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Problem 12.14
(i) This is the model that was estimated in part (vi) of Computer Exercise 10.17. After getting

the OLS residuals, �t, we run the regression �t on �t�1, t � 2,...,108. (Included an intercept, but that
is unimportant.) The coefficient on�t�1 is �� � .281�se � .094�. Thus, there is evidence of some
positive serial correlation in the errors (t � 2.99). A strong case can be made that all explanatory
variables are strictly exogenous. Certainly there is no concern about the time trend, the seasonal
dummy variables, or wkends, as these are determined by the calendar. It seems safe to assume that
unexplained changes in prcfat today do not cause future changes in the state-wide unemployment
rate. Also, over this period, the policy changes were permanent once they occurred, so strict
exogeneity seems reasonable for spdlaw and beltlaw. (Given legislative lage, it seems unlikely that
the dates the policies went into effect had anything to do with recent, unexplained changes in prcfat.

(ii) Remember, we are still estimating the �j by OLS, but we are computing different standard
errors that have some robustness to serial correlation. Using Stata 7.0, I get�
�spdlaw � .0671, se�

�
�spdlaw� � .0267 and

�
�beltlaw � �.0295, se�

�
�beltlaw� � .0331. The t statistic fro

spdlaw has fallen to about 2.5, but it is still significant. Now, the t statistic on beltlaw is less than
one in absolute value, so there is little evidence that beltlaw had an effect on prcfat.

(iii) For brevity, I do not report the time trend and monthly dummies. The final estimate of � is
�� � .289:

prcfat �
�.102�

1.009 �... �
�.00500�
.00062 wkends �

�.0055�
.0132 unem �

�.0268�
.0641 spdlaw �

�.0301�
.0248 beltlaw

n � 108, R2 � .641
There are no drastic changes. Both policy variable coefficients get closer to zero,and the

standard errors are bigger that the incorrect OLS standard errors [and, coincidentally, pretty close to
the Newey-West standard errors for OLS from part (ii)]. So the basic conclusion is the same: the
increase in the speed limit appeared to increase prcfat, does not have a statistically significant effect.

Problem 12.15
(i) Here are the OLS regression results:

log�avgprc� �
�.115�
�.073 �

�.0014�
.0040 t �

�.1294�
.0101 mon �

�.1273�
.0088 tues �

�.1257�
.0376 wed �

�.1257
.0906 thurs

n � 97, R2 � .086
The test for joint significance of the day-of-the-week dummies is F � .23, which gives p-value �

.92. So there is no evidence that the average price of fish varies systematically within a week.
(ii) The equation is

log�avgprc� �
�.190�
�.920 �

�.0014�
.0012 t �

�.1141�
.0182 mon �

�.11121�
.0085 tues �

�.1117�
.0500 wed �

�.1110�
.1225 thurs

�
�.0218�
.0909 wave2 �

�.0208�
.0474 wave3

n � 97, R2 � .310
Each of the wave variables is statistically significant, with wave2 being the most important.

Rough seas (as measured by high waves) would reduce the supply of fish (shift the supply curve
back), and this would result in a price increase. One might argue that bad weather reduces the
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demand for fish at a market, too, but that would reduce price. If there are demand effects captured
by the wave variables, they are being swamped by the supply effects.

(iii) The time trend coefficient becomes much smaller and statistically insignificant. We can use
the omitted variable bias table from Chapter 3, Table 3.2 (page 92) to determine what is probably
going on. Without wave2 and wave3, the coefficient on t seems to have a downward bias. Since we
know the coefficients on wave2 and wave3 are positive, this means the wave variables are negatively
correlated with t. In other words, the seaswere rougher, on average, at the beginning of the sample
period. (You can confirm this by regressing wave2 ont and wave3 on t.)

(iv) The time trend and daily dummies are clearly strictly exogenous, as they are just functions of
time and the calendar. Further, the height of the waves is not influenced by past unexpected changes
in log(avgprc).

(v) We simply regress the OLS residuals on one lag, getting �� � .618, se���� � .081, t�� � 7.63.
Therefore, there is strong evidence of positive serial correlation.

(vi) The Newey-West standard errors are se�
�
�wave2� � .0234 and se�

�
�wave3� � .0195. Given the

significant amount of AR(1) serial correlation in part (v), it is somewhat surprising that these
standard errors are not much larger compared with the usual, incorrect standard errors. In fact, the
Newey-West standard error for

�
�wave3 is actually smaller than the OLS standard error.

