
EC771: Econometrics, Spring 2004

Greene, Econometric Analysis (5th ed, 2003)

Appendix E:

Computation and Optimization

We often want to evaluate the properties of es-

timators, or compare a proposed estimator to

another, in a context where analytical deriva-

tion of those properties is not feasible. In that

case, econometricians resort to Monte Carlo

studies: simulation methods making use of

(pseudo-)random draws from an error distri-

bution and multiple replications over a set of

known parameters. This methodology is par-

ticularly relevant in situations where the only

analytical findings involve asymptotic, large–

sample results. Applied researchers need to

understand how a particular estimation strat-

egy will perform in small samples: for instance,



when working with macro data on the national

aggregates, we have no more than 150–200

quarterly observations available for many se-

ries. Where only annual data are available, the

problem becomes even more striking. In that

case, we require an understanding of the per-

formance of estimation techniques, test statis-

tics, etc. in a very small sample. Monte Carlo

studies, although they do not generalize to

cases beyond those performed in the experi-

ment, may be useful in these situations. They

also are useful in modelling quantities for which

no analytical results have yet been derived: for

instance, the critical values for many unit–root

test statistics have been derived by simulation

experiments, in the absence of closed–form ex-

pressions for the sampling distributions of the

statistics.

Most econometric software provide some facil-

ities for Monte Carlo experiments. Although



one can write the code to generate an ex-

periment in any programming language, it is

most useful to do so in a context where one

may readily save the results of each replica-

tion for further analysis. The quality of the

pseudo–random number generators available is

also an important concern. Recent studies

published in the Journal of Applied Economet-

rics have compared many software packages’

performance on a standard set of benchmarks

for randomness. Although most packages meet

these criteria, all but the most recent versions

of GAUSS fail miserably—casting considerable

doubt on those many published studies mak-

ing use of GAUSS software. State–of–the–art

pseudo–random number generators do exist,

and you should use a package that implements

them. You will also want a package with a

full set of statistical functions, permitting ran-

dom draws to be readily made from a specified

distribution–not merely normal or t, but from a



number of additional distributions, depending

upon the experiment.

Stata version 8 provides a useful environment

for Monte Carlo simulations. If you are con-

ducting a sizable Monte Carlo study, you should

learn how to run it in batch mode on one of

our department’s Unix systems (econ.bc.edu,

fmblade1.bc.edu) so that it does not tie up a

desktop computer system. Setting up a sim-

ulation requires that you write a Stata pro-

gram: not merely a “do–file” containing a set

of Stata commands, but a sequence of com-

mands beginning with the program define state-

ment. This program sets up the simulation

experiment and specifies what is to be done

in one replication; you then invoke it with the

simulate command to execute a specified num-

ber of replications. Note that the version 8

simulate command is much easier to use than

the simul command present in earlier versions

of Stata.



For instance, let us consider simulating the

performance of the estimator of sample mean,

x̄, in a context of heteroskedasticity. We could

derive the analytical results for this simple ex-

periment, but in this case let us simulate them.

Take the model to be yi = µ + εi, with εi ∼
N(0, σ2). Let σ2 be a N(0,1) variable multi-

plied by a factor czi, where zi varies over i.

We will vary parameter c between 0.1 and 1.0

and determine its effect on the point and in-

terval estimates of µ; as a comparison, we will

compute a second random variable which is

homoskedastic, with the scale factor equalling

cz̄.

Appendix 1 (also available from the course home-

page) contains the log of a Stata version 8 do–

file which defines the simulation experiment

program and executes it over a range of c val-

ues, using actual data (the average age in each



of the 50 states). Alternatively, such an exper-

iment could be based on artificial data, gener-

ated within the experiment. The stored results

are then combined into a single file, from which

summary statistics may be readily computed,

and graphed if desired. The het infl measure

contains the ratio of the standard error of the

mean from the heteroskedastic case and that

for the homoskedastic case. Note that the for-

mer case involves a penalty, in terms of the

mean or median of the simulations, of up to

5–6 per cent, and that the size of the penalty

depends positively on c.

Note that if you run this program (or any Monte

Carlo simulation exercise) more than once, you

will receive slightly different results. When de-

bugging a program, it is often useful to re-

move this element of randomness. This can

be achieved by using Stata’s set seed n com-

mand before any calls to the pseudo–random–

number generator. Since a PRN generator



will generate the same sequence of (pseudo–

)random numbers when presented with a given

seed, setting the seed will cause the sequence

of PRNs to be replicable.

Calculation of power of a test

Monte Carlo simulations might be used to eval-

uate the power of a test. In the prior exper-

iment, we computed point and interval esti-

mates of the mean. Let us redo that exper-

iment with artificial data, constructed with a

known mean. In this case, we perform a con-

ventional t–test for H0 : µ = 0, and com-

pare the power of that test over simulations

of the homoskedastic and heteroskedastic data

generating process by counting the number of

times that the false null is rejected. The con-

ventional t–test is performed under the main-

tained hypothesis that the data are generated

with a single σ2, so we would expect to find



that the test is more powerful when applied to

homoskedastic data. Appendix 2 (also avail-

able from the course homepage) shows that

the power (labelled pwr1 and pwr2 for the homo-

and heteroskedastic cases, respectively) drops

off as we increase c (which inflates the vari-

ance, and amplifies the heteroskedastic effect).

