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Chapters 14, 13:

Systems of equations and panel data esti-

mators

The seemingly unrelated regression estimator

We often have a situation in which we want to

estimate a similar specification for a number of

different units: for instance, the estimation of

a production function for each industry. If the

equation to be estimated for a given unit meets

the conditions of being a proper OLS regres-

sion, we may of course estimate each equa-

tion independently. However, we may want

to estimate the equations jointly: first, to al-

low tests of cross–equation restrictions to be



implemented, and second, to gain efficiency,

since we might expect the error terms across

equations to be contemporaneously correlated.

Such equations are often called seemingly un-

related regressions, and Zellner (1962) pro-

posed an estimator for this problem: the SURE.

We write the SUR model as

yi = Xiβi + εi, i = 1, . . . ,M

where yi is the ith equation’s dependent vari-

able, on which we have T observations. We

must stress that this need not be time–series

data, although we often utilize the SUR model

in that context. The error process ε = [ε′1, ε
′
2, . . . , ε

′
M ]′

is assumed to have an expectation of zero and

a covariance matrix of Ω. We will only con-

sider the case where we have T observations

per equation, although it is feasible to esti-

mate the model with an unbalanced sample.

Note also that although each Xi matrix will



have T rows, it may have Ki columns; each
equation may have a differing set of regressors,
and apart from the constant, there may be no
variables in common across the Xi. We as-
sume that E[εitεjs] = σij, t = s, otherwise zero.
This implies that we are allowing for the error
terms in different equations to be contempora-
neously correlated, but assuming that they are
not correlated at other points (including within
a unit: they are assumed independent). Thus
for any two error vectors, E[εiε

′
j] = σijIT , and

Ω = Σ⊗ IT .

The efficient estimator for this problem is gen-
eralized least squares, in which we may write y

as the stacked set of yi vectors, and X as the
block–diagonal matrix of Xi. Since the GLS
estimator is

β̂ = [X’Ω−1X]−1[X’Ω−1y]

and

Ω−1 = Σ−1 ⊗ I



We can write the GLS estimator as

β̂ = [X’(Σ−1 ⊗ I)X]−1[X’(Σ−1 ⊗ I)y]

which if expanded demonstrates that each block

of the X ′iXj matrix is weighted by the scalar

σ−1
ij . The asymptotic covariance matrix of β̂ is

the first term of this expression.

When will this estimator provide a gain in effi-

ciency? First, if the σij, i 6= j are actually zero,

there is no gain. Second, if the Xi matrices are

identical across equations—not merely having

the same variable names, but containing the

same numerical values—then GLS is identical

to OLS, and there is no gain. Beyond these

cases, the gain in efficiency depends on the

magnitude of the cross–equation correlations

of the residuals; the higher are those correla-

tions, the greater the gain. Furthermore, if

the Xi matrices’ columns are highly correlated

across equations, the gains will be smaller.



The second case above—the case of identi-

cal regressors—arises quite often in economic

theory and financial theory. For instance, the

demand for each good should depend on the

set of prices and income, or the share of as-

sets held in a given class should depend on

the returns to each asset and on total wealth.

In this case, there is no reason to use any-

thing other than OLS in terms of efficiency.

However, SUR estimation is often employed in

this case, since it allows for tests of cross–

equation constraints, or estimation with those

constraints in place.

The feasible SUR estimator requires a consis-

tent estimate of σij, which may be generated

from OLS residuals via

sij =
e′iej
T

assuming that each unit’s equation is estimated

from T observations. One could use a degrees



of freedom correction in the denominator, but

relying on asymptotic properties, it is not nec-

essary. These estimates are then used to per-

form the “Zellner step”; the algebra of parti-

tioned matrices will show that the Kronecker

products may be rewritten as products of the

blocks in the expression for β̂. The estimator

may be iterated: that is, the GLS estimates

will produce a new set of residuals, which may

be used in a second Zellner step, and so on.

Iteration will make the GLS estimates equiv-

alent to maximum likelihood estimates of the

system.

Note that the application of SUR requires that

the T observations per unit must exceed M ,

the number of units, in order to render Σ in-

vertible. If this constraint is not satisfied, SUR

cannot be employed, so that SUR is not an ap-

propriate estimation technique for the “small

T, large N” data structure that is often em-

ployed in, e.g., firm–level studies.