(vii) The Prais-Winsten estimates are
log�avgprc� � �

�.239�
.658 �

�.0029�
.0007 t �

�.0652�
.0099 mon �

�.0744�
.0025 tues �

�.0746�
.0624 wed �

�.0621�
.1174 thurs �

�.0174�
.0497 wave2

�
�.0174�
0323 wave3

n � 97, R2 � .135
The coefficient on wave2 drops by a nontrivial amount, but it still has a t statistic of almost .3.

The coefficient on wave3 drops by a relatively smaller amount, but its t statistic (1.86) is borderline
significant. The final estimate of � is about .687.

Problem 15.4
(i) The state may set the level of its minimum wage at least partly based on past or current

economic activity, and this could certainly be part of �t. Then gMINt and �t are correlated, which
causes OLS to be biased and inconsistent.

(ii) Because gGDP t controls for the overall performance of the U.S. economy, it seems
reasonable that gUSMINt is uncorrelated with the disturbances to employment growth for a
particular state.

(iii) In some years, the U.S. minimum was will increase in such a way so that it exceeds the state
minimum wage, and then the state minimum wage will also increase. Even if the U.S. minimum
wage is never binding, it may be that the state increases its minimum wage in response to an increase
in the U.S. minimum. If the state minimum is always the U.S. minimum, then gMINt is exogenous
in this equation and we would just use OLS.

Problem 15.6
(i) Plugging (15.26) into (15.22) and rearranging gives

�1 � �0 � �1��0 � �1z1 � �2z2 � v2� � �2z1 � �1

� ��0 � �1�0� � ��1�1 � �2�z1 � �1�2z2 � �1 � �1v2,

and so �0 � �0 � �1�0, �1 � �1�1 � �2, and �2 � �1v2.
(ii) From the equation in part (i), v1 � �1 � �1v2

(iii) By assumption, �1 has zero mean and is uncorrelated with z1 and z2, and v2 has these
properties by definition. So v1 has zero mean and is uncorrelated with z1 and z2, which means that
OLS consistently estimates the �j. [OLS would only be unbiased if we add the stronger assumptions
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E��1|z1, z2�� E�v2|z1, z2�� 0.�
Problem 15.15
(i) The equation estimated by OLS, omitting the first observation, is

i3t �
�0.47�
2.37 �

�.091�
.692 inf t

n � 48, R2 � .555.
(ii) The IV estimates, where inf t�1 is an instrument for inf t, are

i3t �
�0.65�
1.50 �

�.143�
.907 inf t

n � 48, R2 � .501
The estimate on inf2 is no longer statistically different from one. (If �1 � 1, then one percentage

point increase in inflation leads to a one percentage point increase in the three-month T-bill rate.)
(iii) In first differences, the equation estimated by OLS is

�i3t �
�.186�
.105 �

�.073�
.211 � inf t

n � 48, R2 � .154
This is much lower estimate than in part (i) or part (ii).
(iv) If we regress �inft on �inft�1 we obtain

�inf t �
�.325�
.088 �

�.1266�
.0096 � inf t�1

n � 47, R2 � .0001
Therefore, �inft and �inft�1 are virtually uncorrelated, which means that �inft�1 cannot be used

as an IV for �inft.
Problem 15.17
(i) Sixteen states executed at least one prisoner in 1991, 1992, or 1993. (That is, for 1993, exec

is greater than zero for 16 observations.) Texas had by far the most executions with 34.
(ii) The results of the pooled OLS regression are

mrdrte � �5.28 � 2.07d93 � .128exec � 2.53unem

n � 102, R2 � .102, R2 � .074
The positive coefficient on exec is no evidence of a deterrent effect. Statistically, the coefficient

is not different from zero. The coefficient on unem implies that higher unemployment rates are
associated with higher murder rates.

(iii) When we difference (and use only the changes from 1990 to 1993), we obtain

�mrdrte �
�.209�
.413 �

�.043�
.104 �exec �

�.159�
.067 �unem

n � 51, R2 � .110, R2 � .073
The coefficient on �exec is negative and statistically significant (p-value � .02 against a

two-sided alternative), suggesting a deterrent effect. One more execution reduces the murder rate by
about .1 so 10 more executions reduce the murder rate by one (which means one murder per 100,000
people). The unemployment rate variable is no longer significant.

(iv) The regression �exec on �exec�1 yields
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�exec �
�.370�
.350 �

�0.17�
1.08 �exec�1

n � 51, R2 � .456, R2 � .444
which shows a strong negative correlation in the change in executions. This means that,

apparently, states follow policies whereby if executions were high in the preceeding three-year
period, they are lower, one-for-one, in the next three-year period.

