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EC821: Time Series Econometrics, Spring 2003

Notes Section 3
ARMA models

linear processes moving
average

q -order moving average
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We have spoken of a univariate white noise process,
a zero–mean covariance stationary process with no serial
correlation:

A very important class of covariance–stationary processes,
called , can be created by taking a

of a white noise process. Let us consider that the white
noise process is defined for all integers,
so that we may assume that the process started in the distant
past, and its mean and autocovariance function have stabilized to
time–invariant constants.

The simplest linear process that exhibits serial correlation
is a finite–order moving average process. is said to be a

process, if it can be written
as a weighted average of the current and most recent values of
awhite noise process:

(1)
A moving average process is covariance stationary with

mean It is easy to show that the j -order autocovariance is
for and zero for

with denoting the variance of the white noise process.
Thus, if the zero-order autocovariance is
the first-order autocovariance is and the second-order

1
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(and all higher-order) autocovariances are zero. The entire
autocovariance function is described by parameters:

}. The autocorrelation function depends only upon
the parameters in the sequence.

We may also consider an process, in which the
effects of past shocks do not abruptly dissipate after periods.
Thus, we might consider that the finite set of terms in (1) could
be replaced by an infinite set of terms For this to
make sense, it must be the case that this sum of an infinite set
of random variables is well defined—that is, that the partial sum

converges to a finite random variable as
A condition under which this convergence will occur is that of
absolute summability: Intuitively, this requires
that the effects of the past shocks represented by eventually
die away. If the sequence is absolutely summable, then an
infinite–order MA process ( for converges in mean
square, and the process is covariance stationary, with mean and
autocovariances The autocovariances
will themselves be absolutely summable. If the process is
then the process is strictly stationary and ergodic.

We may now define a . Let be a covariance
stationary process and be a sequence of real numbers that is
absolutely summable. Then the infinite sum
converges in mean square, such that the process is covariance
stationary. If the autocovariances of the process are absolutely
summable, then so are the autocovariances of the process.

The operation of taking a weighted average of (possibly

2
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Properties of linear filters

filter

convolution

x
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infinitely many) successive values of the process is called
, and we can write it using lag operator notation,

with a filter being represented by a lag polynomial
The object is a well-defined

random variable forming a covariance stationary process if the
sequence is absolutely summable and if the input process

is covariance stationary.

For a given sequence of real numbers define
a as the lag polynomial
which may be applied to an input process to yield

The filter could be finite, such that for
which then defines a order lag polynomial. When

applied to an input process, this finite filter creates a weighted
average of the current and most recent values of the process. If
the input process is covariance stationary and the sequence
is absolutely summable, the filtered series will be a covariance
stationary process.

Let and be two arbitrary sequences of real
numbers, and define the of these sequences as

(2)

: the convolution may be viewed as the product of two

3
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filters:

which may be computed with the same techniques as the
product of two ordinary polynomials, e.g.

If each of these sequences are absolutely summable, and the
input series is covariance stationary, then
is a well–defined random variable, also covariance stationary,
and the sequence will also be absolutely summable.

: if so that we may say
that is the inverse of denoted as As long as

the inverse of may be defined for any arbitrary
sequence by successively solving the equations (2). For
instance, which may not be
absolutely summable.

To work with ARMA processes, we must calculate the
inverse of a finite–order ( degree) lag polynomial

Since the inverse polynomial
may be defined. We may determine the coefficients of the
inverse polynomial using the convolution formula in (2); for

the coefficients of may be solved recursively,
knowing the first coefficients. The coefficients in the sequence

will eventually decline if the stability condition on the
polynomial—relating to its eigenvalues—holds, and those

coefficients will then be absolutely summable. As an example,
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consider the lag polynomial The root of the associated
polynomial is and the stability condition requires
that or, alternatively, that The inverse of the
filter is, given stability, an infinite
sequence, but one which is bounded and finite.

