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Chapters 2–3:

Classical Linear Regression

The classical linear regression model is the sin-

gle most useful tool in econometrics. Although

it is often only a point of departure to more

specialized methodologies, almost all empirical

research will focus on the regression model as

an underlying construct.

The model studies the relationship between a

dependent variable and one or more indepen-

dent variables, expressed as

y = x1β1 + x2β2 + · · · + xKβk + ε

where y is the dependent, or endogenous vari-

able (sometimes termed the regressand) and



the x variables are the independent, or exoge-

nous variables, often termed the regressors or

covariates. This of course presumes that the

relationship only involves one endogenous vari-

able, and that is in fact the setting for the clas-

sical linear regression model. If there are mul-

tiple endogenous variables in a relationship (as

there would be in a demand curve, or a macro

consumption function) then we must use more

advanced regression techniques to deal with

that endogeneity, or in economic terms simul-

taneity.

The term ε is a random disturbance, or error

term; it renders the relationship between y and

the x variables stochastic. We may rational-

ize the existence of a “disturbance” in several

ways. It may be taken as reflecting the net ef-

fects of all the factors omitted from the speci-

fication of the regression equation: although if

those factors are judged important influences,



and are quantifiable, they should be included

in the equation, and not omitted. A common

source of stochastic variation in economic data

is measurement error: that is, the relationship

may appear more variable than it actually is

due to the difficulty of measuring the depen-

dent variable. (Although it is surely plausi-

ble that some of the regressors may be mea-

sured with error, that raises additional method-

ological issues—from an analytical standpoint,

identical to those caused by simultaneity).

When we apply the regression methodology to

data, we presume there is a sample of size n,

representing observations on yi, xi1, xi2, . . . , xiK,

i = 1, . . . , n. Our goal is to estimate the K pa-

rameters of the regression equation, β1, . . . , βK,

as well as the error variance, σ2
ε . We may want

to use the point and interval estimates of the

βs to make inferences about the validity of an

economic theory, or we may wish to use those



estimates to generate forecasts, or predictions,

from the regression equation.

Assumptions of the classical linear regression

model

We will discuss the assumptions of the CLR

model, and then consider each one in turn.

• Linearity: the model specifies a linear re-

lationship between y and x1, x2, . . . , xK.

• Full rank: there is no exact linear relation-

ship among any of the independent vari-

ables of the model.

• Strict exogeneity of x:

E[εi|xj1, xj2, . . . , xjK] = 0, ∀i, j. The distri-

bution of ε does not depend on past, present

nor future x values.



• Spherical disturbances: the covariance

matrix of the vector ε is σ2In. The er-

ror terms are identically and independently

distributed (i.i.d.).

• Stochastic regressors: the set of x vari-

ables may include both fixed numbers and

random variables, but the data generating

process underlying any random x is inde-

pendent of that generating ε.

• Normally distributed errors: for the pur-

pose of generating interval estimates and

hypothesis tests, the distribution of ε is as-

sumed to be multivariate Normal.

We now turn to discussion of each assumption.



Linearity

Let the column vector xk be the n observations
on the kth variable. We assemble the K vectors
into a n × K data matrix X. If the regression
model contains a constant term, one of the
columns of X is ι, a vector of 1s. We may
then write the multiple linear regression model
as

y = Xβ + ε

The vector β, of length K, is the primary ob-
ject of regression estimation. For the model
to be expressed in this linear form, it must
relate y to the variables in X in a linear fash-
ion with an additive error. However, that does
not imply we are limited to considering mod-
els that are in a linear form: as long as they
may be transformed into linear form, they may
be estimated via linear regression. Consider a
Cobb–Douglas function

y = Axβeε



This model is nonlinear, but it may be trans-

formed to linearity by taking logs. Likewise, a

model relating y to 1/x may be considered lin-

ear in y and z = 1/x. The Cobb–Douglas form

is an example of a constant elasticity model,

since the slope parameter in this model is the

elasticity of y with respect to x. This transfor-

mation, in which both dependent and indepen-

dent variables are replaced by their logarithms,

is known as the double–log model.

The single–log model is also widely used. For

instance, the growth rate model

y = Aert

may be made stochastic by adding a term eε.

When logs are taken, this model becomes a lin-

ear relationship between ln y and t. The coef-

ficient r is the semi–elasticity of y with respect

to t: that is, the growth rate of y.



