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Saved Results

dfgls saves the following scalars in r():

r(N) number of observations
r(optlag) optimal lag order
r(scn) Schwarz criterion at lag n
r(rmsen) root mean square error at lag n
r(dftn) DF-GLS statistic at lag n

kpss saves the following scalars in r():

r(N) number of observations
r(dftn) KPSS statistic at lag n
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sts16 Tests for long memory in a time series
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Abstract: Implements the Geweke/Porter-Hudak log periodogram estimator (1983), the Phillips modified log periodogram
estimator (1999b) and the Robinson log periodogram estimator (1995) for the diagnosis of long memory, or fractional
integration, in a time series. The Robinson estimator may be applied to a set of time series.
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Syntax

gphudak varname
�
if exp

� �
in range

� �
, powers(numlist)

�
modlpr varname

�
if exp

� �
in range

� �
, powers(numlist) notrend

�
roblpr varlist

�
if exp

� �
in range

� �
, powers(numlist) l(#) j(#) constraints(numlist)

�
These tests are for use with time series data; you must tsset your data before using these tests; see [R] tsset. varname or varlist may contain time

series operators; see [U] 14.4.3 Time-series varlists.

Options

powers(numlist) indirectly specifies the number of ordinates to be included in the regression. A number of ordinates equal
to the integer part of T raised to the powers(numlist) will be used. Powers ranging from 0.50 to 0.75 are commonly
employed for gphudak and modlpr. These routines use the default power of 0.5. roblpr uses the default power of 0.9.
For roblpr, multiple powers may only be specified if a single variable appears in varlist.

notrend specifies that detrending is not to be applied by modlpr. By default, a linear trend will be removed from the series.
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l(#) specifies the number of initial ordinates to be removed from the regression for roblpr. Some researchers have found that
such exclusion improves the properties of tests based on log-periodogram regressions. The default value of l is zero.

j(#) specifies that the log periodogram employed in roblpr is to be computed as an average of adjacent ordinates. The default
value of j is 1, so that no averaging is performed. If j is 2, the number of ordinates is halved; with a j of 3, divided by
three, and so on. When j is greater than 1, the value of powers should be set large enough so that the averaged ordinates
are sufficient in number.

constraints(numlist) specifies the constraint numbers of the linear constraints to be applied during estimation in roblpr. The
default is to perform unconstrained estimation. This option allows the imposition of linear constraints prior to estimation
of the pooled coefficient vector. For instance, if varlist contains prices, dividends, and returns, and your prior (or previous
findings) states that prices’ and dividends’ order of integration is indistinguishable, one might impose that constraint to
improve the power of the F test provided by roblpr. You would specify the constraints prior to the roblpr command
and then provide the list of constraints in the constraints option to roblpr.

Technical note on constraints. When constraints are imposed it is difficult to identify the number of numerator degrees of
freedom in the test for equality of d coefficients reported at the bottom of roblpr’s output. Since constraints can be of
any general form and it is possible to specify constraints that are not unique, roblpr determines the degrees of freedom
from the rank of the matrix used to compute the Wald statistic. Determining that matrix rank from a numerical standpoint
can be problematic, in which case roblpr may overstate the number of constraints being tested and thereby incorrectly
compute the numerator degrees of freedom for the test. This rarely has a meaningful impact on the statistical test, but you
may wish to test only the unconstrained coefficients if the computed degrees of freedom are wrong.

For example, after the final example below, we could perform the test by typing test ftap == ftaret. In this case, the
degrees of freedom were correct, so we needn’t have gone to the trouble.

Description

The model of an autoregressive fractionally integrated moving average process of a time series of order (p; d; q), denoted
by ARFIMA(p; d; q), with mean �, may be written using operator notation as

�(L)(1� L)d (yt � �) = �(L)�t; �t � i:i:d:(0; �2� ) (1)

where L is the backward-shift operator,
�(L) = 1� �1L� � � � � �pL

p

�(L) = 1 + #1L+ � � �+ #qL
q , and (1� L)d is the fractional differencing operator defined by

(1� L)d =
1X
k=0

�(k � d)Lk

�(�d)�(k + 1)
(2)

with �(�) denoting the gamma (generalized factorial) function. The parameter d is allowed to assume any real value. The
arbitrary restriction of d to integer values gives rise to the standard autoregressive integrated moving average (ARIMA) model.
The stochastic process yt is both stationary and invertible if all roots of �(L) and �(L) lie outside the unit circle and jdj < 0.5.
The process is nonstationary for d � 0.5, as it possesses infinite variance; for example, see Granger and Joyeux (1980).