A first-order autoregressive process ( satisfies the
stochastic difference equation

where the process is white noise. For may rewrite
this equation as

If is covariance stationary, is the mean of the process,
and the moving average is formed from the successive values of

We seek a covariance–stationary solution to this stochastic
difference equation. If we may use the inverse given
above, so that we may define

In this case, has the moving average representation shown
here:an infinite–order moving average process, or The
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stability condition that allows us to form the inverse is known as
the stationarity condition for the autoregressive lag polynomial,
which states that shocks to the system will be damped.

What about the case where that condition is violated, and
Then there is a “forward solution” where the unique

covariance–stationary process is an infinite-order moving
average of values of

and this infinite sum is well defined, since the sequence
is absolutely summable if

Last, let us consider the case where there is no covariance–
stationary solution, either in terms of past values of nor future
values of : the case of a , where In this case,
the period change in becomes

which we call a .

All that we have derived here for the process
may equally well be expressed in terms of the order
autoregressive process, which satisfies the order stochastic
difference equation with

If the process is CS, then has a mean of
and an representation

with where
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We may combine finite–order and processes
to yield an process:

or

If we may set and write the model
in the deviation–from–mean form

which is still a order stochastic difference equation, but
with a serially correlated forcing process rather than the
white noise process If the equation satisfies the stationarity
conditions, then its unique covariance–stationary solution has the

representation

The mean of the process is again
If there are common roots in the two polynomials, then

they could be factorized to represent the process
with a lower order process We generally
assume that there are no common roots in the and
polynomials. If the polynomial satisfies the stability
condition, then the process is said to be , and
that stability condition is often termed the invertibility condition.
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stationary and invertible

The autocovariance–generating function

autocovariance
generating function

If an process is invertible, then we may also express it
in an infinite–order representation

Note that a process can be invertible yet not be stationary,
and vice versa; both of its lag polynomials have to satisfy their
respective stability condition if the process is to be termed

. If the process is both stationary
and invertible, then the finite–order process also
possesses both an and a representation.

The entire set of autocovariances of a covariance station-
ary process may be summarized by the

:

with a complex scalar. Note that for the unit circle, this
implies that

which will represent a convergent sum given that the autocovari-
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spectral
density function power spectrum

frequency

Fourier transform

Extension to vector processes
vector white noise process

vector process

ances are absolutely summable. If we transform this function
by dividing by and setting a complex number on the unit
circle, to we have defined the

or of

where represents the (the inverse of the period) of
the cyclical component in The time series may be represented
in the frequency domain, as the sum of an infinite number of
sines and cosines, or in the time domain, as a process with an
infinite number of autocovariances. The two representations are
equivalent, and we can represent in the frequency domain as
the of the timeseries data. We will discuss
the frequency domain representation at greater length when
we discuss fractionally–integrated processes. (See Hamilton,
Chapter 6).

A is ajointly covariance–
stationary process satisfying

Since need not be diagonal, there may be contemporaneous
covariance among the elements of Perfect correlation is ruled
out, since must be positive definite. A

9
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may be expressed as:

This implies that if is the order autocovariance matrix
the autocovariance function may be

written as

Multivariate filters may also be written as
with vector Products of filters

may now be computed with linear algebra: for instance, the
product of two filters and can be written in terms of
sums and products of their coefficient matrices.

We may also consider the stability conditions in terms of lag
matrix polynomials. For instance, if we have

where are matrices, we may write the stability
condition for this polynomial as

all of the roots of which must lie outside the unit circle. For
instance, if we consider a two–variable form of a first–order lag

polynomial with coefficient matrix

the determinantal equation becomes
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The order ,
will be the solution to the vector stochastic difference equation