Although this sleight of hand will allow many

models to be expressed in this linear form,

some models cannot be written in that man-

ner by any means. In that case, alternative

estimation techniques must be employed.

Full rank

We assume that the data matrix X is an n×K

matrix with rank K, the number of columns

(data vectors) assembled in the matrix. This

rules out the situation n < K, implying that

we must have more observations in the sample

than measurements on each individual. This is

not usually an issue, but can inadvertently arise

when we analyze a subset of the observations.

The more common concern for the rank of

X is that there must be no linear dependen-

cies among its columns: that is, no column

may be expressed as linearly dependent upon



the other columns. From the analytical stand-

point, this is an argument that these K vectors

must span K–space, and if we are to solve K

equations for K unknowns (the β coefficients)

those equations must not be redundant. If one

or more columns of X were linearly dependent,

redundancies would exist. In the context of

econometrics, we call the existence of a linear

dependency perfect collinearity. In an intuitive

sense, it indicates that a particular column of

X (an “explanatory variable”) contains no in-

formation at the margin, since it itself may be

perfectly explained by the remaining explana-

tory variables. A model with K explanatory

variables must contain K distinct sources of

information: both conceptually and numeri-

cally. Any situation in which there is an identity

among explanatory variables, or an adding–up

condition, may bring about perfect collinearity.

In this case, one of the explanatory variables

in the identity is clearly redundant, and not all



cannot be included in the model as indepen-

dent sources of variation.

Strict exogeneity of x

The disturbance is assumed to have condi-

tional expected value of zero at every obser-

vation:

E[εi|X] = 0.

Intuitively, this states that no observations on

X contain any useful information about the

expected value of the disturbance for a given

observation: the assumption of strict exogene-

ity of the X variables. In the context of time

series data, we may have to relax that assump-

tion, and presume that X values at some other

point in time may convey information about

the expected value of the disturbance at time

t: that is, the X variables are only weakly ex-

ogenous. Nevertheless, even weak exogeneity



implies that current values of the X variables

are not informative about εt.

Generally the assumption that this conditional

mean is zero is not restrictive; as long as there

is a constant term in the regression relation-

ship (with a corresponding ι vector in X), any

nonzero mean of the disturbances may be trans-

formed to zero by adjusting the constant term.

However, this implies that a constant term

should generally be included in a regression

model. (An exception to this rule: if a time se-

ries model is fit to first differences of the origi-

nal data, it will only contain a constant term if

the levels model contained a linear trend term).

Spherical disturbances

We assume that the distribution of ε is spheri-

cal: combining the two assumptions that V ar[εi|X] =

σ2, ∀i and Cov[εi, εj|X] = 0, ∀i 6= j. These two



assumptions combined imply that the distur-

bances are identically and independently dis-

tributed (i.i.d.), with a covariance matrix σ2I.

The first assumption is that of homoskedas-

ticity: the variance of ε, conditioned on X,

is identical over all observations. Violation of

this assumption would imply that the errors are

heteroskedastic.

The second assumption is independence of the

errors, or in the context of time series data,

that the errors are not serially correlated or

autocorrelated. Although there is a natural

connotation to this in the time series context,

it may also occur in cross–sectional data: e.g.,

those individuals who live in the same neigh-

borhood may have the same unusual behavioral

traits. This, in fact, is addressed in Stata by

the cluster option on many estimation com-

mands, which allows for “neighborhood effects”.

Stochastic regressors



In developing the regression model, it is com-
mon to assume that the xi are nonstochastic,
as they would be in an experimental setting.
This would simplify the assumptions above on
exogeneity and the distribution of the errors,
since then X would be considered a matrix
of fixed constants. But in social science re-
search, we rarely work with data from the ex-
perimental setting. If we consider that some
of the regressors in our model are stochastic,
then our assumption concerns the nature of
the data generating process than produces xi.
That process must be independent of the data
generating process underlying the errors if the
classical regression model is to be applied.

Normally distributed errors

It is convenient to assume that the conditional
distribution of ε is multivariate Normal. Nor-
mality is very useful in constructing test statis-
tics and confidence intervals from the regres-
sion model, although it is not necessary for the
solution of the estimation problem.



