EC 327 Financial Econometrics Problem Set 3: Solutions

Prof. Baum, Mr. Yurtseven
April 3, 2008

Exercise 11.2

(i) $E(x_t) = E(e_t)(1/2)E(e_{t-1}) + (1/2)E(e_{t-2}) = 0$ for t = 1,2,...Also, because the e_t are independent, they are uncorrelated and so $Var(x_t) = Var(e_t) + (1/4)Var(e_{t-1}) + (1/4)Var(e_{t-2}) = 1 + (1/4) + (1/4) = 3/2$ because $Var(e_t) = 1$ for all t.

(ii) Because x_t has zero mean:

$$Cov(x_{t}, x_{t+1}) = E(x_{t}x_{t+1}) = E[(e_{t} - (1/2)e_{t-1} + (1/2)e_{t-2})(e_{t+1} - (1/2)e_{t} + (1/2)e_{t-1})] =$$

$$= E(e_{t}e_{t+1}) - (1/2)E(e_{t}^{2}) + (1/2)E(e_{t}e_{t-1}) - (1/2)E(e_{t-1}e_{t+1}) + (1/4)E(e_{t-1}e_{t}) - (1/4)E(e_{t-1}^{2}) +$$

$$+ (1/2)E(e_{t-2}e_{t+1}) - (1/4)E(e_{t-2}e_{t}) + (1/4)E(e_{t-2}e_{t-1}) = -(1/2)E(e_{t}^{2}) - (1/4)E(e_{t-1}^{2}) = -3/4$$

The third to last equality follows because the e_t are pairwise uncorrelated and $E(e_t^2) = 1$ for all t. Thus:

$$Corr(x_t, x_{t+1}) = -(3/4)/(3/2) = 1/2.$$

Computing $Cov(x_t, x_{t+2})$ is even easier because only one of the nine terms has expectation different from zero: $(1/2)E(e_t^2) = \frac{1}{2}$. Therefore, $Corr(x_t, x_{t+2}) = (1/2)/(3/2) = 1/3$.

- (iii) $Corr(x_t, x_{t+h}) = 0$ for h > 2 because, for h > 2, x_{t+h} depends at most on e_{t+j} for j > 0, while x_t depends on e_{t+j} , $j \le 0$.
- (iv) Yes, because terms more than two periods apart are actually uncorrelated, and so it is obvious that $Corr(x_t, x_{t+h}) = 0$ as h tends to ∞ .

Exercise 11.6

The t statistic for $H_0: \beta_1 = 1$ is $t = (1.1041)/.039 \approx 2.67$. Although we must rely on asymptotic results, we might as well use df = 120. So the 1 per cent critical value against a two-sided alternative is about 2.62, and so we reject $H_0: \beta_1 = 1$ against $H_1: \beta_1 \neq 1$ at the 1 per cent level. It is hard to know whether the estimate is practically different from one

without comparing investment strategies based on the theory ($\beta_1 = 1$) and the estimate ($\beta_1 = 1.104$). But the estimate is 10 per cent higher than the theoretical value.

- (ii) The t statistic for the null in part (i) is now $(1.0531)/.039 \approx 1.36$, so $H_0: \beta_1 = 1$ is no longer rejected against a two-sided alternative unless we are using more than a 10 per cent significance level. But the lagged spread is very significant (contrary to what the expectations hypothesis predicts): $t = .480/.109 \approx 4.40$. Based on the estimated equation, when the lagged spread is positive, the predicted holding yield on six-month T-bills is above the yield on three-month Tbills (even if we impose $\beta_1 = 1$), and so we should invest in six-month T-bills.
- (iii) This suggests unit root behavior for $hy3_t$, which generally invalidates the usual tresting procedure.
- (iv) With dummy variables for seasons

Exercise C11.2

The estimated equation is

$$ghrwage_t = -0.010 + .728goutphr_t + .458goutphr_{t-1}$$

 $n = 39, R^2 = .493.$

The t statistic on the lag is about 2.76, so the lag is very significant.