How might we test whether application of SUR

has made a significant difference? A test for

the diagonality of Σ was proposed by Breusch

and Pagan (1980) (not to be confused with

their test for heteroskedasticity): a Lagrange

multiplier statistic which sums the squared cor-

relations between residual vectors i and j, with

a null hypothesis of diagonality (zero contem-

poraneous covariance between the errors of dif-

ferent equations).

The SUR estimator is available in Stata from

the sureg command. An enhanced version that

allows unbalanced panels is available from SSC

as suregub.

One special case should be noted: if we ap-

ply systems estimation to a system with (nu-

merically) identical regressors, such as a set

of cost share or portfolio share equations, the



SUR estimator will fail because the error co-

variance matrix is singular. This holds not only

for the unobservable errors, but also for the

least squares residuals. A bit of algebra will

show that if there are adding–up constraints

across equations: for instance, if the set of yi
variables are a complete set of portfolio shares

or demand shares—then the OLS residuals will

sum to zero as well across equations, and their

empirical covariance matrix will be singular by

construction. We may still want to utilise sys-

tems estimation in order to impose the cross–

equation constraints arising from economic the-

ory. In this case, the appropriate estimation

strategy is to drop one of the equations and

estimate the system of M − 1 equations with

SUR. The parameters of the M th equation can

be derived from those estimates. The feasi-

ble GLS estimates will be sensitive to which

equation is dropped, but iterated SUR will re-

store the invariance property of the maximum

likelihood estimator of the problem.



SUR as a panel data estimator

The SUR estimator may be applied to panel,

or longitudinal data, where we have T obser-

vations on each of M units. It is an attractive

estimator, when it may be applied, in this con-

text, since it automatically allows each unit

to have its own coefficient vector—indeed, its

own set of regressors, which may even differ in

size from those of another unit—and its own

error variance. Standard F–tests may be used

to compare the unrestricted SUR results with

those that may be generated in the presence

of linear constraints, such as cross–equation

restrictions. However, the estimator is not ap-

plicable to the “small T, large N” context in

which we have a large number of units and a

relatively short time series available for each

unit. If the data are set up for SUR estima-

tion, e.g. with each yi as a separate variable,

SUR may be applied directly. If they are not



in this “wide” format but rather in the “long”

format, where a single y variable stacks each

unit’s yi, then the Stata command reshape may

be used to transform the data into the “wide”

format necessary for SUR.

Pooled OLS

Estimators applicable to pooled cross–section

/ time–series data, or the special case of panel

(longitudinal) data, are variations on the gen-

eral model that might be applied to that sort

of data structure:

yit =
K∑
k=1

Xkitβkit + εit, i = 1 . . . n, t = 1 . . . T.

A general and quite infeasible model, as it spec-

ifies K × n × T regression coefficients to be

estimated from only n × T observations (as-

suming that the XC/TS or panel data set is

“balanced”. Any feasible estimator must re-

strict the number of unknown coefficients to



far less than n × T . One solution is posed by

SUR, in which each cross–sectional unit has

its own β vector; that removes the time–series

dimension from the coefficient vector, leaving

K × n coefficients. For SUR to be estimable,

as we have seen, n < T . Another feasible esti-

mator is “pooled OLS”, in which the XC/TS

nature of the data is merely ignored, and OLS

applied to the data set; only K coefficients

need be estimated. What might be wrong with

pooled OLS? If cross–sectional datasets com-

monly contain heteroskedasticity, and time–

series datasets may exhibit autocorrelation, it

should be clear that a XC/TS dataset may

contain both; and even its diagnosis is a non-

trivial task in this setting, let alone its correc-

tion. Given the XC/TS nature of the data, ro-

bust estimators of the covariance matrix must

be aware of the time-series dimension.



Fixed effects models

Let us rewrite the problem above to separate

out the individual effect as

yit = x′itβ + z′iα+ εit.

In this context, the x′ does not contain a con-

stant term; rather, the heterogeneity or indi-

vidual effect is captured by z′, which contains a

constant term and possibly a number of other

individual–specific factors. If z′ contains only

a constant term, then pooled OLS is a consis-

tent and efficient estimator of [β α]. However,

it will often be the case that there are ad-

ditional factors specific to the individual unit

that must be taken into account; removing

those variables from z′ will cause the equation

to be misspecified.