Assuming that d 2 [ 0; 0:5), Hosking (1981) showed that the autocorrelation function, �(�), of an ARFIMA process is
proportional to k2d�1 as k ! 1. Consequently, the autocorrelations of the ARFIMA process decay hyperbolically to zero as
k ! 1 in contrast to the faster, geometric decay of a stationary ARMA process. For d 2 ( 0; 0.5),

Pn
j=�n j�(j)j diverges as

n ! 1, and the ARFIMA process is said to exhibit long memory, or long-range positive dependence. The process is said to
exhibit intermediate memory (anti-persistence), or long-range negative dependence, for d 2 (�0.5; 0). The process exhibits short
memory for d = 0, corresponding to stationary and invertible ARMA modeling. For d 2 [ 0.5; 1) the process is mean reverting,
even though it is not covariance stationary, as there is no long-run impact of an innovation on future values of the process.

If a series exhibits long memory, it is neither stationary (I(0)) nor is it a unit root (I(1)) process; it is an I(d) process,
with d a real number. A series exhibiting long memory, or persistence, has an autocorrelation function that damps hyperbolically,
more slowly than the geometric damping exhibited by “short memory” (ARMA) processes. Thus, it may be predictable at long
horizons. Long memory models originated in hydrology and have been widely applied in economics and finance. An excellent
survey of long memory models is given by Baillie (1996).

There are two approaches to the estimation of an ARFIMA (p; d; q) model: exact maximum likelihood estimation, as
proposed by Sowell (1992), and semiparametric approaches, as described in this insert. Sowell’s approach requires specification
of the p and q values, and estimation of the full ARFIMA model conditional on those choices. This involves all the attendant
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difficulties of choosing an appropriate ARMA specification, as well as a formidable computational task for each combination of
p and q to be evaluated. The methods described here assume that the short memory or ARMA components of the time series
are relatively unimportant, so that the long memory parameter d may be estimated without fully specifying the data-generating
process. These methods are thus described as semiparametric.

gphudak performs the Geweke and Porter-Hudak (GPH 1983) semiparametric log periodogram regression, often described
as the “GPH test,” for long memory (fractional integration) in a time series. The GPH method uses nonparametric methods—a
spectral regression estimator—to evaluate d without explicit specification of the ARMA parameters of the series. The series is
usually differenced so that the resulting d estimate will fall in the [�0.5; 0.5] interval.

Geweke and Porter-Hudak (1983) proposed a semiparametric procedure to obtain an estimate of the memory parameter d
of a fractionally integrated process Xt in a model of the form

(1� L)
d
Xt = �t; (3)

where �t is stationary with zero mean and continuous spectral density f� (�) > 0: The estimate bd is obtained from the application
of ordinary least squares to

log (Ix (�s)) = bc� bd log ��1� ei�s
��2 + residual (4)

computed over the fundamental frequencies f�s = 2�s=n; s = 1; : : : ;m < ng. We define

!x (�s) =
1p
2�n

nX
t=1

Xte
it�s

as the discrete Fourier transform (DFT) of the time series Xt, Ix (�s) = !x (�s)!x (�s)
� as the periodogram, and xs =

log
��1� ei�s

�� : Ordinary least squares on (4) yields

bd = Pm
s=1 xs log Ix (�s)

2
Pm

s=1 x
2
s

(5)

Various authors have proposed methods for the choice of m, the number of Fourier frequencies included in the regression.
The regression slope estimate is an estimate of the slope of the series’ power spectrum in the vicinity of the zero frequency; if too
few ordinates are included, the slope is calculated from a small sample. If too many are included, medium and high-frequency
components of the spectrum will contaminate the estimate. A choice of

p
T or 0.5 for power is often employed. To evaluate

the robustness of the GPH estimate, a range of power values (from 0.40 to 0.75) is commonly calculated as well. Two estimates
of the d coefficient’s standard error are commonly employed: the regression standard error, giving rise to a standard t test, and
an asymptotic standard error, based upon the theoretical variance of the log periodogram of �2=6. The statistic based upon that
standard error has a standard normal distribution under the null.

modlpr computes a modified form of the GPH estimate of the long memory parameter, d, of a time series, proposed by
Phillips (1999a, 1999b). Phillips (1999a) points out that the prior literature on this semiparametric approach does not address
the case of d = 1, or a unit root, in (3), despite the broad interest in determining whether a series exhibits unit-root behavior or
long memory behavior, and his work showing that the bd estimate of (5) is inconsistent when d > 1; with bd exhibiting asymptotic
bias toward unity. This weakness of the GPH estimator is solved by Phillips’ modified log periodogram regression estimator, in
which the dependent variable is modified to reflect the distribution of d under the null hypothesis that d = 1. The estimator
gives rise to a test statistic for d = 1 which is a standard normal variate under the null. Phillips suggests that deterministic
trends should be removed from the series before application of the estimator. Accordingly, the routine will automatically remove
a linear trend from the series. This may be suppressed with the notrend option. The comments above regarding power apply
equally to modlpr.

