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1. For the classical normal regression model y = xβ + ε with no constant
term and K regressors, what is plim F [K, n−K] = plim R2/K

(1−R2)/(n−K) , assuming
that the true value of β is zero?

The F ratio is computed as b′X′Xb/K
[e′e/(n−K)] . We substitute e = Mε, and

b = β + (X′X)−1X′ε = (X′X)−1X′ε. Then,

F = [ε′X ′(X ′X)−1X ′X(X ′X)−1X ′ε/K]/[ε′Mε/(n−K)]
= [ε′(I−M)′ε/K]/[ε′Mε/(n−K)]

The denominator converges to σ2. The numerator is an idempotent quadratic
form in a normal vector. The trace of (I−M) is K regardless of the sample
size, so the numerator is always distributed as σ2 times a chi-squared variable
with K degrees of freedom. Therefore the numerator of F does not converge to
a constant, it converges to σ2/K times a chi-squared variable with K degrees of
freedom.Since the denominator of F converges to a constant, σ2, the statistic
converges to a random variable, (1/K) times a chi-squared variable with K
degrees of freedom.

2. Let ei be the ith residual in the ordinary least squares regression of y
on X in the classical regression model, and let εi be the corresponding true
disturbance. Prove that plim(ei − εi)=0.

We can write ei as ei = yi − b′xi = (β′xi + εi)− b′xi = εi + (b− β)′xi. We
know that plim b = β, and xi is unchanged and as n increses, so as n→∞, ei

is arbitrarily close to εi.

3. For simple regression model yi = µ + εi, εi ∼ N [0, σ2], prove that the
sample mean is consistent and asymptotically normally distributed. Now, con-
sider the alternative estimator µ̂ =

∑
i wiyi, where wi = i

(n(n+1)/2) = i∑
i
i
.

Note that
∑

i wi = 1. Prove that this is a consistent estimator of µ and obtain
its asymptotic variance. [Hint:

∑
i i2 = n(n + 1)(2n + 1)/6.]

The estimator is ȳ = (1/n)
∑

i yi = (1/n)
∑

i(µ+εi) = µ+(1/n)
∑

i εi. Then,
E[ȳ] = µ + (1/n)

∑
i E[εi] = µ and var[ȳ] = (1/n2)

∑
i

∑
j cov[εi, εj ] = σ2/n.

Since the mean equals µ and the variance vanishes as n → ∞, ȳ is consistent.
In addition, since ȳ is a linear combination of normally distributed variables,
ȳ has a normal distribution with the mean and variance given above in every
sample. Suppose that εi were not normally distributed. Then,

√
n(ȳ − µ) =

(1/
√

n)(
∑

i εi) satisfies the requirements for the central limit theorem. Thus,
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the asymptotic normal distribution applies whether or not the disturbances have
a normal distribution.
For, the alternative estimator, µ̂ =

∑
i wiyi, so E[µ̂] =

∑
i wiE[yi] =

∑
i wiµ =

µ
∑

i wi = µ and var[µ̂] =
∑

i w2
i σ2 = σ2

∑
i w2

i . The sum of squares of the
weights is

∑
i w2

i =
∑

i i2/[
∑

i i]2 = [n(n+1)(2n+1)/6]/[n(n+1)/2]2 = [2(n2 +
3n/2 + 1/2)]/[1.5n(n2 + 2n + 1)]. As n → ∞, the fraction will be dominated
by the term (1/n) and will tend to zero. This establishes the consistency of
this estimator. The last expression also provides the asymptotic variance. The
large sample can be found as Asy.var[µ̂] = (1/n) limn→∞ var[

√
n(µ̂ − µ)]. For

the estimator above, we can use Asy.var[µ̂] = (1/n) limn→∞ nvar[µ̂ − µ] =
(1/n) limn→∞ σ2[2(n2 +3n/2+1/2)]/[1.5n(n2 +2n+1)] = 1.333σ2. Notice that
this is unambiguously larger than the variance of the sample mean, which is the
ordinary least squares estimator.

4. For the model in (5-25) and (5-26), prove that when only x∗ is measured
with error, the squared correlation between y and x is less than between y∗ and
x∗. (Note the assumption that y∗ = y). Does the same hold true if y∗ is also
measured with error?

Using the notation in the text, var[x∗] = Q∗ so, if y = βx∗ + ε,

Corr2[y, x∗] = (βQ∗)2/[(β2Q∗ + σ2
ε )Q∗] = β2Q∗/[(β2Q∗ + σ2

ε )]

In terms of the erroneously measured variables,

cov[y, x] = cov[βx∗ + ε, x∗ + µ] = βQ∗

Corr2[y, x] = (βQ∗)2/[(β2Q∗ + σ2
ε )(Q∗ + σ2

u)]
= [Q∗/(Q∗ + σ2

u)]Corr2[y, x∗]

If y∗ is also measured with error, the attenuation in the correlation is made
even worse. The numerator of the squared correlation is unchanged, but the
term (β2Q∗ + σ2

ε ) in the denominator is replaced with (β2Q∗ + σ2
ε + σ2

v) which
reduces the squared correlation yet further.

6. A multiple regression of y on a constant, x1 and x2 produces the following
results: ŷ = 4 + 0.4x1 + 0.9x2, R2 = 8/60, e′e = 520, n = 29, 29 0 0

0 50 10
0 10 80


Test the hypothesis that two slopes sum to 1.

The estimated covariance matrix for the least squares estimates is

s2(X′X)−1 =
20

3900

 3900/29 0 0
0 80 −10
0 −10 50

 =

 .69 0 0
0 .40 −.051
0 −.051 .256


where s2 = 520/(29 − 3) = 20. Then, the test may be based on t = (.4 + .9 −
1)/[.410 + .256 − 2(.051)]1/2 = .399. This is smaller than the critical value of
2.056, so we would not reject the hypothesis.
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