Simulation for estimation and testing

Christopher F Baum

EC 823: Applied Econometrics

Boston College, Spring 2013
Monte Carlo simulation is a useful and powerful tool for investigating the properties of econometric estimators and tests. The power is derived from being able to define and control the statistical environment in which you fully specify the data generating process (DGP) and use those data in controlled experiments.

Many of the estimators we commonly use only have an asymptotic justification. When using a sample of a particular size, it is important to verify how well estimators and postestimation tests are likely to perform in that environment. Monte Carlo simulation may be used, even when we are confident that the estimation techniques are appropriate, to evaluate their performance: for instance, their empirical rate of convergence when some of the underlying assumptions may not be satisfied.
In many situations, we must write a computer program to compute an estimator or test. Simulation is a useful tool in that context to check the validity of the code in a controlled setting, and verify that it handles all plausible configurations of data properly. For instance, a routine that handles panel, or longitudinal, data should be validated on both balanced and unbalanced panels if it is valid to apply that procedure in the unbalanced case.

Simulation is perhaps a greatly underutilized tool, given the ease of its use in Stata and similar econometric software languages. When conducting applied econometric studies, it is important to assess the properties of the tools we use, whether they are ‘canned’ or user-written. Simulation can play an important role in that process.
A key element in Monte Carlo simulation and bootstrapping is the pseudo-random number (PRN) generator. The term random number generator is an oxymoron, as computers with a finite number of binary bits actually use deterministic devices to produce long chains of numbers that mimic the realizations from some target distribution. Eventually, those chains will repeat; we cannot achieve an infinite periodicity for a PRNG.

All PRNGs are based on transformations of draws from the uniform (0,1) distribution. A simple PRNG uses the deterministic rule

\[X_j = (kX_{j-1} + c) \mod m, \quad j = 1, \ldots, J \]

where mod is the modulo operator, to produce a sequence of integers between 1 and m. The sequence \(R_j = X_j / m \) is then a sequence of J values between 0 and 1.
Using 32-bit integer arithmetic, as is common, \(m = 2^{31} - 1 \) and the maximum periodicity is that figure, which is approximately \(2.1 \times 10^9 \). That maximum will only be achieved with optimal choices of \(k, c \) and \(X_0 \); with poor choices, the sequence will repeat more frequently than that.

These values are not truly random: if you start the PRNG with the same \(X_0 \), known as the seed of the PRNG, you will receive exactly the same sequence of pseudo-random draws. That is an advantage when validating computer code, as you will want to ensure that the program generates the same deterministic results when presented with a given sequence of pseudo-random draws. In Stata, you may

\[
\text{set seed } \text{nnnnnnnnn}
\]

before any calls to a PRNG to ensure that the starting point is fixed.
If you do not specify a seed value, the seed is chosen from the time of day to millisecond precision, so even if you rerun the program at 10:00:00 tomorrow, you will not be using the same seed value. Stata’s basic PRNG is \texttt{runiform()}, which takes no arguments (but the parentheses must be typed). Its maximum value is $1 - 2^{-32}$.

As mentioned, all other PRNGs are transformations of that produced by the uniform PRNG. To draw uniform values over a different range: e.g., over the interval $[a, b)$,

$$\text{gen double } \texttt{varname} = a + (b-a) \times \texttt{runiform()}$$

and to draw (pseudo-)random integers over the interval (a, b),

$$\text{gen double } \texttt{varname} = a + \texttt{int}((b-a+1) \times \texttt{runiform()})$$
If we draw using the `runiform()` PRNG, we see that its theoretical values of $\mu = 0.5$, $\sigma = \sqrt{1/12} = 0.28867513$ appear as we increase sample size:

```
. qui set obs 1000000
. set seed 10101
. g double x1k = runiform() in 1/1000 (999000 missing values generated)
. g double x10k = runiform() in 1/10000 (990000 missing values generated)
. g double x100k = runiform() in 1/100000 (900000 missing values generated)
. g double x1m = runiform()
. su
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1k</td>
<td>1000</td>
<td>0.5150332</td>
<td>0.2934123</td>
<td>0.0002845</td>
<td>0.9993234</td>
</tr>
<tr>
<td>x10k</td>
<td>10000</td>
<td>0.4969343</td>
<td>0.288723</td>
<td>0.000112</td>
<td>0.999916</td>
</tr>
<tr>
<td>x100k</td>
<td>100000</td>
<td>0.4993971</td>
<td>0.2887694</td>
<td>7.72e-06</td>
<td>0.999995</td>
</tr>
<tr>
<td>x1m</td>
<td>1000000</td>
<td>0.4997815</td>
<td>0.2887623</td>
<td>4.85e-07</td>
<td>0.9999998</td>
</tr>
</tbody>
</table>
The sequence is deterministic: that is, if we rerun this do-file, we will get exactly the same draws every time, as we have set the seed of the PRNG. However, the draws should be serially uncorrelated. If that condition is satisfied, then the autocorrelations of this series should be negligible:

```
.g t = _n
.tsset t
    time variable:  t, 1 to 1000000
delta:  1 unit
.pwcorr L(0/5).x1m, star(0.05)
```

<table>
<thead>
<tr>
<th></th>
<th>x1m</th>
<th>L.x1m</th>
<th>L2.x1m</th>
<th>L3.x1m</th>
<th>L4.x1m</th>
<th>L5.x1m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1m</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.x1m</td>
<td>-0.0011</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2.x1m</td>
<td>-0.0003</td>
<td>-0.0011</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3.x1m</td>
<td>0.0009</td>
<td>-0.0003</td>
<td>-0.0011</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4.x1m</td>
<td>0.0009</td>
<td>0.0009</td>
<td>-0.0003</td>
<td>-0.0011</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>L5.x1m</td>
<td>0.0007</td>
<td>0.0009</td>
<td>0.0009</td>
<td>-0.0003</td>
<td>-0.0011</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

