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Exercise 14.1
First, for each t > 1, var(∆uit) = var(uit − ui,t−1) = var(uit) + var(ui,t−1) = 2σ2

u, where
we use the assumptions of no serial correlation in {ut} and constant variance. Next, we
find the covariance between ∆uit and ∆ui,t+1. Because these each have a zero mean, the
covariance is E(∆uit · ∆ui,t+1) = E[(uit − ui,t−1)(ui,t+1 − uit)] = E(uitui,t+1) − E(u2

it) −
E(ui,t−1ui,t+1)+ +E(ui,t−1uit) = −E(u2

it) = −σ2
u because of the no serial correlation as-

sumption. Because the variance is constant across t, by Problem 11.1, corr(∆uit,∆ui,t+1) =
cov(∆uit,∆ui,t+1)/var(∆uit) = −σ2

u/(2σ2
u) = −.5.

Exercise 14.4

(i) Mens athletics are still the most prominent, although womens sports, especially bas-
ketball but also gymnastics, softball, and volleyball, are very popular at some univer-
sities. Winning percentages for football and mens and womens basketball are good
possibilities, as well as indicators for whether teams won conference championships,
went to a visible bowl game (football), or did well in the NCAA basketball tour-
nament (such as making the Sweet 16). We must be sure that we use measures of
athletic success that are available prior to application deadlines. So, we would proba-
bly use football success from the previous school year; basketball success might have
to be lagged one more year.

(ii) Tuition could be important: ceteris paribus, higher tuition should mean fewer appli-
cations. Measures of university quality that change over time, such as student/faculty
ratios or faculty grant money, could be important.

(iii) An unobserved effects model is

log(appsit) = δ1d90t+δ2d95t+β1athsuccit+β2 log(tuitionit)+. . .+ai+uit, t = 1, 2, 3.

The variable attsuccit is shorthand for a measure of athletic success; we might include
several measures. If, for example, attsuccit is football winning percentage, then 100β1

is the percentage change in applications given a one percentage point increase in
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winning percentage. It is likely that ai is correlated with athletic success, tuition,
and so on, so fixed effects estimation is appropriate. Alternatively, we could first
difference to remove ai, as discussed in Chapter 13.

Exercise C 14.1

(i) See Computer Exercise 13.5(i).

(ii) See Computer Exercise 13.5(ii).

(iii) See Computer Exercise 13.5(iii).

(iv) The fixed effects estimates, reported in equation form, are

̂log(rentit) = .386y90y + .072 log(popit) + .310 log(avgincit) + .0112pctstuit,

N = 64, T = 2.

(There are N = 64 cities and T = 2 years.) We do not report an intercept because
it gets removed by the time demeaning. The coefficient on y90t is identical to the
intercept from the first difference estimation, and the slope coefficients and standard
errors are identical to first differencing. We do not report an R-squared because none
is comparable to the R-squared obtained from first differencing.

Exercise C 14.4

(i) Write the equation for times t and t1 as

log(uclmsit) = ai + cit + β1ezit + uit

log(uclmsi,t−1) = ai + ci(t− 1) + β1ezi,t−1 + ui,t−1

and subtract the second equation from the first. The ai are eliminated and citci(t1) =
ci. So, for each t ≥ 2, we have

∆ log(uclmsit) = ci + β1∆ezit + uit.

(ii) Because the differenced equation contains the fixed effect ci, we estimate it by FE.
We get β̂1 = −.251, se(β̂1) = .121. The estimate is actually larger in magnitude than
we obtain in Example 13.8 [where β̂1 = −1.82, se(β̂1) = .078], but we have not yet
included year dummies. In any case, the estimated effect of an EZ is still large and
statistically significant.

(iii) Adding the year dummies reduces the estimated EZ effect, and makes it more compa-
rable to what we obtained without cit in the model. Using FE on the first-differenced
equation gives β̂1 = −.192, se(β̂1) = .085, which is fairly similar to the estimates
without the city-specific trends.
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Exercise C 14.7

(i) If there is a deterrent effect then β1 < 0. The sign of β2 is not entirely obvious, al-
though one possibility is that a better economy means less crime in general, including
violent crime (such as drug dealing) that would lead to fewer murders. This would
imply β2 > 0.