The Phillips (1999b) modification of the GPH estimator is based on an exact representation of the DFT in the unit root case.
The modification expresses

!x (�s) =
!u (�s)

1� ei�s
� ei�s

1� ei�s
Xnp
2�n

and the modified DFT as

�x (�s) = !x (�s) +
ei�s

1� ei�s
Xnp
2�n
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with associated periodogram ordinates Iv (�s) = �x (�s)�x (�s)
� (Phillips 1999b, 9). He notes that both �x (�s) and, thus, Iv (�s)

are observable functions of the data. The log-periodogram regression is now the regression of log Iv (�s) on as = log
��1� ei�s

��.
Defining �a = m�1

Pm
s=1 as and xs = as � �a; the modified estimate of the long-memory parameter becomes

~d =

Pm
s=1 xs log I� (�s)

2
Pm

s=1 x
2
s

(6)

Phillips proves that, with appropriate assumptions on the distribution of �t; the distribution of ~d follows

p
m
�
~d� d

�
! N

�
0;
�2

24

�
(7)

in distribution, so ~d has the same limiting distribution at d = 1 as does the GPH estimator in the stationary case so ~d is consistent
for values of d around unity. A semiparametric test statistic for a unit root against a fractional alternative is then based upon the
statistic (Phillips 1999a, 10)

zd =

p
m
�
~d� 1

�
�=24

(8)

with critical values from the standard normal distribution. This test is consistent against both d < 1 and d > 1 fractional
alternatives.

roblpr computes the Robinson (1995) multivariate semiparametric estimate of the long memory (fractional integration)
parameters, d(g), of a set of G time series, y(g), g = 1; G with G � 1. When applied to a set of time series, the d(g) parameter
for each series is estimated from a single log-periodogram regression which allows the intercept and slope to differ for each
series. One of the innovations of Robinson’s estimator is that it is not restricted to using a small fraction of the ordinates of the
empirical periodogram of the series, that is, the reasonable values of power need not exclude a sizable fraction of the original
sample size. The estimator also allows for the removal of one or more initial ordinates and for the averaging of the periodogram
over adjacent frequencies. The rationale for using non-default values of either of these options is presented in Robinson (1995).

Robinson (1995) proposes an alternative log-periodogram regression estimator which he claims provides “modestly superior
asymptotic efficiency to �d (0)”, ( �d (0) being the Geweke and Porter-Hudak estimator) Robinson (1995, 1052). Robinson’s
formulation of the log-periodogram regression also allows for the formulation of a multivariate model, providing justification for
tests that different time series share a common differencing parameter. Normality of the underlying time series is assumed, but
Robinson claims that other conditions underlying his derivation are milder than those conjectured by GPH.

We present here Robinson’s multivariate formulation, which applies to a single time series as well. Let Xt represent a
G-dimensional vector with gth element Xgt; g = 1; : : : ; G. Assume that Xt has a spectral density matrix s�

�� e
ij�f (�) d�, with

(g; h) element denoted as fgh (�). The gth diagonal element, fgg (�), is the power spectral density of Xgt. For 0 < Cg <1
and �1=2 < dg < 1=2, assume that fgg (�) � Cg�

�2dg as �! 0+ for g = 1; : : : ; G: The periodogram of Xgt is then denoted
as

Ig (�) = (2�n)�1
�����
nX
t=1

Xgte
it�

�����
2

; g = 1; : : : ; G (9)

Without averaging the periodogram over adjacent frequencies nor omission of l initial frequencies from the regression, we may
define Ygk = log Ig (�k). The least squares estimates of c = (c1; : : : ; cG)

0 and d = (d1; : : : ; dG)
0 are given by�

~c
~d

�
= vec

�
Y 0Z(Z 0Z)�1

	
(10)

where Z = (Z1; : : : ; Zm)
0 ; Zk = (1;�2 log �k)

0, Y = (Y1; : : : ; YG) ; and Yg = (Yg;1; : : : ; Yg;m)
0 for m periodogram

ordinates. Standard errors for ~dg and for a test of the restriction that two or more of the dg are equal may be derived from the
estimated covariance matrix of the least squares coefficients. The standard errors for the estimated parameters are derived from
a pooled estimate of the variance in the multivariate case, so that their interval estimates differ from those of their univariate
counterparts. Modifications to this derivation when the frequency-averaging (j) or omission of initial frequencies (l) options are
selected may be found in Robinson (1995).

Examples

Data from Terence Mills’ Econometric Analysis of Financial Time Series on UK FTA All Share stock returns (ftaret) and
dividends (ftadiv) are analyzed.
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. use http://fmwww.bc.edu/ec-p/data/Mills2d/fta.dta

. tsset

time variable: month, 1965m1 to 1995m12

. gphudak ftaret,power(0.5 0.6 0.7)

GPH estimate of fractional differencing parameter

------------------------------------------------------------------------------

Asy.