```
.wntestq x1m
```

Portmanteau test for white noise

```
Portmanteau (Q) statistic = 39.7976
Prob > chi2(40) = 0.4793
```
Both `pwcorr`, which computes significance levels for pairwise correlations, and the Ljung–Box–Pierce Q test, or portmanteau test, fail to detect any departure from serial independence in the uniform draws produced by the `runiform()` PRNG.
To consider a more useful task, we may want to draw from the normal distribution. By default, the `rnormal()` function produces draws from the standard normal, with $\mu = 0, \sigma = 1$. If we want to draw from $N(m, s^2)$,

```plaintext
gen double varname = rnormal(m, s)
```

The function can also be used with a single argument, the desired mean, with the standard deviation set to 1.
Draws from other continuous distributions

Similar functions exist in Stata for Student’s t with n d.f. and $\chi^2(m)$ with m d.f.: the functions `rt(n)` and `rchi2(m)`, respectively. There is no explicit function for the $F(h, n)$ for the F distribution with h and n d.f., so this can be done as the ratios of draws from the $\chi^2(h)$ and $\chi^2(n)$ distributions:

```stata
. set obs 100000
obs was 0, now 100000
. set seed 10101
. gen double xt = rt(10)
. gen double xc3 = rchi2(3)
. gen double xc97 = rchi2(97)
. gen double xf = ( xc3 / 3 ) / (xc97 / 97 ) // produces F[3, 97]
. su
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>xt</td>
<td>100000</td>
<td>0.0064869</td>
<td>1.120794</td>
<td>-7.577694</td>
<td>8.765106</td>
</tr>
<tr>
<td>xc3</td>
<td>100000</td>
<td>3.002999</td>
<td>2.443407</td>
<td>0.0001324</td>
<td>25.75221</td>
</tr>
<tr>
<td>xc97</td>
<td>100000</td>
<td>97.03116</td>
<td>13.93907</td>
<td>45.64333</td>
<td>171.9501</td>
</tr>
<tr>
<td>xf</td>
<td>100000</td>
<td>1.022082</td>
<td>0.8542133</td>
<td>0.0000343</td>
<td>8.679594</td>
</tr>
</tbody>
</table>
In this example, the t-distributed RV should have mean zero; the $\chi^2(3)$ RV should have mean 3.0; the $\chi^2(97)$ RV should have mean 97.0; and the $F(3, 97)$ should have mean $97/(97-2) = 1.021$. We could compare their higher moments with those of the theoretical distributions as well.

We may also draw from the two-parameter Beta(a,b) distribution, which for $a, b > 0$ yields $\mu = a/(a + b)$, $\sigma^2 = ab/((a + b)^2(a + b + 1))$, using `rbeta(a, b)`. Likewise, we can draw from a two-parameter Gamma(a,b) distribution, which for $a, b > 0$ yields $\mu = ab$ and $\sigma^2 = ab^2$. Many other continuous distributions can be expressed in terms of the Beta and Gamma distributions; note that the latter is often called the generalized factorial function.
You may also produce pseudo-random draws from several discrete probability distributions. For the binomial distribution $Bin(n, p)$, with n trials and success probability p, use `binomial(n, p)`. For the Poisson distribution with $\mu = \sigma^2 = m$, use `poisson(m)`.

```
. set obs 100000
obs was 0, now 100000
. set seed 10101
. gen double xbin = rbinomial(100, 0.8)
. gen double xpois = rpoisson(5)
. su

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>xbin</td>
<td>100000</td>
<td>79.98817</td>
<td>3.991282</td>
<td>61</td>
<td>94</td>
</tr>
<tr>
<td>xpois</td>
<td>100000</td>
<td>4.99788</td>
<td>2.241603</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>
```

The means of these two variables are close to their theoretical values, as is the variance of the Poisson-distributed variable.
As a first illustration of Monte Carlo simulation in Stata, we demonstrate the central limit theorem result that in the limit, a standardized sample mean, \((\bar{x}_N - \mu) / (\sigma / \sqrt{N}) \), has a standard normal distribution, \(N(0, 1) \), so that the sample mean is approximately normally distributed as \(N \to \infty \). We first consider a single sample of size 30 drawn from the uniform distribution.

```
. set obs 30
obs was 0, now 30
. set seed 10101
. gen double x = runiform()
. su
                      |     Obs  Mean   Std. Dev.   Min   Max
                      |      30  .5459987  .2803788  .0524637  .9983786
```

Christopher F Baum (BC / DIW) Simulation Boston College, Spring 2013 14 / 72
We see that the mean of this sample, 0.546, is quite far from the theoretical value of 0.5, and the resulting values do not look very uniformly distributed when viewed as a histogram. For large samples, the histogram should approach a horizontal line at density = 1.
To illustrate the features of the distribution of sample mean for a fixed sample size of 30, we conduct a Monte Carlo experiment using Stata’s `simulate` prefix. As with other prefix commands in Stata such as `by`, `statsby`, or `rolling`, the `simulate` prefix can execute a single Stata command repeatedly.

