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EC821: Time Series Econometrics, Spring 2003

Notes Section 1

In the narrowestsense, this course is concerned with time
series data—those in which the individual observations are
indexed by some notation of calendar time. What is a time
series? In a very simple sense, merely a set of data indexed by
some regular increment of time, which may or not be regular
in the sense of the calendar. For instance, an interest rate series
containing observations from the last day of each month will be
unequally spaced in calendar time—and is likely that the “last
day” will be other than that in the presence of weekends and
holidays. Also, we often work with time series of “business
daily” data, generated (at most) five days per week. We assume
that the observations available are a finite segment of a doubly
infinite sequence, which goes back into the infinite past, and
forward to infinity. We might consider several specific time
series: for instance, a time trend is merely a constant
series is and a Gaussian white noise process is

We speak of time series data to contrast with the other
major form of data organization: the cross section, in which
each observation is indexed byan identifier such as a person’s
Social Security number, a company’s CUSIP, a country’s ISO
abbreviation, or a survey respondent’s questionnaire ID. But
there are two other forms of data organization which we often
encounter, and which are very relevant for much of the research
carried out withtime series data. These are pooled cross sections,
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and longitudinal or panel data. Pooled cross sections, even if the
cross sections are of the same size (e.g., 400 respondents to a
weekly poll of presidential popularity) do not give rise directly
to time series, since the individual observations are not linked
across time. However, summarystatistics from each of these
cross sections may be computed, and assembled into time series
to illustrate temporal changes in the sample’s measures of central
tendency and dispersion.

One of the most rapidly expanding areasin applied econo-
metrics is the use of longitudinal, or panel, data—data indexed
by both and subscripts, essentially repeated measurements
on the same individuals over time. Panel data in common use
in economics and finance have tended to appear in two common
forms: the “small T, large N”panel, exemplified by Compu-
stat firm–level data, or the Panel Study of Income Dynamics
household data. These datasets have relatively few time–series
observations but thousands of individuals. Many of the econo-
metric techniques developed in this area make use of the “small
T, large N” setting: for instance, Arellano and Bond’s dynamic
panel data GMMestimation technique (cf. Stata command

). The econometrictheory underlying these estima-
tors is based on N for T fixed. In this context, there are
few time–series aspects of the data that may be modelled, since
the number of time series observations is quite limited. The other
common form is the “small N, large T” panel, exempified by
daily data from the financial markets (G–7 exchange rates or in-
flation rates, stock price series for a limited number of firms, etc.)
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Time series operators

In this context, we generally have hundreds or thousands of time
series observations on each unit, but a relatively small number of
units. This allows many more of the time series properties of the
datato be exploited in the estimation. Similar to the first form,
the underlying asymptotic theory for estimators applied to these
datais based on the assumption that T for N fixed. Datasets
of these form areoften used to perform panel unit root tests, or
analyses of cointegration.

When we utilise time series data, it is important to determine
the dimensionality of a variable: e.g., whether it refers to a level,
stock, flow, or rate of change. An interest rate, or a consumer
price index, or an index of industrial production at a point in
time is a level. The capital stock employed by the firms in
an industry at a point in time is just that—a stock, in units of
number ofmachines, or their value in real terms. That stock is
accumulated or decumulated over time via capital investment,
which is a flow—and must refer to the unit of time over which
the flow is measured. If a flow is converted into percentage terms,
it becomes a dimensionless rate of change, such as the rate of
change of the consumer price index,which we term inflation. It
is customary to measure rates of change at an annual rate,so that
inflation might be described as reaching three percent last month:
for most economies, this does not reflect the monthly change in
the price level, but rather themonthly change compounded to an
annual rate.
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We make extensive use in time series models of various
time series operators, as shorthand to specify how a variable may
be transformed. For instance, the multiplication operator might
be used: Unlike ordinary algebraic manipulation,
this represents applying the operator to each element of the time
series (for all defined analogous to filling a formula through all
the rows of a spreadsheet, or using Stata’s command
to define a mappng between and Since the multiplication or
addition operators refer to element–wise operations, they follow
all the rules of algebra: e.g. can be implemented
either by adding each period’s values and multiplying the result
by or by multiplying through the parens and then summing.
Multiplication and addition are commutative.