One of the most commonly applied estimators

in this context is the “fixed effects” model,



which relaxes the assumption that the regres-

sion function is constant over time and space

in a very modest way. A one–way fixed ef-

fects model permits each cross–sectional unit

to have its own constant term. Unlike OLS,

the slope estimates are constrained across units,

as is the σ2. This estimator is often termed the

LSDV (least–squares dummy variable) model,

since it is equivalent to including n dummy vari-

ables (or n − 1, and retaining a conventional

constant term) in the OLS regression. That

model might be infeasible in many instances,

where n could be in the thousands; an algebraic

transformation may be applied to the data to

work around that constraint of a very large

regressor matrix. The (one–way) fixed effect

model may then be written as

yit = x′itβ + αi + εit.

Alternatively, we might consider that the indi-

vidual effect may be assumed to be indepen-



dent of x′i, and viewed as a draw from a distri-

bution:

yit = x′itβ + [ui + εit]

where the bracketed expression is a composite

error term, with the ui being a single draw per

unit. This model could be consistently esti-

mated by OLS, but that would be inefficient

in not taking the nature of the composite dis-

turbance process into account. To do so ap-

propriately, we will develop the random effects

estimator. This estimator will be efficient un-

der the assumption that X ⊥ u, and inconsis-

tent otherwise; thus a Hausman test may be

used to compare the two alternatives of the

one–way fixed effects estimator, which esti-

mates a separate coefficient (constant term)

for each unit, and the random effects estima-

tor. The former will be consistent irregardless

of the joint distribution of [X u], whereas the



latter will only be consistent if they are inde-

pendently distributed.

Let us first consider the one–way fixed effects

model, and its extensions. This model may be

written in matrix form as

y = Xβ +Dα+ ε

where D is a nT ×n matrix of dummy variables

di. The model has K+n parameters (recalling

that the β coefficients are all slopes) and when

this number is too large to permit estimation,

we rewrite the least squares solution as

b = (X ′MDX)−1(X ′MDy)

where

MD = I −D(D′D)−1D′

is the idempotent matrix which is block–diagonal

in M0 = IT − T−1ιι′. Premultiplying any data

vector by M0 performs the demeaning trans-

formation: if we have a T–vector zi, M0zi =



zi − z̄iι. The regression above estimates the

slopes by the projection of demeaned y on de-

meaned X, without a constant term. The es-

timates ai may be recovered from ai = ȳi −
b′x̄i, since for each unit, the regression surface

passes through that unit’s multivariate point of

means. The asymptotic covariance matrix of

b is s2[X ′MDX]−1, with s2 based on the least

squares residuals, but taking the proper de-

grees of freedom into account: nT − n−K.

When will this model have explanatory power?

If and only if the variation of the individual’s

y above or below the individual’s mean is sig-

nificantly correlated with the variation of the

individual’s x values above or below the individ-

ual’s vector of mean x values. For that reason,

it is termed the “within estimator”, since it de-

pends on the variation within the unit. It does

not matter if some individuals have, e.g., very

high y values and very high X values, since it



is only the within variation that will show up
as explanatory power. It follows that a vari-
able must have variation within each individual
to be usable in this format: e.g. in a dataset
containing individuals’ values, a variable such
as gender or race cannot be used in a fixed–
effects model, since it will have zero within
variation for each individual, and its demeaned
form will be a vector of zeros.

Since the model can be considered a regression
containing a number of slopes and a complete
set of dummy variables, an F–test may be used
to examine the joint significance of those dum-
mies: essentially, to test whether the αi may
be replaced by a single α coefficient, which rep-
resents n−1 restrictions on the model. This F
test may be performed as a subset test, com-
paring the LSDV model with the pooled OLS
model, and is routinely provided by software es-
timating the fixed effects model (as described
below).



For data that have been tsset: that is, for

which the individual ID variable and time–series

calendar variable have been identified to Stata,

as tsset panelid timevar—the one–way fixed

effects model may be estimated via the com-

mand xtreg yvar varlist, fe where fe indicates

that the (one–way) fixed–effects model is to be

estimated. Unlike the SUR estimator, which

generally requires a “balanced panel” (T ob-

servations on each of n units), the fixed effects

estimator has no such restrictions; as long as

there are at least two observations per unit,

it may be applied. Since the individual fixed

effect is in essence estimated from only those

observations, the precision of that effect will

depend on ni. The command will print an

estimate of the correlation between the unit–

specific errors and the predicted values for the

unit, which will figure in our later consideration

of the random–effects estimator.