Using Monte Carlo, we usually must write the ad hoc Stata command, or `program`, that produces the desired result. That program will be called repeatedly by `simulate`, which will produce a new dataset of simulated results: in this case, the sample mean from each sample of size 30.
In Stata terms, what we must write is an *ado-file*: a file containing a Stata program of the same name that adds a new verb to the Stata language. In the case of `simulate`, this is quite straightforward, as the program’s structure is formulaic, focusing on the results to be produced and returned in the stored results.

The same methodology and programming constructs will be relevant if you are using Stata’s maximum likelihood commands, `ml`, for which you must write a program containing the (log-)likelihood function.

Serious uses of the generalized method of moments command, `gmm`, require you to write a program containing the moment conditions, or orthogonality conditions. The same techniques may be used for Stata’s nonlinear least squares commands (`nl` and `nlsur`).
The `simulate` command has the syntax

```
simulate [exp_list], reps(n) [options]: command
```

Per the usual notation for Stata syntax, the [bracketed] items are optional, and those in *italics* are to be filled in. All options for `simulate`, including the ‘required option’ `reps()`), appear before the colon (`:`), while any options for `command` appear after a comma in the `command`. The quantities to be calculated and stored by your `command` are specified in `exp_list`.

We will employ the `saving()` option of `simulate`, which will create a new Stata dataset from the results produced in the `exp_list`. If successful, it will have `n` observations, one for each of the replications.
We illustrate a program which may be called by `simulate`:

```
. prog drop _all
. prog onesample, rclass
  1.    version 12
  2.    drop _all
  3.    qui set obs 30
  4.    g double x = runiform()
  5.    su x, meanonly
  6.    ret sca mu = r(mean)
  7.    end
```

The program is named `onesample` and declared `rclass`, which is necessary for the program to return stored results as `r()`. We have hard-coded the sample size of 30 observations, specifying that the program should create a uniform RV, compute its mean, and return it as a numeric scalar to `simulate` as `r(mu)`.

For future use, the program should be saved in `onesample.ado` on the adopath, preferably in your PERSONAL directory. Use `adopath` to locate that directory.
When you write a simulation program, you should always run it once as a check that it performs as it should, and returns the item or items that are meant to be used by `simulate`:

```
  . set seed 10101
  . onesample
  . return list
  scalars:
      r(mu) = .5459987206074098
```

Note that the mean of the series that appears in the `return list` is the same as that which we computed earlier from the same seed.
We are now ready to invoke `simulate` to produce the Monte Carlo results:

```
. loc srep 10000
. simulate xbar = r(mu), seed(10101) reps(`srep´) nodots ///
> saving(muclt, replace) : onesample
    command:  onesample
    xbar:   r(mu)
(note: file muclt.dta not found)
```

We expect that the variable `xbar` in the dataset we have created, `muclt.dta`, will have a mean of 0.5 and a standard deviation of
\[
\sqrt{\frac{1}{12}}/30 = 0.0527.
\]
. use muclt, clear
(simulate: onesamplen)
. su

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>xbar</td>
<td>10000</td>
<td>.5000151</td>
<td>.0164797</td>
<td>.4367322</td>
<td>.5712539</td>
</tr>
</tbody>
</table>

Distribution of sample mean, N=30
Although the mean and standard deviation of the simulated distribution are not exactly in line with the theoretical values, they are quite close, and the empirical distribution of the 10,000 sample means is quite close to that of the overlaid normal distribution.

We might want to make our program more general by allowing for other sample sizes:

```
. prog drop _all
. prog onesamplen, rclass
  1.   version 12
  2.   syntax [, N(int 30)]
  3.   drop _all
  4.   qui set obs `n`
  5.   g double x = runiform()
  6.   su x, meanonly
  7.   ret sca mu = r(mean)
  8.   end
```