Technically, to test the identification condition, we should add �unem to the regression. But its
coefficient is small and statistically very insignificant, and adding it does not change the outcome at
all.

(v) When the differenced equation is estimated using �exec�1as an IV for �exec, we obtain

�mrdrte �
�.211�
.411 �

�.064�
.100 �exec �

�.159�
.067 �unem

n � 51, R2 � .110, R2 � .073
This is very similar to when we estimate the differenced equation by OLS. Not surprisingly, the

most important change is that the standard error on
�
�1 is now larger and reduces the statistical

significance of
�
�1

Problem 16.1
(i) If �1 � 0 then �1 � �1z1 � �1, and so the right-hand-side depends only on the exogenous

variable z1 and the error term �1. This then is the reduced form for �1. If �1 � 0, the reduced form
for �1 is �1 � �2z2 � �2. (Note that having both �1 and �2 equal zero is not as interesting as it
implies the bizarre condition �2 � �1 � �1z1 � �2z2.)

If �1 � 0 and �2 � 0, we can plug �1 � �2z2 � �2 into the first equation and solve for �2 :
�2z2�2 � �1�2 � �1z1 � �1 or

�1�2 � �1z1 � �2z2 � �1 � �2

Dividing by �1(because �1 � 0�gives
�2 � ��1/�1�z1 � ��2/�1�z2 � ��1 � �2�/�1

� �21z1 � �22z2 � v2,
where �21 � �1/�1,�22 � ��2/�1 and v2 � ��1 � �2�/�1. Note that the reduced form for �2

generally depends on z1 and z2 (as well as on �1 and �2).
(ii) If we multiply the second structural equation by (�1/�2) and subtract it from the first

structural equation, we obtain
�1 � ��1/�2��1 � �1�2 � �1�2 � �1z1 � ��1/�2��2z2 � �1 � ��1/�2��2

� �1z1 � ��1/�2��2z2 � �1 � ��1/�2��2

or
�1 � ��1/�2���1 � �1z1 � ��1/�2��2z2 � �1 � ��1/�2��2

Because �1 � �2, 1 � ��1/�2� � 0, and so we can divide the equation by 1 � ��1/�2� to obtain
the reduced form for �1 : �1 � �11z1 � �12z2 � v1, where
�11 � �1/�1 � ��1/�2��,�12 � ���1/�2��2/�1 � ��1/�2��, and v1 � ��1 � ��1/�2��2�/�1 � ��1/�2��.

A reduced form does not exist for �2, as can be seen by subtracting the second equation from the
first:

0 � ��1 � �2��2 � �1z1 � �2z2 � �1 � �2;
because �1 � �2, we can rearrange and divide by �1 � �2 to obtain the reduced form.
(iii) In supply and demand examples, �1 � �2 is very reasonable. If the first equation is the
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supply function, we generally expect �1 � 0, and if the second equation is the demand function,
�2 � 0. The reduced forms can exist even in cases where the supply function is not upwardsloping
and the demand function is not downward sloping, but we might question the usefulness of sucg
models.

Problem 16.7
(i) Attendance at women’s basketball may grow inways that are unrelated to factors that we can

observe and control for. The taste for women’s basketball may increase over time, and this would be
captured by the time trend.

(ii) No. The university sets the price, and it may change price based on expectations of next
years’s attendance; if the university uses factors that we cannot observe, these are necessarily in the
error term �2. So even though the supply is fixed, it does not mean that price is uncorrelated with
the unobservables affecting demand.

(iii) If people only care about how this year’s team is doing, SEASPERCt�1 can be excluded from
the equation once WINPERCt has been controlled for. Of course, this is not a very good assumption
for all games, as attendance early in the season is likely to be related to how the team did last year.
We eould also need to check that 1PRICE t is partially correlated with SEASPERCt�1 by estimating
the reduced form for 1PRICE t.

(iv) It does make sense to include a measure of men’s basketball ticket prices, as attending a
women’s basketball game is a substitute for attending a men’s game. The coefficient on 1MPRICE t

would be expected to be negative. The winning percentage of the men’s team is another good
candidate for an explanatory variable in the women’s demand equation.

(v) It might be better to use first differences of the logs, which are then growth rates. We would
then drop the observation for the first game in each season.

(vi) If a game is sold out, we cannot observe true demand for that game. We only know that
desired attendance is some number above capacity. If we just plug in capacity, we are understanding
the actual demand for tickets. (Chapter 17 discusses censored regression methods can be used in
such cases.)

5


