
EC771: Econometrics, Spring 2012

Greene, Econometric Analysis (7th ed, 2012)

App. E1-E4:

Simulation Based Estimation and Inference

We often want to evaluate the properties of es-

timators, or compare a proposed estimator to

another, in a context where analytical deriva-

tion of those properties is not feasible. In that

case, econometricians resort to Monte Carlo

studies: simulation methods making use of

(pseudo-)random draws from an error distri-

bution and multiple replications over a set of

known parameters. This methodology is par-

ticularly relevant in situations where the only

analytical findings involve asymptotic, large–

sample results. Applied researchers need to

understand how a particular estimation strat-

egy will perform in small samples: for instance,

when working with macro data on the national

aggregates, we have no more than 150–200

quarterly observations available for many se-

ries. Where only annual data are available, the

problem becomes even more striking. In that

case, we require an understanding of the per-

formance of estimation techniques, test statis-

tics, etc. in a very small sample. Monte Carlo

studies, although they do not generalize to

cases beyond those performed in the experi-

ment, may be useful in these situations. They

also are useful in modelling quantities for which

no analytical results have yet been derived: for

instance, the critical values for many unit-root

test statistics have been derived by simulation

experiments, in the absence of closed-form ex-

pressions for the sampling distributions of the

statistics.

Most econometric software provide some facil-

ities for Monte Carlo experiments. Although

one can write the code to generate an ex-

periment in any programming language, it is

most useful to do so in a context where one

may readily save the results of each replica-

tion for further analysis. The quality of the

pseudo-random number generators available is

also an important concern. Recent studies

published in the Journal of Applied Economet-

rics have compared many software packages’

performance on a standard set of benchmarks

for randomness. Although most packages meet

these criteria, all but the most recent versions

of GAUSS fail miserably—casting considerable

doubt on those many published studies mak-

ing use of GAUSS software. State-of-the-art

pseudo-random number generators do exist,

and you should use a package that implements

them. You will also want a package with a

full set of statistical functions, permitting ran-

dom draws to be readily made from a specified

distribution-not merely normal or t, but from a

number of additional distributions, depending

upon the experiment.

Stata version 11 provides a useful environment

for Monte Carlo simulations. Setting up a sim-

ulation requires that you write a Stata pro-

gram: not merely a “do-file” containing a set

of Stata commands, but a sequence of com-

mands beginning with the program define state-

ment. This program sets up the simulation

experiment and specifies what is to be done

in one replication; you then invoke it with the

simulate prefix to execute a specified number

of replications.

These notes on Monte Carlo siimulation are

adapted from Cameron and Trivedi, Microe-

conomics Using Stata, 2009.

We first consider a very simple program in

which we demonstrate the central limit their

result that sample mean is approximately nor-

mally distributed as N → ∞. We consider a

random variable that has the uniform distribu-

tion and a sample size of 30. The simulate

command runs a specified command a num-

ber of times, where the command will often

be a user-written program. A number of ex-

pressions are returned by the command, and

saved in a new Stata dataset by simulate. As

an example:
// Program to draw sample of size 30 from uniform
// and return sample mean
program onesample, rclass

version 11
drop _all
quietly set obs 30
generate x = runiform()
summarize x
return scalar meanforonesample = r(mean)

end

We can run the program with simulate, return-

ing the one result as xbar:

.

. * Program to draw 1 sample of size 30 from uniform ///
> and return sample mean
. program onesample, rclass
1. version 11
2. drop _all
3. quietly set obs 30
4. generate x = runiform()
5. summarize x
6. return scalar meanforonesample = r(mean)
7. end

.

. * Run program onesample once as a check

. set seed 10101

. onesample
Variable Obs Mean Std. Dev. Min Max

x 30 .5459987 .2803788 .0524637 .9983786
. return list
scalars:

r(meanforonesample) = .5459987225631873
.
. * Run program onesample 10,000 times to get 10,000 sample means
. simulate xbar = r(meanforonesample), seed(10101) ///
> reps(10000) nodots: onesample

command: onesample
xbar: r(meanforonesample)

.

