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sts18 A test for long-range dependence in a time series

Christopher F. Baum, Boston College, baum@bc.edu
Tairi Room, Boston College, room@bc.edu

Abstract: This insert implements the Hurst–Mandelbrot rescaled range statistic and the Lo (1991) modified rescaled range statistic
to test for long-range dependence in a time series.

Keywords: fractional integration, long memory, rescaled range, time series.

Syntax

lomodrs varname
[
if exp

] [
in range

] [
, maxlag(#)

]
This test is for use with time-series data; you musttsset your data before usinglomodrs; see [R] tsset. varnameor

varlist may contain time-series operators; see [U] Time-series varlists.

Options

maxlag(#) specifies the maximum lag order for the test. By default,maxlag is calculated from the sample size and the first-order
autocorrelation coefficient of thevarnameusing the data-dependent rule of Andrews (1991), assuming that the data-generating
process isAR(1). If maxlag is set to zero, the test performed is the classical Hurst–Mandelbrot rescaled-range statistic.

Description

The model of an autoregressive fractionally integrated moving average process of a time series of order(p, d, q), denoted
by ARFIMA (p, d, q), with meanµ, may be written using operator notation in terms of a white noise seriesε having variance
σ2
ε as

Φ(L)(1− L)d (yt − µ) = Θ(L)εt (1)

whereL is the backward-shift operator,Φ(L) = 1− φ1L− · · · − φpLp, Θ(L) = 1 + ϑ1L+ · · ·+ ϑqL
q, and(1− L)d is the

fractional differencing operator defined by

(1− L)d =
∞∑
k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
(2)

with Γ(·) denoting the gamma (generalized factorial) function. The parameterd is allowed to assume any real value. The arbitrary
restriction ofd to integer values gives rise to the standard autoregressive integrated moving average (ARIMA ) model. The stochastic
processyt is both stationary and invertible if all zeros ofΦ(L) andΘ(L) lie outside the unit circle and|d| < 0.5. The process
is nonstationary ford ≥ 0.5, as it possesses infinite variance, for example, see Granger and Joyeux (1980).

Assuming thatd ∈ [0, 0.5), Hosking (1981) showed that the autocorrelation function,ρ(·), of an ARFIMA process is
proportional tok2d−1 as k → ∞. Consequently, the autocorrelations of theARFIMA process decay hyperbolically to zero as
k → ∞ in contrast to the faster, geometric decay of a stationaryARMA process. Ford ∈ (0, 0.5),

∑n
j=−n |ρ(j)| diverges as

n → ∞, and theARFIMA process is said to exhibit long memory, or long-range positive dependence. The process is said to
exhibit intermediate memory (anti-persistence), or long-range negative dependence, ford ∈ (−0.5, 0).

The importance of long-range dependence in economic and financial time series was first studied by Mandelbrot (1972),
who proposed theR/S (range over standard deviation) statistic, also known as the rescaled-range statistic, originally developed
by Hurst (1951) in the context of hydrological studies. TheR/S statistic is the range of the partial sums of deviations of a time
series from its mean, rescaled by its standard deviation. For a samplex1, . . . , xn,

Qn =
1
sn

 max
1≤k≤n

k∑
j=1

(xj − x̄n)− min
1≤k≤n

k∑
j=1

(xj − x̄n)


wheresn is the maximum likelihood estimator of the standard deviation ofx. The first bracketed term is the maximum of the
partial sums of the firstk deviations ofxj from the full-sample mean, which is nonnegative. The second bracketed term is
the corresponding minimum, which is nonpositive. The difference of these two quantities is thus nonnegative, so thatQn > 0.
Empirical studies have demonstrated that theR/S statistic has the ability to detect long-range dependence in the data. Like many
other estimators of long-range dependence, though, theR/S statistic has been shown to be excessively sensitive to “short-range
dependence,” or short memory, features of the data. Lo (1991) shows that a sizableAR(1) component in the data generating
process will seriously bias theR/S statistic. He modifies theR/S statistic to account for the effect of short-range dependence
by applying a “Newey–West” correction (using a Bartlett window) to derive a consistent estimate of the long-range variance
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of the time series. Formaxlag > 0, the denominator of the statistic is computed as the Newey–West estimate of the long run
variance of the series; see [R] newey.

Critical values for the test are taken from Table II of Lo (1991).

Saved results

lomodrs saves the following inr():

Scalars
r(lomodrs) test statistic
r(N) degrees of freedom

Remarks

The description of the Hurst–Mandelbrot and Lo statistics draws heavily from Chapter 2 of Campbell et al. (1997).

Examples

Data from Terence Mills’Econometric Analysis of Financial Time Serieson U.S. S&P 500 stock returns are analyzed.

. use http://fmwww.bc.edu/ec-p/data/Mills2d/sp500a.dta

. tsset
time variable: year, 1871 to 1997

. lomodrs sp500ar

Lo Modified R/S test for sp500ar

Critical values for H0: sp500ar is not long-range dependent

90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]

Test statistic: .780838 (1 lags via Andrews criterion) N = 124

. lomodrs sp500ar, max(0)

Hurst-Mandelbrot Classical R/S test for sp500ar

Critical values for H0: sp500ar is not long-range dependent

90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]

Test statistic: .799079 N = 124

. lomodrs sp500ar if tin(1946,)

Lo Modified R/S test for sp500ar

Critical values for H0: sp500ar is not long-range dependent

90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]

Test statistic: 1.08705 (0 lags via Andrews criterion) N = 50

Applied to the full sample, the Lo modifiedR/S test rejects the null hypothesis of no long-range dependence at the 95%
level. The Hurst–Mandelbrot test yields a similar inference. When the sample is restricted to the postwar era, the Lo test no
longer can reject the null hypothesis at any level of significance.
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