Another estimator that may be defined for this

model is the “between estimator”, in which

the group means of y are regressed on the

group means of X, in a regression of n ob-

servations. This estimator ignores all of the

individual–specific variation in y and X that

is considered by the within estimator, in ef-

fect replacing each observation for an individ-

ual by their mean behavior. This estimator

has primarily pedagogical appeal, but may be

readily applied to XC/TS data via xtreg yvar

varlist, be as long as n > K. Obviously any

variable that is constant over individuals (such

as a time trend) cannot be included in the be-

tween estimator, since its average will not dif-

fer by individual.

One may show that the pooled OLS estimator

is a matrix weighted average of the within and

between estimators, with the weights defined

by the relative precision of the two estimators.



One may ask, in a XC/TS context: where are

the interesting sources of variation? In individ-

uals’ variation around their means, or in those

means themselves? The within estimator takes

account of (only) the former; the between es-

timator, (only) the latter.

The one–way fixed effects estimator may also

be applied for time–specific effects rather than

individual–specific effects. In Stata, this may

readily be done by reversing the roles of the in-

dividual and time variables defined with tsset.

Alternatively, one may apply a two–way fixed

effects model, in which each individual and

each time period has a constant term. Like the

one–way model, this formulation is equivalent

to including two sets of dummy variables in the

equation (not more than one of which may be

complete). If the number of time periods is

relatively small, time dummy variables may be

added to an xtreg, fe formulation. Stata does



not contain a command for two–way fixed ef-

fects, although that model is well defined: one

essentially double–demeans the data:

y∗it = yit − ȳi − ȳt + ¯̄y

where the last term is the grand mean of the

series. The two–way FE model is equivalent

to transforming the data in this fashion and

projecting y∗ on X∗ without a constant term.

The individual effects and time effects (and

their standard errors) may be retrieved with

some algebra. If one had a “small N, large T”

dataset, a two–way FE model could be read-

ily implemented by reversing the variables in

tsset as described above and creating a set of

individual dummies. This model treats the ef-

fect of being individual i at time t as the sum

of those effects, which are assumed to be in-

dependent of one another. Nevertheless, this

model is not frequently used, since we often

may want to model the time variation more for-

mally than with a simple dummy variable. Note



that in a model with time effects, one cannot

have any variable that is constant over indi-

viduals, since demeaning over individuals will

generate a zero vector. Thus, a variable such

as a macro factor, which may be used in a

individual FE model (since its mean value for

each individual reflects time variation) cannot

be included in a model with time effects. The

time effect will capture all time variation that

is not individual–specific.

Random effects models

Returning to the one–way (individual) fixed ef-

fects model, we allow for correlation between

the fixed effect and regressors in that con-

text. However, the resulting estimates should

be considered as applying to the cross–sectional

units under consideration, since they contain

intercept terms labelled with those cross–sectional

units’ identifiers. In some cases, that may not



be problematic: e.g. if the units are the G-7

countries, we do not consider them a sample of

major industrialized countries. In other circum-

stances, where the data may be survey data,

that may be a difficulty. If the individual ef-

fects can be considered to be strictly indepen-

dent of the regressors, then we might model

the individual–specific constant terms (reflect-

ing the unmodeled heterogeneity across units)

to be draws from a distribution. This greatly

reduces the number of parameters to be esti-

mated, and conditional on that orthogonality,

allows for inference to be made to the popula-

tion from which the survey was constructed.

To implement the one–way random effects for-

mulation

yit = x′itβ + [ui + εit]

we assume that both ε and u are meanzero

processes, distributed independent of X; that



they are each homoskedastic; that they are
distributed independently of each other; and
that each process represents independent real-
izations from its respective distribution, with-
out correlation over individuals (nor time, for
ε). For the T observations in the ith block of
data, we have the error process

ηit = ui + εit

which is the so–called error components model,
with

E[η2
it|X] = σ2

ε + σ2
u

and

Eηitηis|X] = σ2
u t 6= s.

The covariance matrix of these T errors may
then be seen to be

Σ = σ2
ε IT + σ2

uιT ι
′
T .

Since observations i and j are independent, the
full covariance matrix of η across the sample
is block–diagonal in Σ: Ω = In ⊗Σ.