The commonly employed first difference operator,
transforms a series into its increments: for instance, , the
first difference of the capital stock, will by convention generate
the change between the previous period’s value, and the
current value, This involves computing the lagged value
of which mayitself be expressed using the lag operator as

that is, the lag operator applied to a set of observations
“backshifts” them by one time unit. For this reason, many
textbooks and articles expressas the or backshift operator.
Note that the lag operator may be expressed as if we
considerthe previous period’s lag, but may expressany lag. For
quarterly data, would express the value of four quarters
ago, while the lead of would refer to the value of
four periods later. Anegative power applied to the lag generates

4



2

2

�

�
� � � � �

�
� � � �

�

�
�

�
�

Lag polynomials

0

+
( + )

1
2

1 1 2 1 2

4

2 2

2

2

t t
i j

t
i j

t t i j

t t t t

j th

t t t , t t

t t t t t t t
j

t t t

dy
dt

d y
dt

=
= = ;

( + ) = +

�
� = � = �� =

( ) ( ) = 2 +
�

:

4 2

�
(1 )

� = (1 )
(1 )

(1 2 + )

L y y .
L L y L y y

L y x Ly Lx .

j
y y y y y

y y y y y y y ,
j,

y L y , y .

,

y.
D., L. F.

L .y D .price
y,

L ,
L .

L
L L ,

the lead, and just as any algebraic quantity raised to the zero
power is itself, The lag operator alsosatisfies the
law of exponents, so that it is
commutative with the multiplication operator, and distributive
over the addition operator, so that

One must be cautious in using the difference operator to note
that refers to the difference: that is, the difference operator
applied repeatedly. Thus and

and so on. One
may define for any positive but this should not be mistaken
for, e.g., which is not the“fourth difference” of It
should be remembered that the difference operator is the discrete
equivalent of sothat the second difference is the analog to

the acceleration of
In Stata, the time series operators and when

prefixing a variable are the first difference, lag, and lead
(forward) of the variable, respectively. The number of times that
the operator is to be applied may also be specified in this syntax,
so that one may say or to refer to the fourth lag
of or the second difference of the price level, respectively.

In working with these time series operators, we often employ
lag polynomials; e.g. the difference operator may be defined
as a first–order polynomial in thelag operator, while

This allows easier access to the definition of
the higher–order difference; since the expression may
be expanded as it may immediately be seen
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that where the coefficients of the
expanded lag polynomial appear in each term. As shorthand, we
often will write as a finite–
order lag polynomial The shorthand refers to the steady
state representation, in which all lags are set to zero:

We might also write a factored polynomial, such as

The simplest model of a stochastic process could be
written as a linear univariate dynamic model

which is a order stochastic difference equation with con-
stant coefficients. The process is said to be autoregressive,
since the value of depends on its own past values, as well
asthe innovation process This may be written in lag poly-
nomial notation as where the polynomial will be

We will consider this model
(or its more general counterpart which incorporates a constant
term) as an model of

Let us consider a dynamic model that contains two variables:
an implementation of the partial adjustment model (PAM) that
might be applied to the stock of consumer durables, or a firm’s
capital stock. The PAM contains a target value for denoted
which in equilibrium will be realised. Due to adjustment costs,
economic agents do not reach equilibrium immediately following
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This section is taken from Davidson and MacKinnon, Estimation and Inference in
Econometrics, section 19.4.

a revision of the target value. Thus the law of motion for may
be expressed as

where theparameter indicates the speed of adjustment; the
closer is to unity, the more rapidly is equilibrium restored. The
model may berewritten as

(1)
so that the current value of is a convex combination of the
desired stock and last period’s value. If we now define thedesired
stock as depending upon an exogenous factor that
may be substituted into (1) to yield, with some redefinition of
parameters,

The resulting dynamic model has one lag on the dependent
variable and no lags on the explanatory variable. The model
may be generalised, of course, to include richer dynamics in the
determination of the desired stock.