(ii) The pooled OLS estimates using 1990 and 1993 are

m̂rdrteit = −5.28− 2.07d93t + .128execit + 2.53unemit

N = 51, T = 2, R2 = .102.

There is no evidence of a deterrent effect, as the coefficient on exec is actually positive
(though not statistically significant).

(iii) The first-differenced equation is

̂∆mrdrtei = .413− .104∆execi − .067∆unemi

N = 51, R2 = .110.

Now, there is a statistically significant deterrent effect: 10 more executions is esti-
mated to reduce the murder rate by 1.04, or one murder per 100,000 people. Is this
a large effect? Executions are relatively rare in most states, but murder rates are
relatively low on average, too. In 1993, the average murder rate was about 8.7; a
reduction of one would be nontrivial. For the (unknown) people whose lives might
be saved via a deterrent effect, it would seem important.

(iv) The heteroskedasticity-robust standard error for ∆execi is .017. Somewhat surpris-
ingly, this is well below the nonrobust standard error. If we use the robust standard
error, the statistical evidence for the deterrent effect is quite strong (t ≈ −6.1).

(v) Texas had by far the largest value of exec, 34. The next highest state was Virginia,
with 11. These are three-year totals.

(vi) Without Texas in the estimation, we get the following, with heteroskedasticity-robust
standard errors in [·]:

m̂rdrtei = .413 − .067 ∆execi− .070 ∆unemi

(0.211) (.105) (.160)
[0.200] [.079] [.146]

N = 50, R2 = .013.
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Now the estimated deterrent effect is smaller. Perhaps more importantly, the stan-
dard error on ∆execi has increased by a substantial amount. This happens because
when we drop Texas, we lose much of the variation in the key explanatory variable,
∆execi.

(vii) When we apply fixed effects using all three years of data and all states we get

m̂rdrteit = 1.73d90t + 1.70d93t − .054execit + .395unemit

N = 51, T = 3, R2 = .068.

The size of the deterrent effect is only about half as big as when 1987 is not used.
Plus, the t-statistic, about -.34, is very small. The earlier finding of a deterrent effect
is not robust to the time period used. Oddly, adding another year of data causes the
standard error on the exec coefficient to markedly increase.

Exercise C 14.10

(i) The pooled OLS estimate of β1 is about .360. If ∆concen = .10 then ∆l̂fare =
.360(.10) = .036, which means air fare is estimated to be about 3.6% higher.

(ii) The 95% CI obtained using the usual OLS standard error is .301 to .419. But
the validity of this standard error requires the composite error to have no serial
correlation, which effectively means ai is not in the equation. The fully robust 95%
CI, which allows any kind of serial correlation over the four years (and any kind of
heteroskedasticity), is .245 to .475 quite a bit wider than the usual CI. The wider
CI is appropriate, as the neglected serial correlation introduces uncertainty into our
parameter estimators.

(iii) The quadratic has a U-shape, and the turning point is about .902/[2(.103)] ≈ 4.38.
This is the value of log(dist) where the slope becomes positive. The value of dist
is exp(4.38), or about 80. The shortest distance in the data set is 95 miles, so the
turning point is outside the range of the data (a good thing in this case). What is
being captured is an increasing elasticity of fare with respect to dist as fare increases.

(iv) The RE estimate of β1 is about .209, which is quite a bit smaller than the pooled
OLS estimate. Still, the estimate implies a positive relationship between fare and
concentration. The estimate is very statistically significant, too, with t = 7.88.

(v) The FE estimate is .169, which is lower yet but not so different from the RE estimate.
The value of λ̂ in the RE estimation is about .900, and so we expect RE and FE to be
fairly similar. [Remember, RE uses a quasi-demeaning that depends on the estimate
of lamda; see equation (14.11).]
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(vi) Factors about the cities near the two airports on a route could affect demand for air
travel, such as population, education levels, types of employers, and so on. Of course,
each of these can be time-varying, although, over a short stretch of time, they might
be roughly constant. The quality of the freeway system and access to trains, along
with geographical features (is the city near a river?) would roughly be time-constant.
These could certainly be correlated with concentration.

(vii) Accounting for an unobserved effect and using fixed effects gives us a positive, statis-
tically significant relationship. I would go with the FE estimate, .169, which allows
for concentration to be correlated with all time-constant features that affect costs
and demand.
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