The is itself a special case of a multivariate
model, the where each of the variables

in the system are considered to follow an process of
order

The autocovariance generating function for a vector
covariance–stationary process may be written as

which leads to the definition of the spectrum of the vector process
as

Special cases of this for vector processes are:

which thus allows us to define the autocovariances of these
processes at all lags.
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Pure models may be consistently estimated with OLS,
with the assumption that the error process is How should
the order of an process be chosen? A sensible criterion
is the general–to–specific sequential rule, which starts by
estimating a model with lags, where that parameter is
selected to a.s. overfit the process. If the high–order lag term
is significant at some prespecified level, then should be
increased. Then, the autoregression is reestimated, dropping the
high–order lag, until the high–order lag is significant. Since the

test is consistent, this rule will never underfit the model; it is
biased toward overfitting the model, and thus may be criticized
on its lack of parsimony. It should be noted that all of the
models described above should be fit over a common sample, to
prevent the inclusion of additional data points from modifying
the judgement.

A second approach is to apply the Akaike information
criterion ( or the Schwartz information criterion (
also known as the Bayesian information criterion In
general terms, these criteria seek the model which minimizes

where is the sample size, is the sum of squared residuals
(the least squares criterion) for the order autoregression,
and is set to 2 for the and for the (
Either of the information criteria strike a balance between a
better fit (in the first term) and the parsimony of the model (in the

12
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second term). Ng and Perron suggest, as above, the use of a fixed
sample period to compare models with these criteria. Just as with
the general–to–specific rule, the has a positive probability
of overfitting the model. In contrast, the is a consistent
estimator of

VARs may equally easily be estimated by single–equation
OLS. Since the right–hand side of each equation of the VAR
contains the same set of regressors, there is no gain in applying
a system estimator, conditional on errors. Likewise, there is
a multivariate generalization of the and that may
be applied to search for the appropriate lag length of the VAR
(presuming that the same number of lags are to be used in each
equation).

The estimation of models is more challenging,
in that the model may be written as

which poses several problems. The errors are serially correlated
(since they are ), and since the lagged dependent
variables included in are correlated, by construction, with
lags of included in the error term, the regressors are not
orthogonal to the error term The second problem could be
solved by using suitably lagged values of the dependent variable
(at lags higher than as instruments. But the efficient estimation
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of processes requires a different modelling
strategy, relying on the maximum likelihood principle to estimate
“Box-Jenkins” models.

For instance, consider the process. If we condition
on initial values for the ’s, this becomes straightforward. The
model:

Let denote the population parameters of
interest. If was known with certainty,

and we could write

If we knew for certain that we would know the value
of with certainty as well, and could in turn calculate the value
of conditional on and so on. The entire sequence of values
can then be recursively calculated from

given knowledge of and Thus the conditional loglikelihood
may be written as

for a particular value of Numerical optimization may then
be used to vary elements of and search for a maximum of
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the loglikelihood function. No analytical solution exists—even
for the —but the solution technique should be reliable.
This approach conditions the estimates on the specification
that other approaches, which may be found in more
sophisticated software, may use other techniques for generating
the initial conditions for optimization. If is substantially less
than unity, the effect of imposing will quickly die out,
and the conditional likelihood will be a good approximation to
the unconditional likelihood for a reasonably large sample size.
In contrast, if the consequences of imposing
accumulate over time. If numerical optimization yields a value in
this region, the results must be discarded. An appropriate starting

value for numerical optimization in that case would be
In particular, a model will require the specification

of starting values for pre–sample elements of the vector. Just
as above, we may generate conditional likelihood estimates on
the assumption that The conditional
loglikelihood is only useful if all values of for which

lie outside the unit circle.
Numerical optimization to estimate the parameters of a

general process require two sets of assumed
starting values: the presample values of the sequence, and
presample values of the process. Of course, one may have the
prior values of (that is, you may start the estimation at least

periods after the start of the data). Box and Jenkins, in their
classic text, recommended setting the presample ’s to zero,
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but setting the presample ’s to their actual values. The same
caution applies with respect to stability of the resulting estimates:
if the polynomial does not satisfy the stability condition (i.e.
invertibility), the estimates should not be trusted.
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