. * Summarize the 10,000 sample means and draw histogram

. summarize xbar
Variable Obs Mean Std. Dev. Min Max

xbar 10000 .4995835 .0533809 .3008736 .6990562
. histogram xbar, normal xtitle("xbar from many samples")
(bin=40, start=.30087364, width=.00995456)
.
. quietly graph export mus04fig1clt2.pdf, replace
.

The set seed ensures that the same sequence
of pseudo-random numbers will be used ev-
ery time the simulation is run. This is useful
when debugging the program to ensure that it
is coded properly. The results of simulate can
then be graphed:

0
2

4
6

8
De

ns
ity

.3 .4 .5 .6 .7
xbar from many samples

As a more interesting example of Monte Carlo

simulation, let us consider simulation meth-

ods to investigate the finite-sample properties

of the OLS estimator with random regressors

and skewed errors. If errors are i.i.d., skewness

will have no effect on the large-sample prop-

erties of the OLS estimator. But with skewed

errors, we will need a larger sample size for

the asymptotic distribution to approximate the

finite-sample distribution of the OLS estimator

than when errors are normal.

We consider the DGP

y = β1 + β2x+ u, u ∼ χ2(1)− 1, x ∼ χ2(1)

where β1 = 1, β2 = 2, N = 150. The er-

ror is independent of x, ensuring consistency

of OLS, with a mean of zero, variance of 2,

skewness of
√

8 and kurtosis of 15, compared

to the Normal error, with a skewness of 0 and

kurtosis of 3.

For each simulation, we obtain parameter es-
timates, standard errors, t-values for the test
that β2 = 2 and the outcome of a two-tailed
test of that hypothesis at the 0.05 level.

We store the sample size and the number of
simulations in global macros, as we often may
want to change them.

Our simulation program becomes
* Program for finite-sample properties of OLS
program chi2data, rclass

version 11
drop _all
set obs $numobs
generate double x = rchi2(1)

// demeaned chi^2 error
generate y = 1 + 2*x + rchi2(1)-1
regress y x
return scalar b2 =_b[x]
return scalar se2 = _se[x]
return scalar t2 = (_b[x]-2)/_se[x]
return scalar r2 = abs(return(t2))> ///

invttail($numobs-2,.025)
return scalar p2 = 2*ttail($numobs-2, ///

abs(return(t2)))
end

We can now run this program with simulate,
producing a dataset containing the five scalars
listed above for each simulation:

.

. * Define global macros for sample size and number of simulations

. global numobs 150 // sample size N

. global numsims "1000" // number of simulations

.

. * Program for finite-sample properties of OLS

. program chi2data, rclass
1. version 11
2. drop _all
3. set obs $numobs
4. generate double x = rchi2(1)
5. generate y = 1 + 2*x + rchi2(1)-1 // demeaned chi^2 error
6. regress y x
7. return scalar b2 =_b[x]
8. return scalar se2 = _se[x]
9. return scalar t2 = (_b[x]-2)/_se[x]
10. return scalar r2 = abs(return(t2))>invttail($numobs-2,.025)
11. return scalar p2 = 2*ttail($numobs-2,abs(return(t2)))
12. end
.
. set seed 10101
. * Simulation for finite-sample properties of OLS
. simulate b2f=r(b2) se2f=r(se2) t2f=r(t2) ///
> reject2f=r(r2) p2f=r(p2), reps($numsims) ///
> saving(chi2datares, replace) nolegend nodots: chi2data
.
. summarize b2f se2f reject2f

Variable Obs Mean Std. Dev. Min Max

b2f 1000 2.000506 .08427 1.719513 2.40565
se2f 1000 .0839776 .0172588 .0415919 .145264

reject2f 1000 .046 .2095899 0 1
. * Summarize results
. mean b2f se2f reject2f
Mean estimation Number of obs = 1000

Mean Std. Err. [95% Conf. Interval]

b2f 2.000506 .0026649 1.995277 2.005735
se2f .0839776 .0005458 .0829066 .0850486

reject2f .046 .0066278 .032994 .059006

.