The appropriate estimator for the slope param-

eters of this model is generalized least squares:

β̂ = (X ′Ω−1X)−1(X ′Ω−1y)

=

∑
i

X ′iΣ
−1Xi

−1 ∑
i

X ′iΣ
−1yi


(Note that this equation is in error in the text,

p.295)

To compute this estimator, we require Ω−1/2 =

[In ⊗Σ]−1/2, which involves

Σ−1/2 = σ−1
ε [I − T−1θιT ι

′
T ]

where

θ = 1−
σε√

σ2
ε + Tσ2

u

and the “quasi–demeaning” transformation de-

fined by Σ−1/2 is then σ−1
ε (yit − θȳi): that is,

rather than subtracting the entire individual

mean of y, we should subtract some portion

of it, as defined by θ. Compare this to the



LSDV model, in which we define the within

estimator by setting θ = 1. Like pooled OLS,

the GLS random effects estimator is a matrix

weighted average of the within and between

estimators, but in this case applying optimal

weights, as based on

λ =
σ2
ε

σ2
ε + Tσ2

u
= (1− θ)2

where λ is the weight attached to the covari-

ance matrix of the between estimator. To

the extent that λ differs from unity, pooled

OLS will be inefficient, as it will attach too

much weight on the between–units variation,

attributing it all to the variation in X rather

than apportioning some of the variation to the

differences in ui across units.

The setting λ = 1 (θ = 0) is appropriate if

σ2
u = 0, that is, if there are no random effects;

then a pooled OLS model will be appropriate.



If λ = 0 (θ = 1), then the appropriate esti-

mator is the LSDV model of individual fixed

effects.

To the extent that λ differs from zero, the

within (LSDV) estimator will be inefficient, in

that it applies zero weight to the between es-

timator. The random effects (GLS) estimator

applies the optimal λ in the unit interval to

the between estimator, whereas the fixed ef-

fects estimator imposes λ = 0. This would

be appropriate if the variation in ε was trivial

in comparison with the variation in u; then the

dummy variables that identify each unit would,

taken together, explain all of the variation in

the composite error term.

How might we implement the feasible GLS es-

timator of the model? Since the fixed effects

model is consistent, it may be used to gen-

erate OLS residuals, and an estimate of σ2
ε .



Likewise, the pooled OLS model may generate

a consistent estimate of σ2
ε + σ2

u. These two

estimators may be used to define θ, and trans-

form the data for the GLS model. (A possible

complication: as generally defined, the two es-

timators above are not guaranteed to generate

a positive estimate of σ2
u in finite samples. In

that case, the variance estimates without de-

grees of freedom corrections, which will still

be consistent, may be used. One might also

question the orthogonality assumption in this

case). A further complication: the GLS model,

since it follows a quasi–demeaning approach,

is capable of including variables that do not

vary at the individual level (such as gender or

race). But such variables cannot be included

in the LSDV model, so that an alternative esti-

mator must be defined, based on the between

estimator’s consistent estimate of σ2
u +T−1σ2

ε .

The same difficulty of a negative estimate of

σ2
u may apply.



The feasible GLS estimator may be executed in

Stata using the command xtreg yvar varlist,

re. The command will display estimates of

σ2
u and σ2

ε , and what Stata calls ρ: the frac-

tion of variance due to ui. Breusch and Pagan

have developed a Lagrange multiplier test for

σ2
u = 0, which may be computed following a

random–effects estimation via the command

xttest0.

One may also estimate the parameters of the

random–effects model with full maximum like-

lihood, and the mle option on the xtreg, re

command requests that estimator. The ap-

plication of MLE continues to assume that

X ⊥ u, as well as assuming that the distribu-

tions of u and ε are Normal. This estimator will

produce a likelihood ratio test of σ2
u = 0, corre-

sponding to the Breusch–Pagan test available

for the GLS estimator.



Testing for appropriateness of random effects

The Hausman specification test may be ap-

plied to evaluate the appropriateness of the

assumption of orthogonality. If it is possible

to apply the RE estimator, one would prefer

it, since it is less costly in terms of degrees of

freedom, does not require the omission of vari-

ables constant at the individual level, and does

not require an assumption of T → ∞ for con-

sistency. On the other hand, the RE model will

be inconsistent in the presence of correlation

between X and u, and such a correlation—the

unobserved heterogeneity depending on observed

factors for the unit, such as some measure

of scale—is quite plausible in practice. To

implement the Hausman test, one estimates

each form of the model, using the commands

estimates store set after each estimation, with

set defining that set of estimates: for instance,

set might be “fe” for the fixed–effects model.