We have added an n() option that allows onesamplen to use a different sample size if specified, with a default of 30.
Again, we should check to see that the program works properly with this new feature, and produces the same result as we could manually:

```
. set seed 10101
. set obs 300
obs was 0, now 300
. gen double x = runiform()
. su x

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>300</td>
<td>.5270966</td>
<td>.2819105</td>
<td>.0010465</td>
<td>.9983786</td>
</tr>
</tbody>
</table>
```

```
. set seed 10101
. onesample n(300)
. return list
scalars:

    r(mu) =  .527096571639025
```
We can now execute our new version of the program with a different sample size. Notice that the option is that of `onesamplen`, not that of `simulate`. We will use the same output dataset. We expect that the variable `xbar` in the dataset we have created, `muclt.dta`, will have a mean of 0.5 and a standard deviation of $\sqrt{(1/12)/300} = 0.01667$.

```
. loc srep 10000
. loc sampn 300
. simulate xbar = r(mu), seed(10101) reps(`srep`) nodots ///
> saving(muclt, replace) : onesamplen, n(`sampn`)  
    command:  onesamplen, n(300)  
         xbar:  r(mu)
. use muclt, clear  
(simulate:  onesamplen)
. su
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>xbar</td>
<td>10000</td>
<td>.5000151</td>
<td>.0164797</td>
<td>.4367322</td>
<td>.5712539</td>
</tr>
</tbody>
</table>

The results are quite close to the theoretical values.
An illustration of simulation

Executing the simulation

Distribution of sample mean, N=300
Bill Gould’s entries in the Stata blog, Not Elsewhere Classified, discuss several ways in which the `runiform()` PRNG can be useful:

- **Shuffling observations in random order:** generate a uniform RV and `sort` on that variable

- **Drawing a subsample of n observations without replacement:** generate a uniform RV, sort on that variable, and `keep in 1/n; see help sample`

- **Drawing a $p\%$ random sample without replacement:**
 `keep if runiform() <= P/100; see help sample`

- **Drawing a subsample of n observations with replacement, as needed in bootstrap methods:** `see help sample`
Inverse-probability transformations

Let $F(x) = \Pr(X \leq x)$ denote the cdf of RV x. Given a random draw of a uniformly distributed RV r, $0 \leq r \leq 1$, the inverse transformation $x = F^{-1}(r)$ provides a unique value of x, which will be a good approximation of a random draw from $F(x)$.

This \textit{inverse-probability transformation} method allows us to generate pseudo-RVs for any distribution for which we can provide the inverse CDF. Although the normal distribution lacks a closed form, there are good numerical approximations to its inverse CDF. That allows a method such as

\begin{verbatim}
 gen double xn = invnormal(runiform())
\end{verbatim}

and until recently, that was the way in which one produced pseudo-random normal variates in Stata.
We might want to draw from the unit exponential distribution,
\(F(x) = 1 - e^{-x} \), which has analytical inverse \(x = -\log(1 - r) \).
So the method yields

\[
\text{gen double xexp = -log(1-runiform())}
\]

One can also apply this method to a discrete CDF, with the convention that the left limit of a flat segment is taken as the \(x \) value.
More details on PRNGs

Direct transformations

When we want draws from \(Y = g(X) \), then the direct transformation method involves drawing from the distribution of \(X \) and applying the transformation \(g(\cdot) \). This in fact is the method used in common PRNG functions:

- A \(\chi^2(1) \) draw is the square of a draw from \(N(0, 1) \)
- A \(\chi^2(m) \) is the sum of \(m \) independent draws from \(\chi^2(1) \)
- A \(F(m_1, m_2) \) draw is \((v_1/m_1)/(v_2/m_2) \), where \(v_1, v_2 \) are independent draws from \(\chi^2(m_1), \chi^2(m_2) \)
- A \(t(m) \) draw is \(u = \sqrt{v/m} \), where \(u, v \) are independent draws from \(N(0, 1), \chi^2(m) \)
A widely used discrete distribution is the negative binomial, which can be written as a Poisson–Gamma mixture. If \(y/\lambda \sim \text{Poisson}(\lambda) \) and \(\lambda/\mu, \alpha \sim \Gamma(\mu, \alpha \mu) \), then \(y/\mu, \alpha \sim \text{NB2}(\mu, \mu + \alpha \mu^2) \). The NB2 can be seen as a generalization of the Poisson, which would impose the constraint that \(\alpha = 0 \).\(^1\)

Draws from the NB2(1,1) distribution can be achieved by a two-step method: first draw \(\nu \) from \(\Gamma(1, 1) \), then draw from \(\text{Poisson}(\nu) \). To draw from NB2(\(\mu, 1 \)), first draw \(\nu \) from \(\Gamma(\mu, 1) \).

\(^1\)An alternative parameterization of the variance is known as the NB1 distribution.
Draws from the truncated normal

In censoring or truncation models, we often encounter the truncated normal distribution. With truncation, realizations of X are constrained to lie in (a, b), one of which could be $\pm \infty$. Given $X \sim TN_{a,b}(\mu, \sigma^2)$, the μ, σ^2 parameters describe the untruncated distribution of X.

Given draws from a uniform distribution u, define $a^* = (a - \mu)/\sigma$, $b^* = (b - \mu)/\sigma$:

$$x = \mu + \sigma \Phi^{-1} [\Phi(a^*) + (\Phi(b^*) - \Phi(a^*))u]$$

where $\Phi(\cdot)$ is the CDF of the normal distribution.
. qui set obs 10000
. set seed 10101
. sca a = 0
. sca b = 12 // draws from N(5, 4^2) truncated [0,12]
. sca mu = 5
. sca sigma = 4
. sca astar = (a - mu) / sigma
. sca bstar = (b - mu) / sigma
. g double u = runiform()
. g double w = normal(astar) + (normal(bstar) - normal(astar)) * u
. g double xtrunc = mu + sigma * invnormal(w)
. su xtrunc

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>xtrunc</td>
<td>10000</td>
<td>5.436194</td>
<td>2.951024</td>
<td>.0022294</td>
<td>11.99557</td>
</tr>
</tbody>
</table>

Note that `normal()` is the normal CDF, with `invnnormal()` its inverse. This double truncation will increase the mean, as `a` is closer to `μ` than is `b`. With the truncated normal, the variance always declines: in this case `σ = 2.95` rather than 4.0.
Draws from the multivariate normal are simpler to implement than draws from many multivariate distributions because linear combinations of normal RVs are also normal.

Direct draws can be made using the `drawnorm` command, specifying mean vector μ and covariance matrix Σ. For instance, to draw two RVs with means of $(10,20)$, variances $(4,9)$ and covariance $= 3$ (correlation 0.5):
. qui set obs 10000
. set seed 10101
. mat mu = (10,20)
. sca cov = 0.5 * sqrt(4 * 9)
. mat sigma = (4, cov \ cov, 9)
. drawnorm double y1 y2, means(mu) cov(sigma)
. su y1 y2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>y1</td>
<td>10000</td>
<td>9.986668</td>
<td>1.9897</td>
<td>2.831865</td>
<td>18.81768</td>
</tr>
<tr>
<td>y2</td>
<td>10000</td>
<td>19.96413</td>
<td>2.992709</td>
<td>8.899979</td>
<td>30.68013</td>
</tr>
</tbody>
</table>

. corr y1 y2
(obs=10000)

<table>
<thead>
<tr>
<th></th>
<th>y1</th>
<th>y2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y1</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>y2</td>
<td>0.4979</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
In using Monte Carlo simulation methods in a regression context, we usually compute parameters, their VCE or summary statistics for each of S generated datasets, and evaluate their empirical distribution.

As an example, we evaluate the finite-sample properties of the OLS estimator with random regressors and a skewed error distribution. If the errors are $i.i.d.$, then this skewness will have no effect on the asymptotic properties of OLS. In comparison to non-skewed error distributions, we will need a larger sample size for the asymptotic results to hold.
We consider the DGP

\[y = \beta_1 + \beta_2 x + u, \quad u \sim \chi^2(1) - 1, \quad x \sim \chi^2(1) \]

where \(\beta_1 = 1, \beta_2 = 2, \ N = 150 \). The error is independent of \(x \), ensuring consistency of OLS, with a mean of zero, variance of 2, skewness of \(\sqrt{8} \) and kurtosis of 15, compared to the normal error with a skewness of 0 and kurtosis of 3.

For each simulation, we obtain parameter estimates, standard errors, t-values for the test that \(\beta_2 = 2 \) and the outcome of a two-tailed test of that hypothesis at the 0.05 level.

We store the sample size in a global macro, as we may want to change it without revising the program.
. // Analyze finite-sample properties of OLS
.capt prog drop chi2data
.program chi2data, rclass
 1. version 12
 2. drop _all
 3. set obs $numobs
 4. gen double x = rchi2(1)
 5. gen double y = 1 + 2*x + rchi2(1)-1 // demeaned chi^2 error
 6. reg y x
 7. ret sca b2 =_b[x]
 8. ret sca se2 = _se[x]
 9. ret sca t2 = (_b[x]-2)/_se[x]
10. ret sca p2 = 2*ttail($numobs-2, abs(return(t2)))
11. ret sca r2 = abs(return(t2)) > invttail($numobs-2,.025)
12. end

The regression returns its coefficients and standard errors to our program in the __b[] and __se[] vectors. Those quantity are used to produce the t statistic, its p-value, and a scalar r2: a binary rejection indicator which will equal 1 if the computed t-statistic exceeds the tabulated value for the appropriate sample size.
We test the program by executing it once and verifying that the stored results correspond to those which we compute manually:

```
. set seed 10101
. glo numobs = 150
. chi2data
obs was 0, now 150
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1825.65455</td>
<td>1</td>
<td>1825.65455</td>
</tr>
<tr>
<td>Residual</td>
<td>347.959801</td>
<td>148</td>
<td>2.35107974</td>
</tr>
<tr>
<td>Total</td>
<td>2173.61435</td>
<td>149</td>
<td>14.5880158</td>
</tr>
</tbody>
</table>

```
Number of obs = 150
F(  1,   148) = 776.52
Prob > F = 0.0000
R-squared = 0.8399
Adj R-squared = 0.8388
Root MSE = 1.5333
```

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------|--------|-----------|-------|------|----------------------|
| x | 2.158967 | .0774766 | 27.87 | 0.000 | 2.005864 - 2.31207 |
| _cons | .9983884 | .1569901 | 6.36 | 0.000 | .6881568 - 1.30862 |
. set seed 10101
. qui chi2data
. ret li
scalars:
 r(r2) = 1
 r(p2) = .0419507116911909
 r(t2) = 2.05180994793611
 r(se2) = .0774765768836093
 r(b2) = 2.158967211181826
. di r(t2)^2
 4.2099241
. test x = 2
 (1) x = 2
 F(1, 148) = 4.21
 Prob > F = 0.0420

As the results are appropriate, we can now proceed to produce the simulation.
. set seed 10101
. glo numsim = 1000
. simulate b2f=r(b2) se2f=r(se2) t2f=r(t2) reject2f=r(r2) p2f=r(p2), ///
> reps($numsim) saving(chi2errors, replace) nolegend nodots: ///
> chi2data

. use chi2errors, clear
(simulate: chi2data)
. su

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>b2f</td>
<td>1000</td>
<td>2.000506</td>
<td>.08427</td>
<td>1.719513</td>
<td>2.40565</td>
</tr>
<tr>
<td>se2f</td>
<td>1000</td>
<td>.0839776</td>
<td>.0172588</td>
<td>.0415919</td>
<td>.145264</td>
</tr>
<tr>
<td>t2f</td>
<td>1000</td>
<td>.0028714</td>
<td>.9932668</td>
<td>-2.824061</td>
<td>4.556576</td>
</tr>
<tr>
<td>reject2f</td>
<td>1000</td>
<td>.046</td>
<td>.2095899</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>p2f</td>
<td>1000</td>
<td>.5175819</td>
<td>.2890326</td>
<td>.0000108</td>
<td>.9997773</td>
</tr>
</tbody>
</table>