. // histogram t2f

. histogram p2f
(bin=29, start=.0000108, width=.0344747)

. graph export mus04p2test.pdf, replace
(file /Users/baum/Documents/Courses 2009-2010/EC771 S2010/mus04p2test.pdf writt
> en in PDF format)
.
. * t-statistic distribution
. kdensity t2f, n(1000) gen(t2_x t2_d) nograph
. generate double t2_d2 = tden(148, t2_x)
. graph twoway (line t2_d t2_x) (line t2_d2 t2_x)
.
. graph export mus04ttest.pdf, replace
(file /Users/baum/Documents/Courses 2009-2010/EC771 S2010/mus04ttest.pdf writte
> n in PDF format)

We can conclude that our estimator of β2 is un-

biased, as the quite narrow 95% confidence in-

terval from 1000 simulations contains the true

value of 2.0. We can consider how closely the

distribution of t-statistics from the program

approximate the asymptotic distribution of a

t148:

0
.1

.2
.3

.4

-4 -2 0 2 4
r(t2)

density: r(t2) t2_d2

To evaluate the size of the test (the probabil-

ity of rejecting a true null hypothesis), we can

examine the rejection rate, r2 above. The es-

timated rejection rate from 1000 simulations

is 0.046, with a 95% confidence interval of

(0.033, 0.059): wide, but containing 0.05. With

10,000 replications, the estimated rejection rate

is 0.049 with a confidence interval of (0.044,
0.052). The last item computed is the p-value
of the test. If the t-distribution is the correct
distribution, then p2 should be uniformly dis-
tributed on (0,1).

0
.5

1
1.
5

De
ns
ity

0 .2 .4 .6 .8 1
r(p2)

We can also evaluate the power of the test: its

ability to reject a false null hypothesis. We es-

timate the rejection rate for the test against a

false null hypothesis. The larger the difference

between the tested value and the true value,

the greater the power and the rejection rate.

This modified version of the chi2data program

estimates the power of a test against the false

null hypothesis β2 = 2.1.

. * Program for finite-sample properties of OLS: power

. program chi2datab, rclass
1. version 11
2. drop _all
3. set obs $numobs
4. generate double x = rchi2(1)
5. generate y = 1 + 2*x + rchi2(1)-1 // demeaned chi^2 error
6. regress y x
7. return scalar b2 =_b[x]
8. return scalar se2 =_se[x]
9. test x=2.1
10. return scalar r2 = (r(p)<.05)
11. end
.
. * Power simulation for finite-sample properties of OLS
. simulate b2f=r(b2) se2f=r(se2) reject2f=r(r2), ///
> reps($numsims) saving(chi2databres, replace) ///
> nolegend nodots: chi2datab
.
. mean b2f se2f reject2f
Mean estimation Number of obs = 1000

Mean Std. Err. [95% Conf. Interval]

b2f 2.001852 .0026976 1.996559 2.007146
se2f .0836442 .0005591 .0825471 .0847414

reject2f .241 .0135315 .2144465 .2675535

.

In this case, the power is not high, with a mean

of 0.241. Using a larger sample size or increas-

ing the distance between the true and false val-

ues would increase the power of the test (see

771mcsim2.html).