(ii) We follow the hint and write the LRP as $\theta = \beta_1 + \beta_2$, and then plug $\beta_1 = \theta - \beta_2$ into the original model

$$ghrwage_t = \beta_0 + \theta goutphr_t + \beta_2(goutphr_{t-1} - goutphrt_t) + u_t.$$

Therefore, we regress $ghrwage_t$ onto $goutphr_t$, and $(goutphr_{t-1} - goutphr_t)$ and obtain the standard error for θ . Doing this regression gives 1.186 (as we can compute directly from part (i)) and $se(\theta) = .203$. The t statistic for testing $H_0: \theta = 1$ is $(1.1861)/.203 \approx .916$, which is not significant at the usual significance levels (not even 20 per cent against a two-sided alternative).

(iii) When $goutphr_{t-2}$ is added to the regression from part (i), and we use the 38 observations now available for the regression, $\hat{\beta}_3 \approx .065$ with a t statistic of about .41. Therefore, $goutphr_{t-2}$ need not be in the model.

Exercise C11.6

The estimated accelerator model is

$$hatDeltainven_t = 2.59 + .152 \Delta GDP_t$$

$$n = 36, R^2 = .554.$$

 $\hat{\beta}_1$ is very statistically significant, with $t = \approx 6.61$.

(ii) When we add $r3_t$, we obtain

$$\Delta inven_t = 3.00 + .159 \Delta GDP_t - .895r3_t$$

 $n = 36, R^2 = .562.$

The sign of $\hat{\beta}_2$ is negative, as predicted by economic theory, and it seems practically large. However, $\hat{\beta}_2$ is not statistically different from zero. (Its t statistic is less than one in absolute value.)

If $\Delta r 3_t$ is used instead, the coefficient becomes about -.470, se = 1.540. So this is even less significant than when $r 3_t$ is in the equation. But, without more data, we cannot conclude that interest rates have a ceteris paribus effect on inventory investment.

Exercise C11.7

(i) If $E(gc_t|I_{t-1}) = E(gc_t)$ - that is, $E(gc_t|I_{t-1})$ - does not depend on gc_{t-1} , then $\beta_1 = 0$ in $gc_t = \beta_0 + \beta_1 gc_{t-1} + u_t$. So the null hypothesis is $H_0: \beta_1 = 0$ and the alternative is $H_1: \beta_1 \neq 0$. Estimating the simple regression gives

$$gc_t = .011 + .446gc_{t-1}$$

 $n = 35, R^2 = .199.$

The t statistic for β_1 is about 2.86, and so we strongly reject the PIH. The coefficient on gc_{t-1} is also practically large, showing significant autocorrelation in consumption growth.

(ii) When gy_{t-1} and $i3_{t-1}$ are added to the regression, the R-squared becomes about .288.

The F statistic for joint significance of gy_{t-1} and $i3_{t-1}$, obtained using the Stata test command, is 1.95, with p-value .16. Therefore, gy_{t-1} and $i3_{t-1}$ are not jointly significant at even the 15% level.

Exercise C11.8

(i) The estimated AR(1) model is:

$$unem_t = 1.57 + .732unem_{t-1}$$

In 2003 the unemployment rate was 5.9, so the predicted unemployment rate is ≈ 5.89 . From the 2004 Economic Report of the President, the U.S. civilian unemployment rate was

- 5.4. Therefore, the equation overpredicts the 2004 unemployment rate.
- (ii) When we add inf_{t-1} to the equation we get:

$$unem_t = 1.30 + .647unem_{t-1} + .183inf_{t-1}$$

Lagged inflation is very statistically significant, with a t statistic of about 4.7.

- (iii) To use the equation from part (ii) to predict unemployment in 2004, we also need the inflation rate for 2003. Therefore, the prediction of unemployment in 2004 is $1.30 + .647(5.9) + .184(2) \approx 5.48$. While still large, it is pretty close to the actual rate of 5.4 percent, and it is certainly better than the predication from part (i).
- (iv) The confidence interval is (5.263, 5.819).