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Markov–Switching Vector Autoregressions

EC821: Time Series Econometrics, Spring 2003

Notes Section 8

How might we model timeseries processes that undergo
changes in regime? We have considered processes with known
breakpoints, and evaluating the possible location of one or more
breakpoints through Perron’s models of unit roots with unknown
structural break. But what if there are two (or more) regimes, and
some likelihood in every period of regime change? If we have
observe that a process has changed in the past, we should consider
that it could change in the future when forming a forecast of
the process. The change in regime should not be regarded as
the outcome of a perfectly foreseeable, deterministic event, but
rather as a random variable. A complete time series model would
include a description of the probability law governing regime
change.

The leading approach to this problem involves an unob-
served, or latent, random variable which will be termed the
state or regime of the process at date A simple regime–specific
autoregression might be written as:

where each state has its own mean, but is presumed to follow
the same dynamics in both regimes (an assumption that may
readily be relaxed). Using the state variable, we may rewrite both
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regimes as

where the regime–dependent means are now expressed in terms
of the latent variable. Note that the latent variable is discrete,
taking on values 1 and 2. The simplest time series model for a
discrete–valued random variable is a

Let be a random variable that can assume only positive
integer values Suppose that the probability that
equals a particular value depends only upon the most recent
value of :

A process that is described as a n–state Markov chain with
transition probabilities giving the probability that state

will be followed by state It must therefore be so that
The transition probabilities may be

assembled in a ... ... . . . ...

If a 2x2 transition matrix is upper

triangular, then state 1 is an absorbing state: once the process
enters state 1, it will never leave it, since The Markov
chain in this case is said to be reducible. If both and
are strictly less than unity, the chain is said to be irreducible.
This generalizes to an n-state chain: if the transition matrix is
block-upper triangular, with a block in the upper left corner,
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then once the process enters one of those states, it will not leave
them.

Since every column of must sum to unity, where
is a vector of ones. This implies that must have

one unit eigenvalue, with associated eigenvector If all other
eigenvalues of are inside the unit circle, the Markov chain is
said to be ergodic, with a vector of ergodic probabilities which
satisfy These are the limiting values of powers of the
transition matrix:

This is of relevance since a period-ahead forecast of
the process will involve This also implies that a long-
run forecast of the process will be independent of the current
state. The ergodic probabilities can be viewed as indicating the
unconditional probability of being in each of the states. An
ergodic Markov chain is a covariance-stationary process, yet it
may be expressed as a VAR with a unit root, since one of the
eigenvalues is unity. The VAR is stationary, despite the unit
root, since the variance-covariance matrix of its error process is
singular. How may we calculate the unconditional probabilities
in The vector has the properties that and
Thus we seek a vector satisfying where
denotes the ( ) column of and

a solution for which may be found by premultiplying by
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That is, is the column of the matrix

We will consider autoregressive models in which the
parameters of the autoregression can change as the result of a
regime–shift variable, where the regime is the outcome of an
unobserved Markov chain. Let the regime at date be indexed by
the latent variable which takes on one of possible values.
When the process is in regime 1, the observed variable is
presumed to have been drawn from a distribution;
when in regime 2, from a distribution, and so on.
The vector of population parameters includes the values
of and the values of as well as a set of unconditional
probabilities. The regime is presumed to have been generated
from a probability distribution, with unconditional probabilities
given by

for each of the values of We may then form the joint
density–distribution function of and which describes the
density of given a particular value for The unconditional
density for may then be calculated as:

where is the density–distribution function. If the regime
variable is distributed across time, the log likelihood for the
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Time series models of changes in regime

observed data may be calculated as:

which must be maximized subject to the constraints that
and The maximum likelihood estimates of represent
the solution to a system of nonlinear equations, which are often
solved by application of the EM (expectations maximization)
algorithm.

Once one has obtained estimates of , it is possible to make
an inference about the regime likely to have been in force in each
period of the observed sample: more specifically, the probability
that the data for time were generated by regime

We consider a model that allows a variable to follow a
different time series process over different subsamples. Consider
an where both the constant term and the autoregressive
coefficient are indexed by the regime:

with This problem generalizes to processes where
the probability that depends upon not only its prior
period’s value (in a strict Markov chain) but also upon a vector of
other observed variables (the time–varying transition probability
(TVTP) model). A regime–switching model can include a set of
observed exogenous regressors; in general, we consider as an

vector of observed endogenous variables, and a vector
of observed exogenous variables. In the example given above,
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is 1, and includes only a units vector. The unknown parameters
in this problem then include and
for the regimes. If equals 2, there are then 5 parameters
to be estimated. A generalization of the model would allow the
error variance to vary across regimes as well. An important issue
with these models is that any inference must be made conditional
on the assumption of a specific number of regimes; one cannot
readily test for the number of regimes with a likelihood ratio test,
since under the null hypothesis of states, the parameters
defining the state are unidentified. Alternatively, one may fit
the state model and examine its adequacy to determine
whether a state model is needed.

This strategy may be generalized to the modelling of the joint
evolution of a set of variables, in terms of a Markov-switching
VAR: that is, a VAR model in which each of the equatioons is
subject to regime shifts.

A number of numerical examples of this modelling strategy
are available in Krolzig’s package for He
also describes how the MS-VAR model can be related to several
other models proposed for the analysis of multiple regimes: for
example, the self–exciting threshold autoregressive (
model and the smooth transition autoregressive ( model.
All three are special cases of what Krolzig calls an endogenous
selection Markov–switching VAR model, in which the transition
probabilities are not constant, but rather functions of the observed
time series vector
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