Then the command hausman setconsist seteff

will invoke the Hausman test, where setconsist

refers to the name of the fixed–effects esti-

mates (which are consistent under the null and

alternative) and seteff referring to the name of

the random–effects estimates, which are only

efficient under the null hypothesis of orthogo-

nality. This test is based on the difference of

the two estimated covariance matrices (which

is not guaranteed to be positive definite) and

the difference between the FE and RE slope

coefficients’ vectors. If the test cannot be

computed, it casts doubt on the underlying

specification of the model (not merely the is-

sue of how the individual effects should be

treated).

If the Hausman test indicates that the ran-

dom effects cannot be considered orthogonal

to the error, two approaches based on instru-

mental variables estimation may be utilized.



One, the Hausman–Taylor estimator, assumes

that some of the regressors in X are correlated

with u, but that none are correlated with ε.

This estimator is available in Stata as xthtaylor.

Their approach is based on the notion that we

can divide the regressors into four categories:

the interaction of time varying (x) / time in-

variant (z) and uncorrelated with ui (1) / cor-

related (2). For example, x2 are those time-

varying regressors that are thought to be cor-

related with ui. The time–invariant variables

have a coefficient vector α, while the time–

varying regressors have the coefficient vector

β. The demeaning (fixed effects) transforma-

tion may be used on the time varying variables,

even for those correlated with ui, to estimate

the β subset of the coefficient vector. Its resid-

ual variance estimator is consistent for σ2
ε . The

group means of the residuals from the fixed–

effects regression are used as the dependent

variable in a instrumental variables regression



on the z variables with instrumental variables

z1 and x1 (the time–invariant variables are re-

peated T times). The identification require-

ment forces K1 (the number of x1 variables)

to be at least as large as L2 (the number of

z2 variables). This regression provides a con-

sistent estimate of α, and its residual variance

is a consistent estimate of the variance of the

composite error term, giving the weight θ for

feasible GLS. The application of the H–T es-

timator circumvents the problem of x2 and z2

variables being potentially correlated with ui,

but requires that we can identify variables of

type 1 that are surely not correlated with the

random effects.

There is also a IV form of the random ef-

fects estimator, xtivreg, which permits corre-

lation between some of the X variables and the

idiosyncratic error ε. These are quite differ-

ent assumptions about the nature of any sus-

pected correlation between regressor and the



composite error term, and should be selected
with caution. The xtivreg command also sup-
ports fixed–effects, between–effects, and first–
differenced estimators in an instrumental vari-
ables context.

Dynamic panel data models

We have discussed the concern that a random–
effects formulation may not be appropriate due
to correlation of regressor and the random ef-
fect: a problem mitigated by the development
of the Hausman–Taylor approach. One al-
ways may eschew the random–effects formu-
lation and utilise the fixed–effects formulation
in its place, and in static regression models,
the latter will always yield consistent estimates.
However, a serious difficulty arises with the
one–way fixed effects model in the context
of a dynamic panel data model: one contain-
ing a lagged dependent variable (and possi-
bly other regressors), particularly in the “small



T, large N” context. As Nickell (Economet-

rica, 1981) shows, this arises because the de-

meaning process, which subtracts the individ-

ual’s mean value of y and each X from the

respective variable, creates a correlation be-

tween regressor and error. The mean of the

lagged dependent variable contains observa-

tions 0 through T − 1 on y, and the mean

error—which is being conceptually subtracted

from each εit—contains contemporaneous val-

ues of ε for t = 1 . . . T . The resulting corre-

lation, as Nickell shows, creates a bias in the

estimate of the coefficient of the lagged de-

pendent variable which is not affected by the

number of individuals n. In the simplest setup,

of a pure AR model without additional regres-

sors:

yit = β + ρyi,t−1 + fi + εit

yit − yi· = ρ(yi,t−1 − yi,·−1) + (εit − εi·)

The demeaning operation creates a regressor

which cannot be distributed independently of



the error term. Nickell demonstrates that the

inconsistency of ρ̂ as n → ∞ is of order 1/T ,

which may be quite sizable in a “small T” con-

text. If ρ > 0, the bias is invariably negative,

so that the persistence of y will be underesti-

mated. For reasonably large values of T , the

plim (ρ̂−ρ) will be approximately −(1+ρ)
T−1 : a siz-

able value, even if T = 10. With ρ = 0.5, the

bias will be -0.167, or about 1/3 of the true

value. The inclusion of additional regressors

does not remove this bias; indeed, if the re-

gressors are correlated with the lagged depen-

dent variable to some degree, their coefficients

may be seriously biased as well. Note also that

this bias is not caused by an autocorrelated er-

ror process ε: even if the error process is i.i.d.,

the bias arises. If the error process is auto-

correlated, the problem is even more severe,

given the difficulty of deriving a consistent es-

timate of the AR parameters in that context.