The least squares methodology

In applying the least squares methodology, we

note that the unknown parameters are those

in the vector β in y = Xβ + ε. The pop-

ulation regression function is E[yi|xi] = x′iβ,

whereas our estimate of that conditional mean

is denoted ŷi = x′ib: that is, the vector of es-

timated parameters is b. The error, or dis-

turbance, associated with the ith data point

is εi = yi − x′iβ, while the associated regres-

sion residual is ei = yi − x′ib. The sample is

{yi, xi}, i = 1, . . . , n. How might we choose a

vector b so that the fitted line, x′ib, is close to

the data points yi? An obvious choice is the

least squares criterion.

The least squares coefficient vector minimizes

the sum of squared residuals:

n∑
i=1

e2i =
n∑

i=1

(yi = x′ib)
2



with respect to the elements of b. In matrix

terms, we have

minS = e′e = (y−Xb)′(y−Xb) = y′y−2y′Xb+b′X ′Xb

with first order conditions

∂S/∂b = −2X ′y + 2X ′Xb = 0.

These are the least squares normal equations,

X ′Xb = X ′y

with solution

b = (X ′X)−1X ′y

For the solution to be a minimum, the sec-

ond derivatives must form a positive definite

matrix: 2X ′X. If the matrix X has full rank,

then this condition will be satisfied: the least

squares solution will be unique, and a minimum

of the sum of squared residuals. If X is rank–

deficient, the solution will not exist, as X ′X
will be singular. In that instance, we cannot



uniquely solve for all K elements of b, since X

contains one or more linear dependencies.

Let us consider the normal equations in ordi-
nary algebra for a “three–variable” regression
problem: one in which we regress y on two
regressors and a constant term. Assume that
the two regressors are named T and G. Then
the three normal equations are:

b1n + b2
∑

T + b3
∑

G =
∑

Y

b1
∑

T + b2
∑

T2 + b3
∑

TG =
∑

TY

b1
∑

G + b2
∑

TG + b3
∑

G2 =
∑

TG

A system of three equations in three unknowns.
Note that the first normal equation, if we di-
vide through by n, becomes:

b1 + b2T̄ + b3Ḡ = Ȳ

That is, in the presence of a constant term,
the regression surface passes through the mul-
tivariate point of means (which we may read-
ily illustrate in terms of a two–variable regres-
sion).



We may solve the regression problem as two

equations in two unknowns, the slopes b2 and

b3, by demeaning each series: expressing it as

deviations from its own mean. In that context,

the second and third normal equations become

functions of those two parameters only, since

b1 becomes zero for the demeaned series. Note

that these equations do not depend on the raw

data, but only on the sums of squares and cross

products of the demeaned data. After solving

these two simultaneous equations for b2 and

b3, we may backsolve for b1.

It is illustrative to consider this strategy in the

two–variable or bivariate regression of y on a

single x series. The slope parameter based on

the demeaned series is

b2 =

∑
xy∑
x2

=
Cov(x, y)

V ar(x)
= rXY

sy

sx

where rXY is the simple correlation between

X and Y , and sY (sX) is the sample standard



deviation of Y (X). This gives us the intercept

b1 = Ȳ − b2X̄

This is known as “simple” regression, in which

we have only one regressor (beyond ι). In

multiple regression, the slope coefficients will

generally differ from those of simple regres-

sion. The simple regression coefficients are to-

tal derivatives of Y with respect to X, whereas

the multiple regression coefficients are partial

derivatives. So, for instance, a solution for the

aforementioned “three–variable” regression prob-

lem will yield

byg·t =
byg

1 − r2gt

−
bytbtg

1 − r2gt

where byg·t is the multiple regression coeffi-

cient of y on g, holding t fixed, and (r2gt) is

the squared simple correlation between g and

t. Note that if this correlation is 1 or -1,

the multiple regression cannot be computed

(X fails the full rank assumption). Note that



byg·t will differ from the simple regression co-

efficient byg due to the second term. The sec-

ond term could be zero for two reasons: (1) t

does not influence y, so byt is effectively zero;

or (2) g and t are uncorrelated, so that btg is

zero. In the latter case, the squared correla-

tion coefficient is also zero, and the formula

for the multiple regression coefficient becomes

that of the simple regression coefficient. Con-

versely, as long as there is correlation among

the regressors, the multiple regression coeffi-

cients will differ from simple regression coef-

ficients, as “partialling off” the effects of the

other regressors will matter. Thus, if the re-

gressors are orthogonal, the multiple regres-

sion coefficients will equal the simple regres-

sion coefficients. Generally, we will not find

orthogonal regressors in economic data except

by construction: for instance, binary variables

indicating that a given individual is M or F will

be orthogonal to one another, since their dot

product is zero.