Simulating a spurious regression

We can demonstrate Granger’s concept of a

spurious regression with a simulation. We cre-

ate two independent random walks, regress one

on the other, and record the coefficient, stan-

dard error, t-ratio and its tail probability in the

returns from the program:
* spurious regression: independent random walks
prog irwd, rclass
version 11
drop _all
set obs $N
local drift 2
g double x = 0 in 1
g double y = 0 in 1
replace x = x[_n - 1] + $trcoef * `drift´ ///

+ rnormal() in 2/l

replace y = y[_n - 1] + $trcoef * `drift´ ///
+ rnormal() in 2/l

reg y x
return scalar b = _b[x]
return scalar se = _se[x]
return scalar t = _b[x]/_se[x]
return scalar r2 = ///
abs(return(t)) > invttail($N - 2, 0.025)
end

We use a global, trcoef, to allow the program

to be used for both pure random walks and

random walks with drift.

. capt prog drop _all

. * spurious regression: independent random walks

. prog irwd, rclass
1. version 11
2. drop _all
3. set obs $N
4. local drift 2
5. g double x = 0 in 1
6. g double y = 0 in 1
7. replace x = x[_n - 1] + $trcoef * `drift´ + rnormal() ///

> in 2/l
8. replace y = y[_n - 1] + $trcoef * `drift´ + rnormal() ///

> in 2/l
9. reg y x
10. return scalar b = _b[x]
11. return scalar se = _se[x]
12. return scalar t = _b[x]/_se[x]
13. return scalar r2 = abs(return(t)) > invttail($N - 2, 0.025)
14. end
.
. global N 100
. global nsim 10000
. set seed 1010101
.
. // consider IRWs with no drift
. global trcoef 0
. simulate birwd=r(b) sirwd=r(se) tirwd=r(t) rejirwd=r(r2), ///
> reps($nsim) nodots saving(irw0, replace): irwd

command: irwd
birwd: r(b)
sirwd: r(se)
tirwd: r(t)

rejirwd: r(r2)
. su

Variable Obs Mean Std. Dev. Min Max

birwd 10000 .0003267 .6336891 -3.682241 3.301136
sirwd 10000 .100645 .0649186 .0116683 .6898782
tirwd 10000 -.0225758 7.390102 -34.39042 35.8372

rejirwd 10000 .7572 .4287966 0 1
. l in 1/20

birwd sirwd tirwd rejirwd

1. .4797036 .0366694 13.08186 1

2. -.3215804 .126415 -2.543845 1
3. .5518465 .0509739 10.82607 1
4. -.9704604 .0774199 -12.53502 1
5. .9274789 .0991612 9.353246 1

6. -.7858061 .0432042 -18.18819 1
7. -.5938631 .0538909 -11.01972 1
8. .6821204 .1127544 6.049611 1
9. .5334677 .0528825 10.0878 1
10. .0958101 .0618102 1.550069 0

11. -.3524039 .0844574 -4.172564 1
12. .251032 .1512837 1.659346 0
13. .8574678 .1752042 4.894105 1
14. -.3218689 .0791635 -4.065877 1
15. .2293266 .0713637 3.21349 1

16. -.3609286 .1122861 -3.214365 1
17. -.5108765 .1038393 -4.919877 1
18. -.0265709 .0448767 -.5920879 0
19. -1.321453 .0955171 -13.83473 1
20. -1.061208 .0308577 -34.39042 1

.

. // consider IRWs with drift

. global trcoef 1

. simulate birwd=r(b) sirwd=r(se) tirwd=r(t) rejirwd=r(r2), ///
> reps($nsim) nodots saving(irw1, replace): irwd

command: irwd
birwd: r(b)
sirwd: r(se)
tirwd: r(t)

rejirwd: r(r2)
. su

Variable Obs Mean Std. Dev. Min Max

birwd 10000 1.001838 .0777357 .7386733 1.313212
sirwd 10000 .0061999 .0019246 .0020809 .018849
tirwd 10000 175.4512 49.80395 60.38373 473.0911

rejirwd 10000 1 0 1 1
. l in 1/20

birwd sirwd tirwd rejirwd

1. 1.002217 .0063258 158.4322 1
2. 1.103606 .0050269 219.5395 1
3. 1.083013 .0069692 155.399 1
4. .9581092 .0051847 184.7967 1

