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1. Spectral analysis
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This presentation draws heavily from Ch. 6 of Hamilton (1994).
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Our focus thus far has been on considering how the timeseries reacts to a
sequence of innovations and the implications of the relationship between
and for the covariance (or correlation) between and at distinct dates
and We speak of this as analysing the properties of in the time domain.
We might also consider the timeseries behavior in the frequency domain, where
is described as a weighted sum of periodic (sine and cosine) functions:

(1.1)

This is known as the spectral representation of the timeseries, and its study
is known as spectral analysis. The goal will be to determine how important
cycles of different frequencies are in accounting for the behavior of The two
types of analysis (time-domain and frequency-domain modelling) are not mu-
tually exclusive. Any CS process has both a time-domain representation and
a frequency-domain representation, and any feature of the data that can be
described by one representation can be equally well described by the other rep-
resentation. For some features, the time-domain description may be simpler or
more convenient to work with, while for other features the frequency-domain
representation may be simpler.
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1.1. The population spectrum
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Let be a CS process with mean and autocovariance

If the autocovariances are absolutely summable, as previously de�ned, then we
may de�ne the autocovariance generating function as

(1.2)

where denotes a complex scalar. If (1.2) is divided by , is represented
by for and a real scalar, then we de�ne the population
spectrum of

(1.3)

Note that the spectrum is a function of the frequency given any particular
value of and a sequence of autocovariances we could in principle calculate
the value of By De Moivre�s theorem,

so

For a CS process, so that we can consider only the positive half
line. Using some elementary results from trigonometry, we may simplify the
expression to

This implies that the population spectrum exists, and is a continuous,
real-valued function of If the are the autocovariances of a CS process, then

will be nonnegative for all and given symmetry of the cosine function,
the spectrum is symmetric around Since cos for any
integers and it follows that for any integer Thus,.
the spectrum is a periodic function of If we know the value of for all

2



∈

1

1

1

∫
∫

∫

∫

�

�

�

�

�

2

1

1

0

1

1

0

1

Y

Y

t t t

t t t

Y

�

�
Y

iwk
k

�

�
Y k

Y

ω

ω
Y

Y

ω

Y

( )
(0 )

( ) = 2
(1)

= + (0 )
0 0 (1) = + + 0

(0 ) 0 ( )

( ) =

( ) cos ( ) =

= 0
:

(0 ) ( )

( )

(0 )

( )

2 ( )

�, s ω ω.
, � ,

ARMA
s ω 	 / �,

MA
Y � 
� , �


 > , 
 < . AR Y c �Y � � >
, � � < , s ω

ω.

s ω e dω � , or

s ω wk dω � .

k ,
�

, � . s ω

s ω dω

ω , � ,
Y ω

ω s ω

s ω dω,

Y
ω .

between 0 and we can infer the value of for any We routinely express
the empirical spectrum as a function de�ned over with the understanding
that it is symmetric around 0.
We may de�ne the spectrum, or spectral density function, for a number of

processes analytically. For instance, a white noise process has a �at
spectrum, with and the meaning of white noise re�ects the
equiprobability of all frequencies in the representation of the process. A
process will have a monotonic spectrum, decreasing over
for increasing for An process with
will have a monotonic spectrum, decreasing over , while for
will be a monotone increasing function of
How may we interpret the spectrum? We may demonstrate that

This implies, for that the integral of the spectrum over its range equals
the variance of the series. Thus the spectrum is an alternative representa-

tion of the variance, or variability, of a series, with the interpretation that the
total variance arises from those components de�ned over the various frequencies
contained in the range Since is nonnegative, if we calculate

for any the result would be a positive number that we could interpret
as the portion of the variance of associated with frequencies that are less
than in absolute value. Since is symmetric, we may express this
quantity as

the portion of the variance of attributed to periodic random components
with frequencies less than or equal to Thus, the variance of a timeseries
may be decomposed into those portions due to low-frequency variation (or long
waves); medium-frequency variations (e.g. business cycle frequencies); and high-
frequency variations (such as seasonal variations in quarterly or monthly data).
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1.2. The sample periodogram

1.3. Estimating the population spectrum

Since the population spectrum is de�ned in terms of the sequence the pop-
ulation second moments of the timeseries, we may compute a sample counterpart
from the empirical autocorrelations of the series measured over observations,

(1.4)

where is the sample mean of the timeseries. For any given we may then
construct the sample periodogram,

(1.5)

which may constructed from any timeseries of sufficient length, using the esti-
mates of the sample autocovariance function. As we discussed above, the sample
periodogram allows the timeseries to be represented by components of different
frequencies, and the empirical variance of the timeseries to be decomposed into
that emanating from certain frequency bands. The highest frequency that may
be considered in this representation is known as the Nyquist frequency.
Since a frequency is associated with a period of periods, the Nyquist
frequency is associated with a cycle of 2 periods� length (two months for monthly
data, two days for daily data...) and our analysis cannot detect a cycle of higher
frequency (for instance, a set of daily stock prices cannot be used to analyse
intra-daily movements in stock prices). The lowest frequency that can be rep-
resented in a �nite sample of observations is corresponding to a
period of We cannot infer anything about cycles that last longer than that
(e.g. 50-year swings in economic activity cannot be analysed using 40 years of
postwar data).

Although it might seem natural to estimate the population spectrum with
the sample periodogram this approach has its limitations. Unless the
sample is very large, estimates from the periodogram may be very imprecise.
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Just as the sample autocorrelation function may be not very smooth, the sample
periodogram is likely to be something other than the smooth function that the-
ory would suggest for the population spectrum. Most approaches to estimation
of the spectrum involve the use of a window, or kernel estimator: a technique
that averages adjacent estimates of the periodogram to create a smooth func-
tion. Such an estimator reduces the variance of the resulting spectrum at the
cost of introducing some bias. A certain amount of subjective judgment is of-
ten employed to consider the appropriate bandwidth for a spectral window, or
kernel estimator.
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