Some results from the least squares solution of

a model with a constant term:

• The least squares residuals sum to zero:

the first normal equation ȳ = x̄′b implies

that ē is identically zero.

• The normal equations (X ′X)b − X ′y = 0

imply −X ′(y − Xb) = 0, or −X ′e = 0. This

indicates that the residuals are constructed

to be orthogonal to each column of X.

• If ŷ = Xb are the predicted values of the

regression, ¯̂y = ȳ. The mean of the fitted

values equals the mean of the original data

(again, since ē = 0).



Regression as a projection

The vector of least squares residuals is e =

y − Xb, or given the solution of the normal

equations,

e = y−X(X ′X)−1X ′y = (I−X(X ′X)−1X ′)y = My

where M is known as the fundamental idempo-

tent matrix of least squares. M produces the

vector of LS residuals from the regression of y

on X when it premultiplies any vector y. That

also implies that MX = 0, since the residuals

are constructed to be orthogonal to X.

Least squares partitions y into two parts: that

which is related to X, Xb, and that which is

unrelated to X, e. Since MX = 0, the two

parts are orthogonal. We can thus write the

predicted values ŷ = y − e as

ŷ = (I − M)y = X(X ′X)−1X ′y = Py



where the projection matrix P , which is also

symmetric and idempotent, generates the fit-

ted values as the projection of y on X, which is

also the projection of y into the column space

of X. Since M produces the residuals, and P

produces the fitted values, it follows that M

and P are orthogonal: PM = MP = 0, and by

simple algebra PX = X. We can then write

y = Py + My, and consider the least squares

problem in that context:

y′y = y′P ′Py + y′M ′My

or

y′y = ŷ′ŷ + e′e

The orthogonality of P and M imply that the

cross–product terms that would result from

that expansion are zero. Given the definition

of ŷ, we can also write

e′e = y′y − b′X ′Xb = y′y − b′X ′y.



Goodness of fit and ANOVA

Although the least squares criterion gives us a

metric defining a line (surface) of best fit, the

magnitude of the minimized criterion is arbi-

trary: the residuals are in the same units as

y, and altering the scale of y will change the

magnitude of e′e. To judge the goodness of fit

of a regression model, we consider whether the

variation in the X variables can explain some

meaningful amount of the variation in y. When

a constant term is included in the relationship,

we are explaining the variation in y about its

mean. That is, the X variables are not ex-

plaining why GDP is, on average, $4 trillion.

Rather, we are attempting to explain the vari-

ation in GDP around that mean value. The

total variation in y is the sum of squared devi-

ations:

SST =
n∑

i=1

(yi − ȳ)2



which is a component of the variance of y (but

is not that variance). Write the regression

equation as

y = Xb + e = ŷ + e

and premultiply by

M0 = [I − n−1ιι′],

the idempotent matrix which transforms vari-

ables into deviations from their own means:

M0y = M0Xb + M0e

If we now square this equation, we find that

y′M0y = b′X ′M0Xb + e′e

keeping in mind that M0 is idempotent, the

residuals (in the presence of a constant term)

have mean zero, and cross product terms van-

ish since e′M0X = 0. The left side of this

expression is merely SST, the total sum of

squares. The right side may be written as re-

gression sum of squares, SSR, and error sum



of squares, SSE. The latter is, of course, the

minimized value of the least squares criterion.

This identity, SST = SSR + SSE, corresponds

to the notion that regression partitions y into

two orthogonal components: that explained by

the regressors and that left unexplained. It is

the basis for our measure of goodness of fit:

R2 =
SSR

SST
= 1 −

SSE

SST
or

R2 =
b′X ′M0Xb

y′M0y
= 1 −

e′e

y′M0y

This is known as the coefficient of determina-

tion, and in the presence of a constant term,

it must lie between 0 and 1. It is, indeed, “r–

squared”, the squared correlation of y and ŷ.