5. 1.085191 .0053837 201.5711 1

6. .9154854 .0059151 154.7701 1
7. 1.065713 .008413 126.6743 1
8. 1.042774 .00848 122.9693 1
9. 1.104847 .0062487 176.8136 1
10. .9713724 .0048474 200.3911 1

11. .8808553 .0062393 141.1783 1
12. 1.08984 .0076755 141.9889 1
13. 1.003118 .0056677 176.9884 1
14. .9593877 .003884 247.0105 1
15. .9122529 .0037094 245.9296 1

16. .9130253 .0113659 80.33036 1
17. .9648722 .0040714 236.988 1
18. .9089801 .0085264 106.6083 1
19. 1.079193 .0054492 198.045 1
20. .9045779 .0067149 134.7114 1

.

For pure random walks with N = 100, the true

null hypothesis that ∂y/∂x = 0 is rejected in

over 75% of 10,000 simulations. For random

walks with drift, the null is rejected in every

simulation.

Bootstrapping

A closely related topic to Monte Carlo simu-

lation is that of the technique of bootstrap-

ping, developed by Efron (1979). A key dif-

ference: whereas Monte Carlo simulation is

designed to utilize purely random draws from

a specified distribution (which with sufficient

sample size will follow that theoretical distri-

bution) bootstrapping is used to obtain a de-

scription of the sampling properties of empiri-

cal estimators, using the empirical distribution

of sample data. If we derive an estimate θobs

from a sample X = (x1, x2, ..., xN) , we can de-

rive a bootstrap estimate of its precision by

generating a sequence of bootstrap estimators(
θ̂1, θ̂2, ..., θ̂B

)
, with each estimator generated

from an m−observation sample from X, with

replacement. The size of the bootstrap sample

m may be larger, smaller or equal to N. The

estimated asymptotic variance of θ may then

be computed from this sequence of bootstrap

estimates and the original estimator, θobs (for

observed):

Est.Asy.V ar[θ] = B−1
B∑
b=1

[
θ̂b − θobs

] [
θ̂b − θobs

]′
where the formula has been written to allow θ̂

to be a vector of estimated parameters. The

square roots of this variance-covariance matrix

are known as the bootstrap standard errors of

θ̂. They will often prove useful when doubt ex-

ists regarding the appropriateness of the con-

ventional estimates of the precision matrix, as

well as in cases where no analytical expression

for that matrix is available, e.g., in the con-

text of a highly nonlinear estimator for which

the numerical Hessian may not be computed.

After bootstrapping, we have the mean of the

estimated statistic—e.g., θ̂, which may be com-

pared with the point estimate of the statistic

computed from the original sample, θobs (for

observed). The difference (θ̂ − θobs) is an esti-

mate of the bias of the statistic; in the pres-

ence of a biased point estimate, this bias may

be nontrivial. However we cannot use that

difference to construct an unbiased estimate,

since the bootstrap estimate contains an inde-

terminate amount of random error.

Why do we bootstrap quantities for which asymp-

totic measures of precision exist? All measures

of precision come from the statistic’s sampling

distribution, which is in turn determined by the

distribution of the population and the formula

used to estimate the statistic from a sample of

size N . In some cases, analytical estimates of

the sampling distribution are difficult or infea-

sible to compute, such as those relating to the

means from non-normal populations. Boot-

strapping estimates of precision rely on the no-

tion that the observed distribution in the sam-

ple is a good approximation to the population

distribution.

The bootstrap command specifies a single es-

timation command, the results to be retained

from that command, and the number of boot-

strap samples (B) to be drawn. You may op-

tionally specify the size of the bootstrap sam-

ples (m); if you do not, it defaults to N (the

currently defined sample size). This is very

useful, since it makes estimating bootstrap stan-

dard errors no more difficult than performing

the estimation itself. If you are trying to con-

struct a bootstrap distribution for a set of statis-

tics which are forthcoming from a single Stata

command, this may be done without further

programming.

