BOSTON COLLEGE

Department of Economics

EC771: Econometrics

Spring 2004

Prof. Baum, Ms. Uysal

SOLUTION KEY FOR PROBLEM SET 4

1. The expression for the restricted coefficient vector in (6-14) may be written in the form $\mathbf{b}_* = [\mathbf{I} - \mathbf{C}\mathbf{R}]\mathbf{b} + \mathbf{w}$, where \mathbf{w} does not involve \mathbf{b} . What is \mathbf{C} ? Show that the covariance matrix of the restricted least squares estimator is $\sigma^2(\mathbf{X}'\mathbf{X})^{-1} - \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}$ and that this matrix may be written as,

$$var[\mathbf{b}|\mathbf{X}]\{[var(\mathbf{b}|\mathbf{X})]^{-1} - \mathbf{R}'[var(\mathbf{R}\mathbf{b}|\mathbf{X})]^{-1}R\}var[\mathbf{b}|\mathbf{X}].$$

By factoring the result in (6-14), we obtain $\mathbf{b}_* = [\mathbf{I} - \mathbf{C}\mathbf{R}]\mathbf{b} + \mathbf{w}$, where $\mathbf{C} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}$ and $\mathbf{w} = \mathbf{C}\mathbf{q}$. The covariance matrix of the least squares estimator is,

$$var[\mathbf{b}_*] = [\mathbf{I} - \mathbf{C}\mathbf{R}]\sigma^2(\mathbf{X}'\mathbf{X})^{-1}[\mathbf{I} - \mathbf{C}\mathbf{R}]'$$

= $\sigma^2(\mathbf{X}'\mathbf{X})^{-1} + \sigma^2\mathbf{C}\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'\mathbf{C}' - \sigma^2\mathbf{C}\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1} - \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'\mathbf{C}'.$

By multiplying it out, we find $\mathbf{CR}(\mathbf{X}'\mathbf{X})^{-1} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1} = \mathbf{CR}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'\mathbf{C}'$ so $var[\mathbf{b}_*] = \sigma^2(\mathbf{X}'\mathbf{X})^{-1} - \sigma^2\mathbf{CR}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'\mathbf{C}' = \sigma^2(\mathbf{X}'\mathbf{X})^{-1} - \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}$. This may also be written as

$$var[\mathbf{b}_*] = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\{\mathbf{I} - \mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\}$$
$$= \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\{[\sigma^2(\mathbf{X}'\mathbf{X})^{-1}]^{-1} - \mathbf{R}'[\mathbf{R}\sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\mathbf{R}\}\sigma^2(\mathbf{X}'\mathbf{X})^{-1}$$

Since $var[\mathbf{Rb}] = \mathbf{R}\sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'$ this is the answer we seek.

2. Prove the result that the restricted least squares estimator never has a larger variance matrix than the unrestricted least squares estimator.

The variance of the restricted least squares estimator is given in the previous exercise by,

$$var[\mathbf{b}_*] = \sigma^2(\mathbf{X}'\mathbf{X})^{-1} - \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}.$$

We know that this matrix is positive definite, since it is derived in the form $var[\mathbf{b}_*] = \mathbf{B}\sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{B}'$, and $\sigma^2(\mathbf{X}'\mathbf{X})^{-1}$ is positive definite. Therefore, it remains to show only that the matrix subtracted from $var[\mathbf{b}]$ to obtain $var[\mathbf{b}_*]$ is positive definite. Consider, then, a quadratic form in $var[\mathbf{b}_*]$,

$$\mathbf{z}'var[\mathbf{b}_*]\mathbf{z} = \mathbf{z}'var[\mathbf{b}]\mathbf{z} - \sigma^2\mathbf{z}'(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\mathbf{R})(\mathbf{X}'\mathbf{X})^{-1}\mathbf{z}$$
$$= \mathbf{z}'var[\mathbf{b}]\mathbf{z} - \mathbf{w}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']\mathbf{w} \text{ where } \mathbf{w} = \sigma\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{z}.$$

It remains only to show, therefore, that the inverse matrix in brackets is positive definite. This is obvious since its inverse is positive definite. This shows that

every quadratic form in $var[\mathbf{b}_*]$ is less than a quadratic form in $var[\mathbf{b}]$ in the same vector.

