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EC821: Time Series Econometrics, Spring 2003

Notes Section 4

Let us now consider the definition of an series. A
series which is stationary after being differenced once is said to
be integrated of order one, and is denoted In general a series
which is stationary after being differenced times is said to be
integrated of order denoted A series which is stationary
without differencing is said to be This definition assumes
that is an integer; it is possible to extended the definition to
the case of fractional values of Note that this does not imply
that all nonstationary series are or more generally with

. It may not be possible to difference a nonstationary series
to stationarity (see Leybourne et al., JBES 1996). Also, we will
find that a series with fractional d, is nonstationary,
even though the value of falls short of unity.

A series which is is said to have a unit root, and a series
which is a positive integer, is said to have unit roots.
This may be seen for by writing the model in lag
operator notation:

when the root of the polynomial is unity, and the notion
that is corresponds to the presence of the unit root in
its representation. In a higher–order model, there may be
multiple unit roots; for instance, in the model
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the lag polynomial may be factored into
where and and the roots of the

quadratic polynomial will be the inverses of the coefficients.
If and there will be two unit roots in the
representation, and the series must be differenced twice to
yield a stationary process. An model could also generate
an series; e.g. if and the polynomial
factors into The once–differenced process
will be stationary. For the general representation, if one
unit root is present, the polynomial can be factored into

and a order polynomial with stable roots. It
could be the case that there are multiple unit roots in the
This gives rise to the model: a process which
has a standard after differencing times to achieve
stationarity.

A trend stationary series is one in which shocks have
transitory effects. The series will not be covariance stationary,
but its second moments may satisfy the conditions for CS; it only
fails to be CS due to its time–varying mean. If the variation in
the mean can be adequately explained by a linear, polynomial
or logarithmic trend, then the detrended series is CS, and shocks
to the series will be of a transitory nature. In contrast, a series
possessing one or more unit roots will only be stationary after
differencing, and shocks to its level will have a permanent effect
on the series. It may also possess a trend—that is, it may be a
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random walk with drift. The simplest trend stationary model is

where is assumed to be white noise (i.e. is clearly
, without differencing, since its stochastic properties are

entirely determined by those of Adding an component,
the model becomes

This model includes several interesting special cases: for
instance, when and the model is that of a
random walk with drift, and is If on the other hand
then a pure random walk model results. Alternatively, if

and the model is of a deterministic trend with a
stationary component: that is, a trend–stationary series.
In the latter case, how may we distinguish this model from that
of the random walk with drift? The only difference between
them lies in the parameter and our ability to distinguish that
estimated parameter from unity. The two series may mimic each
other: that is, for a finite sample of data, the characterization of
the timeseries as trend stationary may be equally plausible to its
identification as a unit root process. But the distinction is crucial,
in that applying the appropriate transformation to the series will
depend upon our ability to distinguish the two models.

If a series is DS, for instance, then detrending the series—
which in reality contains a unit root—will not remove its random
walk properties; at best, it will merely change a random walk
with drift to a pure random walk. Treating the resulting series as
if it is now covariance stationary will be misleading. On the other
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hand, if a series is TS, then the appropriate transformation to CS
is detrending, and differencing the series is not warranted—and
since differencing may be considered as an approximation to
applying the filter that approximation will be worse
the farther is from unity. Therefore, it is essential that we
have a methodology to distinguish the TS from the DS series on
empirical grounds.

We should also note that considering linear models of
timeseries with either trend or unit root is not restrictive. Many
economic and financial timeseries—for instance, that for gross
domestic product (GDP)—appear to be better characterised by
an exponential trend (constant percentage growth) than by a
linear trend (constant growth in its level).For this reason, many
models of economic and financial timeseries are applied to the
logarithms of the original series. If we consider then
a trend-stationary model of is actually a constant percentage
growth model of the underlying Likewise, making use of
the approximation that for small changes, the first difference
of the logarithm of a variable is approximately the same as
its percentage change, we often use to construct a
percentage change series. If possesses a unit root,
so that we should be taking its first difference we are then
arguing that the percentage changes of the underlying series
are stationary.

How do trend-stationary and unit root representations of a
timeseries differ in practice? For a trend-stationary series, an
optimal -period-ahead forecast may be constructed by merely
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adding to the series’ current value. For the unit root process
, the series will be expected to change by

units per period, so that the accumulated drift after periods will
just be The difference in these forecasts, if repeated period
by period, are in the intercept terms. For the trend-stationary
process, the intercept and slope define a forecast trajectory
to which forecasts will revert. For the unit root process, the
intercept will change with each period’s shock to the series;
the forecast adds the drift to whatever value the process
has attained. In terms of interval estimates, the forecast errors
for a trend-stationary process will converge to a fixed value as

increases, while the forecast errors from a unit root process
increase without bound, given that the variance of the unit root
process increases linearly with the forecast horizon.

To develop this methodology, we now consider testing for a
unit root.
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