The mean of simulated \(b2f\) is very close to 2.0, implying the absence of bias. The standard deviation of simulated \(b2f\) is close to the mean of \(se2f\), suggesting that the standard errors are unbiased as well. The mean rejection rate of 0.046 is close to the size of the test, 0.05.
In order to formally evaluate the simulation results, we use mean to obtain 95% confidence intervals for the simulation averages:

```
.mean b2f se2f reject2f
Mean estimation
Number of obs = 1000

+------------------------+------------------------+------------------------+
|                | Mean  | Std. Err. | [95% Conf. Interval] |
|------------------------+------------------------+------------------------|
| b2f                    | 2.000506  | .0026649  | 1.995277 - 2.005735  |
| se2f                   | .0839776  | .0005458  | .0829066 - .0850486  |
| reject2f               | .046     | .0066278  | .032994 - .059006    |
+------------------------+------------------------+------------------------+
```

The 95% CI for the point estimate is [1.995, 2.006], validating the conclusion of its unbiasedness. The 95% CI for the standard error of the estimated coefficient is [0.083, 0.085], which contains the standard deviation of the simulated point estimates. We can also compare the empirical distribution of the t statistics with the theoretical distribution of t_{148}.
. kdensity t2f, n($numobs) gen(t2_x t2_d) nograph
. qui gen double t2_d2 = tden(148, t2_x)
. lab var t2_d2 "Asymptotic distribution, t(148)"
. gr tw (line t2_d t2_x) (line t2_d2 t2_x, ylab(,angle(0)))
Size of the test

To evaluate the size of the test, the probability of rejecting a true null hypothesis: a Type I error, we can examine the rejection rate, \(r^2 \) above.

The estimated rejection rate from 1000 simulations is 0.046, with a 95% confidence interval of (0.033, 0.059): wide, but containing 0.05. With 10,000 replications, the estimated rejection rate is 0.049 with a confidence interval of (0.044, 0.052).

We computed the \(p \)-value of the test as \(p^2 \). If the \(t \)-distribution is the correct distribution, then \(p^2 \) should be uniformly distributed on (0,1).
Using the computed set of p-values, we can evaluate the test size at any level of α:

```
. qui count if p2f < 0.10
. di _n "Nominal size: 0.10" _n "For $\text{numsim}$ simulations: " _n "Test size : "
> r(N)/$\text{numsim}$
Nominal size: 0.10
For 1000 simulations:
Test size : .093
```

We see that the test is slightly undersized, corresponding to the histogram falling short of unity for lower levels of the p-value.
Power of the test

We can also evaluate the *power* of the test: its ability to reject a false null hypothesis. If we fail to reject a false null, we commit a Type II error. The power of the test is the complement of the probability of Type II error. Unlike the size, which can be evaluated for any level of α from a single simulation experiment, power must be evaluated for a specific null and alternative hypothesis.

We estimate the rejection rate for the test against a false null hypothesis. The larger the difference between the tested value and the true value, the greater the power and the rejection rate. This modified version of the `chi2data` program estimates the power of a test against the false null hypothesis $\beta_x = 2.1$. We create a global macro to hold the hypothesized value so that it may be changed without revising the program.
. capt prog drop chi2datab
. program chi2datab, rclass
 1. version 12
 2. drop _all
 3. set obs $numobs
 4. gen double x = rchi2(1)
 5. gen y = 1 + 2*x + rchi2(1)-1
 6. reg y x
 7. ret sca b2 =_b[x]
 8. ret sca se2 =_se[x]
 9. test x = $hypbx
 10. ret sca p2 = r(p)
 11. ret sca r2 = (r(p)<.05)
 12. end

In this case, all we need do is invoke the `test` command and make use of one of its stored results, `r(p)`. The scalar `r2` is an indicator variable which will be 1 when the \(p \)-value of the test is below 0.05, 0 otherwise.
We run the program once to verify its functioning:

```stata
.set seed 10101
.glo hypbx = 2.1
.chi2datab
obs was 0, now 500
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5025.95627</td>
<td>1</td>
<td>5025.95627</td>
<td>F(1, 498) = 3368.07</td>
</tr>
<tr>
<td>Residual</td>
<td>743.13261</td>
<td>498</td>
<td>1.49223416</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>5769.08888</td>
<td>499</td>
<td>11.5613004</td>
<td>R-squared = 0.8712</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.8709</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Root MSE = 1.2216</td>
</tr>
</tbody>
</table>

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----|-----------|-----------|------|------|----------------------|
| x | 1.981912 | .0341502 | 58.04| 0.000| 1.914816 2.049008 |
| _cons | .9134554 | .0670084 | 13.63| 0.000| .7818015 1.045109 |

(1) x = 2.1

\[F(1, 498) = 11.96 \]

```
.Prob > F = 0.0006
```

```
.ret li
.scalars:
    r(r2) = 1
    r(p2) = .00059104547771
    r(se2) = .03415021735296
    r(b2) = 1.981911861267608
```
We proceed to run the simulation of test power:

```
. set seed 10101
. glo numobs = 150
. glo numsim = 1000
. simulate b2f=r(b2) se2f=r(se2) reject2f=r(r2) p2f=r(p2), ///
>    reps($numsim) saving(chi2errors, replace) nolegend nodots: ///
>    chi2datab
.
. use chi2errors, clear
(simulate: chi2datab)
. mean b2f se2f reject2f
Mean estimation Number of obs  =  1000

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>b2f</td>
<td>2.000506</td>
<td>.0026649</td>
<td>1.995277     2.005735</td>
</tr>
<tr>
<td>se2f</td>
<td>.0839776</td>
<td>.0005458</td>
<td>.0829066      .0850486</td>
</tr>
<tr>
<td>reject2f</td>
<td>.235</td>
<td>.0134147</td>
<td>.2086757      .2613243</td>
</tr>
</tbody>
</table>
```

We see that the test has quite low power, rejecting the false null hypothesis in only 23.5% of the simulations. Let’s see how this would change with a larger sample size.
We see that with 1500 observations rather than 150, the power is substantially improved:

```
. set seed 10101
. glo numsim = 1000
. glo numobs = 1500
. simulate b2f=r(b2) se2f=r(se2) reject2f=r(r2) p2f=r(p2), ///
   reps($numsim) saving(chi2errors, replace) nolegend nodots: ///
   > chi2datab

. use chi2errors, clear (simulate: chi2datab)
. mean b2f se2f reject2f
```

Mean estimation

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>b2f</td>
<td>1.999467</td>
<td>.000842</td>
<td>1.997814 2.001119</td>
</tr>
<tr>
<td>se2f</td>
<td>.0258293</td>
<td>.0000557</td>
<td>.02572 .0259385</td>
</tr>
<tr>
<td>reject2f</td>
<td>.956</td>
<td>.0064889</td>
<td>.9432665 .9687335</td>
</tr>
</tbody>
</table>

The presence of skewed errors has weakened the ability of the estimates to reject the false null at smaller sample sizes.
The other dimension which we may explore is to hold sample size fixed and plot the *power curve*, which expresses the power of the test for various values of the false null hypothesis.

We can produce this set of results by using Stata’s `postfile` facility, which allows us to create a new Stata dataset from within the program. The `postfile` command is used to assign a *handle*, list the scalar quantities that are to be saved for each observation, and the name of the file to be created. The `post` command is then called within a loop to create the observations, and the `postclose` command to close the resulting data file.
. glo numobs = 150
. tempname pwrcurve
. postfile `pwrcurve` falsenull power using powercalc, replace
. forv i=1600(25)2400 {
 2. glo hypbx = `i´/1000
 3. qui simulate b2f=r(b2) se2f=r(se2) reject2f=r(r2) p2f=r(p2), reps($numsim) nolegend nodots: chi2datab
> reps($numsim) nolegend nodots: chi2datab
 4. qui count if p2f < 0.05
 5. loc power = r(N) / $numsim
 6. qui post `pwrcurve´ ($hypbx) (``power´)
 7. }
. postclose `pwrcurve´
Simulation applied to regression

. use powercalc, clear
. su

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>falsenum</td>
<td>33</td>
<td>2</td>
<td>.2417385</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>power</td>
<td>33</td>
<td>.5999394</td>
<td>.3497309</td>
<td>.042</td>
<td>.992</td>
</tr>
</tbody>
</table>

. tw (connected power falsenum, yla(angle(0))), plotregion(style(none))
Evaluating coverage with simpplot

An excellent tool for examining the coverage of a statistical test is the simpplot routine, written by Maarten Buis of WZB and available from ssc. From the routine’s description, “simpplot describes the results of a simulation that inspects the coverage of a statistical test. simpplot displays by default the deviations from the nominal significance level against the entire range of possible nominal significance levels. It also displays the range (Monte Carlo region of acceptance) within which one can reasonably expect these deviations to remain if the test is well behaved.”
In this example, adapted from the help file, we consider the performance of a t-test when the data are not Gaussian, but rather generated by a $\chi^2(2)$, with a mean of 2.0. A t-test of the null that $\mu = 2$ is a test of the true null hypothesis. We want to evaluate how well the t-test performs at various sample sizes: N and $N/10$.

```
capt program drop sim
program define sim, rclass
    1.   drop _all
    2.   qui set obs $numobs
    3.   gen x = rchi2(2)
    4.   loc frac = $numobs / 10
    5.   ttest x=2 in 1/`frac`
    6.   ret sca pfrac = r(p)
    7.   ttest x=2
    8.   ret sca pfull = r(p)
    9.   end
```
We choose $N = 500$ and produce the p-values for the full sample (p_{full}) and for $N = 50$ (p_{frac}):

```
. glo numobs = 500
. glo numrep = 1000
. set seed 10101
. simulate pfrac=r(pfrac) pfull=r(pfull), ///
   reps($numrep) nolegend nodots : sim
   >
. loc nfull = $numobs
. loc nfrac = `nfull´ / 10
. lab var pfrac "N=`nfrac´"
. lab var pfull "N=`nfull´"
. simpplot pfrac pfull, main1opt(mcolor(red) msize(tiny)) ///
   > main2opt(mcolor(blue) msize(tiny)) ///
   > ra(fcolor(gs9) lcolor(gs9))
```

By default, `simpplot` graphs the deviations from the nominal significance level across the range of significance levels. The shaded area is the region where these deviations should lie if the test is well behaved.
Simulation applied to regression

Christopher F Baum (BC / DIW)

with 95% Monte Carlo region of acceptance
We can see that for a sample size of 500, the test stays within bounds for almost all nominal significance levels. For the smaller sample of \(N = 50 \), there are a number of values ‘out of bounds’ for both low and high nominal significance levels, showing that the test rejects the true null too frequently at that limited sample size.
In the context of time series data, we can demonstrate Granger’s concept of a *spurious regression* with a simulation. We create two independent random walks, regress one on the other, and record the coefficient, standard error, *t*-ratio and its tail probability in the saved results from the program. We use a global macro, `trcoef`, to allow the program to be used to model both pure random walks and random walks with drift.
Simulating a spurious regression model

