EC 313 Spring 2000 Problem Set 2

Christopher F. Baum

February 28, 2000

Due Thursday 2 March 2000 at classtime
Produce a Mathematica notebook containing the answers to these questions, label it with your name, and email it (as an email attachment) to baum@bc.edu to submit your problem set. If you have any questions, please send me email.

1. Consider a profit-maximizing firm that produces units of good x with the technology $f(x)=$ sqrt(x) and faces costs that are proportional to x . Define the profit function for the firm as a function of x, p (the price of output) and w (the cost per unit of output). For $p=w=1$, plot profits over the unit interval.
2. Analytically solve for the profit-maximizing level of output, as a function of arbitrary levels of p and w , by differentiating the profit function with respect to x (hint: see $D / /$) and solving the resulting first order condition for x (hint: Solve/J). The result should be a rule.
3. Substitute the profit-maximizing level of output (call it xhat) into the profit function to express profit as a function of p and w . Hint: use the ' $/$ ' postfix operator.
4. Modify the profit function to contain a fixed cost term, k. Demonstrate that the profit maximizing level of output (per $\# 2$) is invariant to the level of k .
5. Now consider a Cobb-Douglas production function where output is related to two factors, x1 and x 2 , via $\mathrm{f}(\mathrm{x})=\mathrm{x} 1^{\wedge}(1 / 4) \mathrm{x} 2^{\wedge}(1 / 4)$. Define the profit function for this firm, where output sells for p and costs are linear in the two factors with factor prices w1 and w2, respectively. Use ContourPlot to generate isoprofit contours for $\mathrm{p}=20, \mathrm{w} 1=2, \mathrm{w} 2=1$ over the range $\{\mathrm{x} 1,0.01,80\},\{\mathrm{x} 2,0.01,80\}$.
6. Analytically solve for the profit-maximizing level of output, as a function of arbitrary levels of p, w1, and w2, by differentiating the profit function with respect to each factor input. The result will be two equations in two unknowns ($\mathrm{x} 1, \mathrm{x} 2$), which should then be Solved.
7. Evaluate this solution to calculate the profit-maximizing level of output for $\mathrm{p}=20, \mathrm{w} 1=2, \mathrm{w} 2=1$, and evaluate the level of profit that will be generated at that output level.