The same problem affects the one–way ran-

dom effects model: since the ui error compo-

nent enters every value of yit by assumption,

the lagged dependent variable cannot be inde-

pendent of the composite error process.

A solution to this problem (not without its own

complications) involves taking first differences

of the original model. Consider a model con-

taining a lagged dependent variable and a sin-

gle regressor x:

yit = β0 + ρyi,t−1 + xitβ1 + fi + εit

Applying the first difference transformation yields:

∆yit = ρ∆yi,t−1 + ∆xitβ + ∆εit

There is still correlation between the differ-

enced LDV and the disturbance process (which

is now a MA(1) error): the former contains

yi,t−1 and the latter contains εi,t−1. But with



the individual fixed effects swept out, a straight-

forward instrumental variables estimator is avail-

able. We may construct instruments for the

LDV from the second and third lags of y, ei-

ther in the form of differences or lagged levels.

If ε is i.i.d., those lags of y will be highly cor-

related with the LDV (and its difference) but

uncorrelated with the composite error process.

Even if we had reason to believe that ε might

be following an AR(1) process, we could still

follow this strategy, “backing off” one period

and using the third and fourth lags of y (pre-

suming that the timeseries for each unit is long

enough to do so).

The approach of Arellano and Bond (R.E. Stud-

ies, 1991), Arellano and Bover (J. Economet-

rics, 1995) and Blundell and Bond (J. Econo-

metrics, 1998) is based on the notion that the

instrumental variables approach noted above

does not exploit all of the information avail-

able in the sample, and that by doing so, in



a GMM context, one may construct more ef-

ficient estimates of the dynamic panel data

model. The A–B estimator can be thought of

as an outgrowth of H–T, in which the x2 vari-

ables (time–varying measures correlated with

ui) include yt−1. A–B argue that the IV es-

timator does not take all of the potential or-

thogonality conditions into account. Consider

the equations

yit = xitβ1 + witβ2 + uit

uit = vi + εit

where xit are strictly exogenous covariates, wit
are predetermined covariates (which may in-

clude lags of y) and endogenous covariates, all

of which may be correlated with vi and vi are

unobserved individual effects. First–differencing

the equation removes the vi and its associated

omitted–variable bias. The Arellano–Bond es-

timator sets up a GMM problem in which the

model is specified as a system of equations,



one per time period, where the instruments ap-

plicable to each equation differ (for instance, in

later time periods, suitably lagged values of the

instruments are available). The instruments

include suitable lags of the levels of the en-

dogenous variables (which enter the equation

in differenced form) as well as the strictly ex-

ogenous regressors and any others that may

be specified. This estimator can easily gener-

ate an immense number of instruments, since

by period T all lags prior to, say, T − 2 might

be individually considered as instruments. If T

is nontrivial, it is often necessary to exercise

one of the options which limits the maximum

lag of an instrument to prevent the number of

instruments from becoming too large.

A potential weakness in the A–B estimator

was revealed in later work by Arellano–Bover

and Blundell–Bond: the lagged levels are of-

ten rather poor instruments for first differenced



variables, especially if the variables are close

to a random walk. Thus, their modification

of the estimator includes lagged levels as well

as lagged differences. The original estimator

is often entitled “difference GMM”, while the

expanded estimator is commonly termed “sys-

tem GMM”. Both estimators have one–step

and two–step variants; the two–step estimates

of the “difference GMM” standard errors have

been shown to have a severe downward bias.

When the two–step estimators are to be re-

ported, one should ensure that the “Windmei-

jer finite–sample correction” to these standard

errors has been applied.

All of the features described above are avail-

able in Roodman’s improved version of official

Stata’s estimator. His version, xtabond2, of-

fers a much more flexible syntax than official

Stata’s xtabond, which does not allow the same

specification of instrument sets, nor does it



provide the “system GMM” approach nor the

essential Windmeijer correction.

An excellent guide to the DPD estimators is

provided in Steve Bond’s “Dynamic panel data

models: a guide to microdata methods and

practice”, available from EconPapers (CeMMAP

working paper 09/02 at Institute for Fiscal

Studies).


