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ARCH: Modelling volatility
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EC821: Time Series Econometrics, Spring 2003

Notes Section 11
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Consider the model:

with i.i.d. Covariance stationarity requires that the polynomial
has roots outside the unit circle. The optimal linear forecast of
the level of given covariance stationarity, is:

So that the conditional mean is changing as the process evolves.
However, given covariance stationarity, the unconditional mean
is constant:

What if we wanted to forecast the variance of the series, rather
than its mean? We consider as a process with a fixed
unconditional variance, But the conditional variance of
could change over time. If it followed a systematic pattern, we
might have something like:

where is an i.i.d. error process. This law of motion implies
that:
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which is then the order model of Autoregressive Con-
ditional Heteroskedasticity ( as proposed by Engle
(1982). This conditional expectation must be non–negative for
all realizations of the process; a necessary condition is that

for all For itself to be covariance stationary, we fur-
ther require that all the roots of the polynomial lie outside the
unit circle. If the are all non–negative, this condition may be
written as

An alternative way to write such a model is in the form:

where is distributed with mean zero and variance of unity. If
we then write:

then the conditional expectation gives us the same expression in
terms of and the terms.

This model may then be used to augment a regres-
sion equation, as a way of modelling the conditional variance
of that equation’s errors. The presence of effects
(detected, for instance, by the Lagrange Multiplier test for

in Stata) does not invalidate the use of OLS to
estimate the equation, but if there are systematic movements in
the conditional variance, we might want to be able to model them
jointly with the level of the series. The “mean equation” and the

equation for the conditional variance may be jointly es-
timated in a maximum likelihood context. Various solutions have
been proposed to deal with the non–negativity constraints, which
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The GARCH model of Bollerslev
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are quite difficult to impose in a ML estimation procedure.
Non–Gaussian distributions may also be used: to cope with

the stylized facts of excess kurtosis in asset returns, it may
be desirable to allow for this in the model. models
have often been fit using a distribution, where an addditional
parameter: the degrees of freedom—is estimated in the process.
An even more general solution relies upon the Generalized Error
Distribution (GED), which encompasses both the Normal and

distributions as special cases, allowing for both excess and
less–than–normal kurtosis.

The primary extension of the methodology
of Engle is the Generalized or
model of Bollerslev (1986). The extension from to

considers:

where is an infinite–order lag polynomial. Under appro-
priate conditions, we can rewrite this as a rational lag in two
finite–order polynomials in the lag operator:

where the roots of are outside the unit circle. This gives rise
to the model:

where This is an process for
the squared errors, where the AR coefficient is and
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The GARCH–in–mean model

Alternative GARCH specifications
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the MA coefficient is with The non–
negativity requirement is that all parameters in this process are
non–negative, with The process is CS if

Just as a low–order process will often work as
well as a high–order a low–order will
often suffice to capture the dynamics of the conditional variance
as well as an for large The ability to specify a
more parsimonious model, especially given the non–negativity
constraints on the maximum likelihood problem, is attractive.

An interesting special case is that of or
integrated where (or cannot be
distinguished from 1). This causes the unconditional variance
of to be infiinite, so that neither nor is CS. The issue is
essentially that of a unit root in the process for and
is often encountered in practice.

A very useful variation on the model is
a specification where the condi-

tional variance itself enters the mean equation. For assets, we
might expect higher return and higher risk to be positively cor-
related, and thus a positive term would
be expected. A similar rationale would apply if we confront the
stylized fact that countries with higher levels of inflation often
are observed to have higher variances of the inflation process. An
example of this model is provided by Engle et al. (1987).

A huge literature on alternative specifications
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exists; many of these models are preprogrammed in Stata’s
command, and references for their analytical derivation are given
in the Stata manual. One of particular interest is Nelson’s (1991)
exponential or He proposed:

which is then parameterized as a rational lag of two finite–order
polynomials, just as in Bollerslev’s Advantages of
the specification include the positive nature of
irregardless of the estimated parameters, and the asymmetric
nature of the impact of innovations: with a positive shock
will have a different effect on volatility than will a negative shock,
mirroring findings in equity market research about the impact
of “bad news” and “good news” on market volatility. Nelson’s
model is only one of several extensions of that
allow for asymmetry, or consider nonlinearities in the process
generating the conditional variance: for instance, the threshold

model of Zakoian (1990) and the Glosten et al. model
(1993).

The and models have also been extended
in a multivariate context (although considering more than two
variables is quite difficult, as the number of parameters to be
estimated grows very rapidly).

Useful surveys of the literature (although now somewhat
dated) are provided by Bollerslev et al. (1992, 1994).
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