In a “two–variable” regression model, since ŷ

is a linear transformation of the single x, it is

also the squared correlation of y and x. In a

multiple regression model, R2 bears no sim-

ple relationship to the simple R2 measures for



each regressor, but reflects the overlap in their

explanation of y. An R2 of zero indicates that

the naive model yi = µ+εi cannot be improved

with the set of regressors in use, while an R2

of unity indicates that all residuals are zero.

The elements that go into the computation of

R2 are usually presented in computer output

as the ANOVA (analysis of variance) table:
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. reg price mpg headroom trunk weight length turn

      Source        SS       df       MS              Number of obs =      74
           F(  6,    67) =    8.69

       Model   277.845193     6  46.3075321           Prob > F      =  0.0000
    Residual   357.220189    67  5.33164461           R-squared     =  0.4375

           Adj R-squared =  0.3871
       Total   635.065382    73  8.69952578           Root MSE      =   2.309

       price       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         mpg   -.0940633   .0803708    -1.17   0.246    -.2544842    .0663575
    headroom   -.7312921   .4273691    -1.71   0.092    -1.584324    .1217401
       trunk    .0982751   .1057208     0.93   0.356    -.1127446    .3092947
      weight    .0050793   .0011482     4.42   0.000     .0027876     .007371
      length   -.0734871   .0430113    -1.71   0.092    -.1593379    .0123638
        turn   -.3270699   .1263111    -2.59   0.012    -.5791879   -.0749519
       _cons    20.44725   6.090068     3.36   0.001     8.291423    32.60308



The “SS” in the table are the sums of squares
in our identity above. Their mean squares are
derived from their respective degrees of free-
dom. Although the R2 is not a basis for any
statistical judgment, it may be transformed
into the “ANOVA F”, which is a test of the
model versus the naive model considered above:
i.e. that all slopes are jointly zero. You will
note that the F statistic is computed from the
same quantities as R2, and is in fact the ratio
of mean squares (MS) due to regression and
error, respectively.

What are the difficulties in using R2? For one
thing, just as e′e cannot rise when an additional
regressor is added to the model, R2 cannot
fall. Thus a model with a large number of
regressors (and the same dependent variable)
will always have a higher R2. To compensate
for this, we often consider the adjusted R2 or
R̄2 value:

R̄2 = 1 −
n − 1

n − K
(1 − R2).



Note that R̄2 will always be less than R2, and

no longer has the connotation of a squared

correlation coefficient; indeed, it may become

negative. This measure weighs the cost of

adding a regressor (the use of one more de-

gree of freedom) against the benefit of the

reduction in error sum of squares. Unless the

latter is large enough to outweigh the former,

R̄2 will indicate that a “longer” model does

worse than a more parsimonious specification,

even though the longer model will surely have

a higher R2 value. However, one cannot at-

tach any statistical significance to movements

in R̄2, since it can readily be shown that it

will rise or fall when a single variable is added

depending on that variable’s t-statistic being

greater or less than 1 in absolute value.

A second diffficulty with conventional R2 re-

lates to the constant term in the model. For

R2 to lie in the unit interval, the X matrix must



have a column ι. In the absence of a constant

term, R2 can readily be negative (as we can

easily illustrate with an improperly constrained

two–variable model). Different computer pro-

grams generate different results for R2 in the

absence of a constant term; some omit it en-

tirely, while others will provide an alternate for-

mula in that context. Generally, one should

not refer to R2 in a model without a constant

term.

One should also note that the level of R2 de-

pends upon the context. When fitting models

to aggregate time–series data, R2 values above

0.90 are quite common. When fitting models

to individual microdata, an R2 of 0.10 might

be reason for rejoicing. When comparing sev-

eral models, one must also be careful to ensure

that the dependent variable is identical across

models: not only the same observations, but in

the same form. One cannot reasonably com-

pare a levels equation with an equation fit in



first differences or logarithms of the same de-

pendent variable. It should also be recalled

that R2, as a squared correlation coefficient, is

a measure of linear association between y and

ŷ. Two (or more) variables may be linked by

a relationship–even in a deterministic sense–

which is not linear. In that case, a measure

of linear association, such as correlation, may

not detect the relationship. As an example,

consider x2+y2 = k. A sample of {x, y} points

generated by that relationship will yield an R2

of zero, even though the relationship is non-

stochastic.


