may

readily test for the presence of these nonlin-

earities by examining the significance of the

interaction term’s estimated coefficient. If it

is significant, the interaction term is needed to

capture the relationship.



Adjusted R2

In presenting multiple regression, we established
that R2 cannot decrease when additional ex-
planatory variables are added to the model,
even if they have no significant effect on y.

A “longer” model will always appear to be su-
perior to a “shorter” model, even though the
latter is a more parsimonious representation of
the relationship. How can we deal with this in
comparing alternative models, some of which
may have many more explanatory factors than
others? We can express the standard R2 as:

R2 = 1−
SSR

SST
= 1−

SSR/n

SST/n
(1)

Since all models with the same dependent vari-
able will have the same SST, and SSR cannot
increase with additional variables, R2 is a non-
decreasing function of k. An alternative mea-
sure, computed by most econometrics pack-
ages, is the so-called “R-bar-squared” or ‘Ad-
justed R2” :



R̄2 = 1−
SSR/ (n− (k + 1))

SST/ (n− 1)
(2)

where the numerator and denominator of R2

are divided by their respective degrees of free-

dom (just as they are in computing the mean

squared measures in the ANOVA F table). For

a given dependent variable, the denominator

does not change; but the numerator, which

is s2, may rise or fall as k is increased. An

additional regressor uses one more degree of

freedom, so (n− (k + 1)) declines; and SSR

declines as well (or remains unchanged). If

SSR declines by a larger percentage than the

degrees of freedom, then R̄2 rises, and vice

versa. Adding a number of regressors with lit-

tle explanatory power will increase R2, but will

decrease R̄2− which may even become nega-

tive! R̄2 does not have the interpretation of a

squared correlation coefficient, nor of a “bat-

ting average” for the model. But it may be



used to compare different models of the same

dependent variable. Note, however, that we

cannot make statistical judgments based on

this measure; for instance, we can show that

R̄2 will rise if we add one variable to the model

with a |t| > 1− but a t of unity is never sig-

nificant. Thus, an increase in R̄2 cannot be

taken as meaningful (the coefficients must be

examined for significance) but, conversely, if a

“longer” model has a lower R̄2, its usefulness

is cast in doubt. R̄2 is also useful in that it

can be used to compare non-nested models–

i.e. two models, neither of which is a proper

subset of the other. A “subset F” test cannot

be used to compare these models, since there

is no hypothesis under which the one model

emerges from restrictions on the other, and

vice versa. R̄2 may be used to make informal

comparisons of non-nested models, as long as

they have the same dependent variable. Stata

presents the R̄2 as the “Adj R-squared” on the

regression output.



Prediction and residual analysis

The predictions of a multiple regression are,

simply, the evaluation of the regression line

for various values of the explanatory variables.

We can always calculate ŷ for each observa-

tion used in the regression; these are known

as “in-sample” or “ex post” predictions. Since

the estimated regression equation is a func-

tion, we can evaluate the function for any set

of values {X0
1 , X0

2 , ..., X0
k } and form the associ-

ated point estimate ŷ0, which might be termed

an “out-of-sample” or “ex ante” forecast of

the regression equation. How reliable are the

forecasts of the equation? Since the predicted

values are linear combinations of the b values,

we can calculate an interval estimate for the

predicted value. This is the confidence inter-

val for E
(
y0
)

: that is, the average value that

would be predicted by the model for a specific

set of X values. This may be calculated after



any regression in Stata using the predict com-

mand’s stdp option: that is, predict stdpred,

stdp will save a variable named “stdpred” con-

taining the standard error of prediction. The

95% confidence interval will then be, for large

samples, {ŷ − 1.96stdpred, ŷ + 1.96stdpred}. An

illustration of this confidence interval for a sim-

ple regression is given here. Note that the con-

fidence intervals are parabolic, with the mini-

mum width interval at X̄, widening symmetri-

cally as we move farther from X̄. For a multiple

regression, the confidence interval will be nar-

rowest at the multivariate point of means of

the X ′s.



prediction interval for E(y)
Weight (lbs.)

 Displacement (cu. in.)  Fitted values
 plo  phi

1,760 4,840
46.1214

425

However, if we want a confidence interval for

a specific value of y− rather than for the mean

of y− we must also take into account the fact

that a predicted value of y will contain an er-

ror, u. On average, that error is assumed to be

zero; that is, E(u) = 0. For a specific value of

y, though, there will be an error ui; we do not

know its magnitude, but we have estimated



that it is drawn from a distribution with stan-

dard error s. Thus, the standard error of fore-

cast will include this additional source of un-

certainty, and confidence intervals formed for

specific values of y will be wider than those as-

sociated with predictions of the mean y. This

standard error of forecast series can be calcu-

lated, after a regression has been estimated,

with the predict command, specifying the stdf

option. If the variable stdfc is created, the

95% confidence interval will then be, for large

samples, {ŷ−1.96stdfc, ŷ + 1.96stdfc}. An illus-

tration of this confidence interval for a simple

regression is given here, juxtaposed with that

shown earlier for the standard error of predic-

tion. As you can see, the added uncertainty

associated with a draw from the error distribu-

tion makes the prediction interval much wider.



prediction intervals for E(y) and specific value of y
Weight (lbs.)

 Displacement (cu. in.)  plof
 plo  Fitted values

1,760 4,840

!18.748

474.207

Residual analysis

The OLS residuals are often calculated and

analyzed after estimating a regression. In a

purely technical sense, they may be used to

test the validity of the several assumptions that

underly the application of OLS. When plotted,

do they appear systematic? Does their dis-

persion appear to be roughly constant, or is



it larger for some X values than others? Ev-

idence of systematic behavior in the magni-

tude of the OLS residuals, or in their disper-

sion, would cast doubt on the OLS results.

A number of formal tests, as we will discuss,

are based on the residuals, and many graph-

ical techniques for examining their random-

ness (or lack thereof) are available. In Stata,

help regression diagnostics discusses many of

them.

The residuals are often used to test specific

hypotheses about the underlying relationship.

For instance, we could fit a regression of the

salaries of employees of XYZ Corp. on a num-

ber of factors which should relate to their salary

level: experience, education, specific qualifica-

tions, job level, and so on. Say that such a

regression was run, and the residuals retrieved.

If we now sort the residuals by factors not



used to explain salary levels, such as the em-

ployee’s gender or race, what will we find? Un-

der nondiscrimination laws, there should be no

systematic reason for women to be paid more

or less than men, or blacks more or less than

whites, after we have controlled for these fac-

tors. If there are significant differences be-

tween the average residual for, e.g., blacks and

whites, then we would have evidence of “sta-

tistical discrimination.” Regression equations

have often played an important role in inves-

tigating charges of discrimination in the work-

place. Likewise, most towns’ and cities’ as-

sessments of real estate (used to set the tax

levy on that property) are performed by regres-

sion, in which the explanatory factors include

the characteristics of a house and its neighbor-

hood. Since many houses will not have been

sold in the recent past, the regression must

be run over a sample of houses that have been

sold, and out-of-sample predictions used to es-

timate the appropriate price for a house that



has not been sold recently, based on its at-

tributes and trends in real estate transactions

prices in its neighborhood. A mechanical eval-

uation of the fair market value of the house

may be subject to error, but previous meth-

ods used–in which knowledgeable individuals

attached valuations based on their understand-

ing of the local real estate market–are more

subjective.