The bootstrap command is not limited to gen-

erating bootstrap estimates from a single Stata

command. To compute a bootstrap distri-

bution for more complicated quantities, you

must write a Stata program (just as with the

simulate command) that specifies the estima-

tion to be performed in the bootstrap sample.

The confidence interval is based on the as-

sumption of approximate normality of the sam-

pling (and bootstrap) distribution, and will be

reasonable if that assumption is so. One may

then execute bootstrap, specifying the name

of your program, and the number of boot-

strap samples to be drawn. For instance, if

we wanted to generate a bootstrap estimate

of the ratio of two means, we could not do so

with a single Stata command. We could do so

by writing a program that returned that ratio:
capture program drop muratio
program define muratio, rclass

version 11
syntax varlist(min=2 max=2)
tempname ymu
summarize `1´, meanonly
scalar `ymu´ = r(mean)
summarize `2´, meanonly
return scalar ratio = `ymu´/r(mean)

end

We can now execute this program to compute

the ratio of the average price of a domestic

car vs. the average price of a foreign car, and

generate a bootstrap confidence interval for

the ratio.

.

. capture program drop muratio

. program define muratio, rclass
1. version 11
2. syntax varlist(min=2 max=2)
3. tempname ymu
4. summarize `1´, meanonly
5. scalar `ymu´ = r(mean)
6. summarize `2´, meanonly
7. return scalar ratio = `ymu´/r(mean)
8. end

.

. set seed 10101

. local reps 1000

. webuse auto, clear
(1978 Automobile Data)
. tabstat price, by(foreign) stat(n mean semean)
Summary for variables: price

by categories of: foreign (Car type)
foreign N mean se(mean)

Domestic 52 6072.423 429.4911
Foreign 22 6384.682 558.9942

Total 74 6165.257 342.8719

. g p_dom = price if foreign==0
(22 missing values generated)
. g p_for = price if foreign==1
(52 missing values generated)
. muratio p_dom p_for
. return list
scalars:

r(ratio) = .9510925132761489
.
. bootstrap r(ratio), reps(`reps´) nodots ///
> saving(771bs2_9,replace): muratio p_dom p_for
Warning: Because muratio is not an estimation command or does not set

e(sample), bootstrap has no way to determine which observations are
used in calculating the statistics and so assumes that all
observations are used. This means that no observations will be
excluded from the resampling because of missing values or other
reasons.
If the assumption is not true, press Break, save the data, and drop

the observations that are to be excluded. Be sure that the dataset
in memory contains only the relevant data.

Bootstrap results Number of obs = 74
Replications = 1000

command: muratio p_dom p_for
_bs_1: r(ratio)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

_bs_1 .9510925 .1072875 8.86 0.000 .7408128 1.161372

. use 771bs2_9,clear
(bootstrap: muratio)
. histogram _bs_1, normal name(g771bs2_r, replace) xsize(9) ysize(7) ///
> ti("Bootstrap distribution of ratio of means")
(bin=29, start=.68787545, width=.02437044)
.
. qui graph export 771bstrap1.pdf, replace

0
1

2
3

4
D

en
si

ty

.6 .8 1 1.2 1.4
r(ratio)

Bootstrap distribution of ratio of means

Note in the histogram that the empirical dis-

tribution is quite visibly skewed.

Combining simulation and bootstrapping

These commands are very flexible; one may

combine both techniques in a single Stata pro-

gram. The example in Stata’s Reference Man-

ual article on simulate illustrates an applica-

tion where a random sample is generated, and

bootstrap is used to generate a dataset of me-

dians calculated by bootstrap sampling from

the random sample. This procedure is called

within a simulate program which calculates the

standard deviation of these bootstrap standard

errors, repeated over a number of Monte Carlo

draws. The simulate program thus generates

a point and interval estimate of the median of

these simulated data, where the precision of

the median estimates is derived from a boot-

strapped standard error.