3. Prove that under the hypothesis that $\mathbf{R}\beta = q$, the estimator $s = (\mathbf{y} - \mathbf{X}\mathbf{b}_*)'(\mathbf{y} - \mathbf{X}\mathbf{b}_*)/(n - K + J)$, where J is the number of restrictions, is unbiased for σ^2 .

First, use (6-19) to write $\mathbf{e}'_*\mathbf{e}_* = \mathbf{e}'\mathbf{e} + (\mathbf{R}\mathbf{b} - \mathbf{q})'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\mathbf{b} - \mathbf{q})$. Now, the result that $E[\mathbf{e}'\mathbf{e}] = (n - K)\sigma^2$ obtained in Chapter 6 must hold here, so $E[\mathbf{e}'_*\mathbf{e}_*] = (n - K)\sigma^2 + E[(\mathbf{R}\mathbf{b} - \mathbf{q})'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\mathbf{b} - \mathbf{q})]$. Now, $\mathbf{b} = \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\epsilon$, so $\mathbf{R}\mathbf{b} - \mathbf{q} = \mathbf{R}\beta - \mathbf{q} + \mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\epsilon$. But $\mathbf{R}\beta - \mathbf{q} = 0$, so under the hypothesis $\mathbf{R}\mathbf{b} - \mathbf{q} = \mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\epsilon$. Insert this in the result above to obtain

$$E[\mathbf{e}_{*}'\mathbf{e}_{*}] = (n - K)\sigma^{2} + E[\epsilon'\mathbf{X}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\epsilon]$$

The quantity in square brackets is a scalar, so it is equal to its trace. Permute $\epsilon' \mathbf{X}' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{R}'$ to obtain

$$E[\mathbf{e}_{*}'\mathbf{e}_{*}] = (n - K)\sigma^{2} + E[\operatorname{tr}\{[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\epsilon\epsilon'\mathbf{X}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']\}$$

We may carry out the expectation inside the trace and use $E[\epsilon'\epsilon] = \sigma^2 \mathbf{I}$ to obtain

$$E[\mathbf{e}'_{*}\mathbf{e}_{*}] = (n - K)\sigma^{2} + \text{tr}\{[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^{2}\mathbf{I}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']\}$$

Carry out the σ^2 outside the trace operator, and after cancellation of the products of matrices times their inverses, we obtain

$$E[\mathbf{e}'_{\star}\mathbf{e}_{\star}] = (n - K)\sigma^2 + \sigma^2 \text{tr}[\mathbf{I}_J] = (n - K + J)\sigma^2.$$

4. Show that in the multiple regression of \mathbf{y} on a constant and $\mathbf{x_1}$, and $\mathbf{x_2}$, while imposing the restriction $\beta_1 + \beta_2 = 1$ leads to the regression of $\mathbf{y} - \mathbf{x_1}$ on a constant and $\mathbf{x_2} - \mathbf{x_1}$.

For convenience, we put the constant term last instead of first in the parameter vector. The constraint is $\mathbf{Rb} - \mathbf{q} = 0$ where $\mathbf{R} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$ so $\mathbf{R_1} = \begin{bmatrix} 1 \end{bmatrix}$ and $\mathbf{R_2} = \begin{bmatrix} 1,0 \end{bmatrix}$. Then, $\beta_1 = \begin{bmatrix} 1 \end{bmatrix}^{-1} \begin{bmatrix} 1-\beta_2 \end{bmatrix} = 1-\beta_2$. Thus, $\mathbf{y} = (\mathbf{1} - \beta_2)\mathbf{x_1} + \beta_2\mathbf{x_2} + \alpha\mathbf{i} + \epsilon$ or $\mathbf{y} - \mathbf{x_1} = \beta_2(\mathbf{x_2} - \mathbf{x_1}) + \alpha\mathbf{i} + \epsilon$.