The model asgiven above is a special case of the autoregres-
sive distributed lag (ADL) model. We can express the general
ADL model as
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where is assumed to be IID(0, If we consider the
special case,

(2)
we may note that many models are nested within it. For instance,
if we have a static regression. A univariate
model for sets A model in first differences is
a special casewith and ; in that context
implies the absence of a time trend. Since all of these models are
nested within the model, they may readily be tested
as restrictions upon that more general form.

We may also consider thesteady state of this model, and the
long run effect of upon By removingall time subscripts and
solving, we may derive that

(3)

where the long run multiplier contains the sum of the lag
coefficients, amplified by the term The stability
condition requires that If and were measured in
logarithms (as often is the case in macroeconomic models) then

will be a long–run elasticity.
An interesting feature of the ADL model is that it may be

rewritten in many different forms without affecting the model’s
ability to explain the data, or changing the least squares estimates
of the coefficients of interest. For instance, we may rewrite (2)
as:
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These reformulations are useful, in that they make it possible
to receive direct point and interval estimates of, say, the sum
of the coefficients on x (as in the second and third forms). The
most celebrated formis the last, which is known as the error
correction form or error correction model (ECM), as defined
by Hendry and Anderson (1977) and Davidson et al. (DHSY,
1978). The ECM, as we shalllater discuss, expresses the revision
of in terms of the most recently observed disequilibrium in
the system—since the parenthesized expression is the degree to
which the long run equilibrium of the system was perturbed in the
previoustime period. Unlike the other forms of the model, the
ECM form introduces a nonlinearity into the model, but it merely
represents a linear model reparameterized in a nonlinear fashion.
The error correction term is implicitly present in any of the other
specifications, since its coefficient may be recovered from all of
them. If the restriction is imposed (which may be sensible
if and are similar in magnitude), the ECM form becomes
linear in the parameters. This restriction, given the long run
multiplier, is equivalent to the restriction that
which may readily be tested from any of the other forms of the
model.

An excellent reference for these topics is Hendry, Pagan,
Sargan, ,chapter 18 in the

, volume II (1984).
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These ADL models may be straightforwardly extended
to the multivariate context by considering as a vector of
several variables, which then are determined by their own lags as
well as potentially influenced by the current and lagged values
of additional variables. A pure autoregressive form of this
structure is the , or vector autoregression, which we will
discuss at length later inthe course.The VAR model may be
augmented with additional exogenous variables, in which case
the counterpart to the steady state of the univariate ADL model
(3) may be defined in terms of a matrix lag polynomial. In the
simplest case—that of a two–variable “pure VAR”—we have

If we consider a fourth–order VAR, we may write

where is a 2x1 vector of constant terms, and is a 2x1 vector
of error terms. This model can be rewritten as

Just as in the univariate case, we may evaluate the polynomial at
in order to compute the sum of the lag weights.

We may also consider a VAR with additional exogenous
variables—the multivariate analogue to the ADL model—in
which an additional polynomial appears, so that now

The long-run value of the system may be computed,
assuming that the polynomial is invertible, as
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which is sometimes termed the final form of the system.
This in turn may be expressed as

where the polynomial is a “rational lag”—a ratio of
two finite-order polynomials, which is an expression of infinite
order, The long-run relationship is given
by which will only be defined when the
matrix is non-singular. This long–run equilibrium may be
achieved iff the model is dynamically stable; for a vector process,
the requirement is that the eigenvalues of the matrix polynomial

have modulus less than onein absolute value. Since
is not in general a symmetric matrix, its eigenvalues will be
complex, so that the moduli of these complex quantities must be
evaluated (see Stata routine ).

We will next take up the definitions of stationary and
nonstationary random variables.

11