Power Ords Est d StdErr t(H0: d=0) P>|t| StdErr z(H0: d=0) P>|z|

------------------------------------------------------------------------------

.50 20 -.00204 .160313 -0.0127 0.990 .187454 -0.0109 0.991

.60 35 .228244 .145891 1.5645 0.128 .130206 1.7529 0.080

.70 64 .141861 .089922 1.5776 0.120 .091267 1.5544 0.120

------------------------------------------------------------------------------

. modlpr ftaret, power(0.5 0.55:0.8)

Modified LPR estimate of fractional differencing parameter

------------------------------------------------------------------------------

Power Ords Est d Std Err t(H0: d=0) P>|t| z(H0: d=1) P>|z|

------------------------------------------------------------------------------

.50 19 .0231191 .139872 0.1653 0.870 -6.6401 0.000

.55 25 .2519889 .1629533 1.5464 0.135 -5.8322 0.000

.60 34 .2450011 .1359888 1.8016 0.080 -6.8650 0.000

.65 46 .1024504 .1071614 0.9560 0.344 -9.4928 0.000

.70 63 .1601207 .0854082 1.8748 0.065 -10.3954 0.000

.75 84 .1749659 .08113 2.1566 0.034 -11.7915 0.000

.80 113 .0969439 .0676039 1.4340 0.154 -14.9696 0.000

------------------------------------------------------------------------------

. roblpr ftaret

Robinson estimates of fractional differencing parameter

-------------------------------------------------------

Power Ords Est d Std Err t(H0: d=0) P>|t|

-------------------------------------------------------

.90 205 .1253645 .0446745 2.8062 0.005

-------------------------------------------------------

. roblpr ftap ftadiv

Robinson estimates of fractional differencing parameters

Power = .90 Ords = 205

-------------------------------------------------------------

Variable | Est d Std Err t P>|t|

-----------------+-------------------------------------------

ftap | .8698092 .0163302 53.2640 0.000

ftadiv | .8717427 .0163302 53.3824 0.000

-------------------------------------------------------------

Test for equality of d coefficients: F(1,406) = .00701 Prob > F = 0.9333

. constraint define 1 ftap=ftadiv

. roblpr ftap ftadiv ftaret, c(1)

Robinson estimates of fractional differencing parameters

Power = .90 Ords = 205

-------------------------------------------------------------

Variable | Est d Std Err t P>|t|

-----------------+-------------------------------------------

ftap | .8707759 .0205143 42.4473 0.000

ftadiv | .8707759 .0205143 42.4473 0.000

ftaret | .1253645 .0290116 4.3212 0.000

-------------------------------------------------------------

Test for equality of d coefficients: F(1,610) = 440.11 Prob > F = 0.0000

The GPH test, applied to the stock returns series, generates estimates of the long memory parameter that cannot reject the
null at the ten percent level using the t test. Phillips’ modified LPR, applied to this series, finds that d = 1 can be rejected for
all powers tested, while d = 0 (stationarity) may be rejected at the ten percent level for powers 0.6, 0.7, and 0.75. Robinson’s
estimate for the returns series alone is quite precise. Robinson’s multivariate test, applied to the price and dividends series,
finds that each series has d > 0. The test that they share the same d cannot be rejected. Accordingly, the test is applied to all
three series subject to the constraint that price and dividends series have a common d, yielding a more precise estimate of the
difference in d parameters between those series and the stock returns series.
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Saved Results

gphudak saves in e():

e(N powers) number of powers (scalar)

e(depvar) dependent variable name (macro)

e(gph) matrix of results, 9 by N powers

modlpr saves in e():

e(N powers) number of powers (scalar)

e(depvar) dependent variable name (macro)

e(modlpr) matrix of results, 8 by N powers

roblpr saves the following scalars in r():

r(N) number of observations

r(rob) d estimate

r(se) estimated standard error of d

r(t) t statistic

r(p) p-value of t statistic

If more than one power is specified in roblpr, the saved results pertain to the last power used.
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sts17 Compacting time series data

Christopher F. Baum, Boston College, baum@bc.edu

Abstract: tscollap provides the ability to compact data of monthly, quarterly or half-yearly frequencies to a lower frequency
by one or more methods (e.g., average, sum, last value per period, and so on).

Keywords: time series, data frequency, collapse.

Syntax

tscollap clist , to(freq)
�
generate(freqvar)

�
where clist is either�

(stat)
�

varlist
� �

(stat)
�
: : :

�
or �

(stat) target var = varname
�
target var = varname : : :

� � �
(stat) : : :

��
or any combination of the varlist or target var forms, and stat is one of