Bootstrapping

A closely related topic to Monte Carlo simu-

lation is that of the technique of bootstrap-

ping, developed by Efron (1979). A key dif-

ference: whereas Monte Carlo simulation is

designed to utilize purely random draws from

a specified distribution (which with sufficient

sample size will follow that theoretical distri-

bution) bootstrapping is used to obtain a de-

scription of the sampling properties of empiri-

cal estimators, using the empirical distribution

of sample data. If we derive an estimate θ̂



from a sample X = (x1, x2, ..., xN) , we can de-

rive a bootstrap estimate of its precision by

generating a sequence of bootstrap estimators(
θ̂1, θ̂2, ..., θ̂B

)
, with each estimator generated

from an m−observation sample from X, with

replacement. The size of the bootstrap sample

m may be larger, smaller or equal to N. The

estimated asymptotic variance of θ may then

be computed from this sequence of bootstrap

estimates and the original estimator:

Est.Asy.V ar[θ] = B−1
B∑

b=1

[
θ̂b − θ̂obs

] [
θ̂b − θ̂obs

]′
where the formula has been written to allow θ̂

to be a vector of estimated parameters. The

square roots of this variance–covariance matrix

are known as the bootstrap standard errors

of θ̂. They will often prove useful when doubt

exists regarding the appropriateness of the con-

ventional estimates of the precision matrix, as

well as in cases where no analytical expression



for that matrix is available, e.g., in the con-

text of a highly nonlinear estimator for which

the numerical Hessian may not be computed.

After bootstrapping, we have the mean of the

estimated statistic—e.g. θ̂—which may be com-

pared with the point estimate of the statistic

computed from the original sample, θobs (for

observed). The difference θ̂−θobs is an estimate

of the bias of the statistic; in the presence of

a biased point estimate, this bias may be non-

trivial. However we cannot use that difference

to construct an unbiased estimate, since the

bootstrap estimate contains an indeterminate

amount of random error.

Why do we bootstrap quantities for which asymp-

totic measures of precision exist? All measures

of precision come from the statistic’s sampling

distribution, which is in turn determined by the

distribution of the population and the formula



used to estimate the statistic from a sample of

size N . In some cases, analytical estimates of

the sampling distribution are difficult or infea-

sible to compute, such as those relating to the

means from non–normal populations. Boot-

strapping estimates of precision rely on the no-

tion that the observed distribution in the sam-

ple is a good approximation to the population

distribution.

Stata version 8.x provides two facilities for boot-

strapping, both described under bootstrap in

the Reference Manual [A-F]. We will only dis-

cuss the simpler facility, the bootstrap com-

mand, here. The bsample command is only

likely to be useful for advanced programmers.

Note that these commands have changed sub-

stantially from their version 7 predecessors.

The bootstrap command specifies a single es-

timation command, the results to be retained



from that command, and the number of boot-
strap samples (B) to be drawn. You may op-
tionally specify the size of the bootstrap sam-
ples (m); if you do not, it defaults to N (the
currently defined sample size). This is very
useful, since it makes estimating bootstrap stan-
dard errors no more difficult than performing
the estimation itself. If you are trying to con-
struct a bootstrap distribution for a set of statis-
tics which are forthcoming from a single Stata
command, this may be done without further
programming. For instance, Appendix 3 shows
an illustration of generating bootstrap stan-
dard errors for the mean and the standard de-
viation of the variable age (the average age per
state), using 1000 bootstrap samples. It also
illustrates how one may generate histograms
of the bootstrap distributions, and produce a
single–page graph of the result.

In the output from the bootstrap command
(technically, in the output from the bstat com-
mand, which is automatically invoked by bootstrap)



the bias is presented as the difference above.

The first confidence interval (labelled (N)) is

based on the assumption of approximate nor-

mality of the sampling (and bootstrap) dis-

tribution, and will be reasonable if that as-

sumption is so. The percentile (P ) and bias–

corrected (BC) bootstrap confidence intervals

are computed without making the assumption

of approximate normality, and demonstrate the

sensitivity of the bootstrap estimates to that

feature of the empirical distribution (for in-

stance, those confidence intervals need not be

symmetric around θobs). Note on the graph

that for the estimates of the mean, the boot-

strap distribution diverges to some degree from

normality, with considerably more mass in the

center of the distribution.

The bootstrap command is not limited to gen-

erating bootstrap estimates from a single Stata

command. To compute a bootstrap distri-

bution for more complicated quantities, you



must write a Stata program (just as with the

simulate command) that specifies the estima-

tion to be performed in the bootstrap sample.

One may then execute bootstrap, specifying

the name of your program, and the number of

bootstrap samples to be drawn. For instance,

if we wanted to generate a bootstrap estimate

of the ratio of two means, we could not do

so with a single Stata command. Appendix 4

contains a program, or ado-file, that carries

out that experiment, allowing the user to spec-

ify which variables are to be considered. In this

case, we construct a ratio for the average price

of a domestic car vs. the average price of a for-

eign car, and generate a bootstrap confidence

interval for the ratio. Note in the histogram

that the empirical distribution is quite visibly

skewed; this corresponds to the percentile and

bias–corrected confidence intervals being wider

than that derived from the assumption of ap-

proximate normality.



Combining simulation and bootstrapping

These commands are very flexible; one may

combine both techniques in a single Stata pro-

gram. The example in Stata’s Reference Man-

ual [S-Z] article on simulate illustrates an ap-

plication where a random sample is generated,

and bootstrap is used to generate a dataset

of medians calculated by bootstrap sampling

from the random sample. This procedure is

called within a simulate program which cal-

culates the standard deviation of these boot-

strap standard errors, repeated over a number

of Monte Carlo draws. The simulate program

thus generates a point and interval estimate

of the median of these simulated data, where

the precision of the median estimates is derived

from a bootstrapped standard error.