```
. capt prog drop irwd
. prog irwd, rclass
    1.     version 12
    2.     drop _all
    3.     set obs $numobs
    4.     g double x = 0 in 1
    5.     g double y = 0 in 1
    6.     replace x = x[_n - 1] + $trcoef * 2 + rnormal() in 2/1
    7.     replace y = y[_n - 1] + $trcoef * 0.5 + rnormal() in 2/1
    8.     reg y x
    9.     ret sca b = _b[x]
   10.    ret sca se = _se[x]
   11.    ret sca t = _b[x]/_se[x]
   12.    ret sca r2 = abs(return(t)) > invttail($numobs - 2, 0.025)
   13.    end
```
We simulate the model with pure random walks for 10000 observations:

```
. set seed 10101
. glo numsim = 1000
. glo numobs = 10000
. glo trcoef = 0
. simulate b=r(b) se=r(se) t=r(t) reject=r(r2), reps($numsim) ///
> saving(spurious, replace) nolegend nodots: irwd

. use spurious, clear
(simulate: irwd)
. mean b se t reject
```

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>-0.0305688</td>
<td>0.019545</td>
<td>-0.0689226 0.0077851</td>
</tr>
<tr>
<td>se</td>
<td>0.0097193</td>
<td>0.0001883</td>
<td>0.0093496 0.0100889</td>
</tr>
<tr>
<td>t</td>
<td>-1.210499</td>
<td>2.435943</td>
<td>-5.990652 3.569653</td>
</tr>
<tr>
<td>reject</td>
<td>0.979</td>
<td>0.0045365</td>
<td>0.9700979 0.9879021</td>
</tr>
</tbody>
</table>

The true null is rejected in 97.9% of the simulated samples.
We simulate the model of random walks with drift:

```
. set seed 10101
. glo numsim = 1000
. glo numobs = 10000
. glo trcoef = 1
. simulate b=r(b) se=r(se) t=r(t) reject=r(r2), reps($numsim) ///
>       saving(spurious, replace) nolegend nodots: irwd

. use spurious, clear
(simulate: irwd)
. mean b se t reject
```

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>.2499303</td>
<td>.0001723</td>
<td>.249592 .2502685</td>
</tr>
<tr>
<td>se</td>
<td>.0000445</td>
<td>4.16e-07</td>
<td>.0000437 .0000453</td>
</tr>
<tr>
<td>t</td>
<td>6071.968</td>
<td>53.17768</td>
<td>5967.615 6176.321</td>
</tr>
<tr>
<td>reject</td>
<td>1</td>
<td>0</td>
<td>0 . .</td>
</tr>
</tbody>
</table>

The true null is rejected in 100% of the simulated samples, clearly indicating the severity of the spurious regression problem.
In order to demonstrate how measurement error may cause OLS to produce biased and inconsistent results, we generate data from an errors-in-variables model:

\[
\begin{align*}
y &= \alpha + \beta x^* + u, \quad x^* \sim N(0, 9), \quad u \sim N(0, 1) \\
x &= x^* + v, \quad v \sim N(0, 1)
\end{align*}
\]

In the true DGP, \(y \) depends on \(x^* \), but we do not observe \(x^* \), only observing the mismeasured \(x \). Even though the measurement error is uncorrelated with all other RVs, this still causes bias and inconsistency in the estimate of \(\beta \).

We do not need to simulate in this example, as a single dataset meeting these specifications is sufficient.
Simulating an errors-in-variables model

```stata
. set seed 10101
. qui set obs 10000
. mat mu = (0,0,0)
. mat sigmasq = (9,0,0 \ 0,1,0 \ 0,0,1)
. drawnorm xstar u v, means(mu) cov(sigmasq)
. g double y = 5 + 2 * xstar + u
. g double x = xstar + v // mismeasured x
. reg y x
```

```
Source |        SS      df   MS
--------|-----------------------
Model   | 320512.118    1  320512.118
Residual| 45636.9454    9998  4.56460746
        | 366149.064    9999  36.6185682
Total   | 366149.064    9999  36.6185682

y | Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
---|----------------------------------------------------
    |          |           |        |     |                   |
x | 1.795335 | 0.0067752 | 264.98 | 0.000 | 1.782054 1.808616 |
_cons | 5.005169 | 0.021366  | 234.26 | 0.000 | 4.963288 5.047051 |
```

We see a sizable attenuation bias in the estimate of \(\beta \), depending on the noise-signal ratio \(\sigma_v^2/(\sigma_v^2 + \sigma_{x*}^2) = 0.1 \), implying an estimate of 1.8.
If we increase the measurement error variance, the attenuation bias becomes more severe:

```stata
. set seed 10101
. qui set obs 10000
. mat mu = (0,0,0)
. mat sigmasq = (9,0,0 \\ 0,1,0 \\ 0,0,4) // larger measurement error variance
. drawnorm xstar u v, means(mu) cov(sigmasq)
. g double y = 5 + 2 * xstar + u
. g double x = xstar + v // mismeasured x
. reg y x
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>246636.774</td>
<td>1</td>
<td>246636.774</td>
</tr>
<tr>
<td>Residual</td>
<td>119512.29</td>
<td>9998</td>
<td>11.9536197</td>
</tr>
<tr>
<td>Total</td>
<td>366149.064</td>
<td>9999</td>
<td>36.6185682</td>
</tr>
</tbody>
</table>

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------------|----------|------------|-------|------|---------------------|
| x | 1.378317 | .0095956 | 143.64| 0.000 | 1.359508 1.397126 |
| _cons | 5.007121 | .0345763 | 144.81| 0.000 | 4.939344 5.074897 |

With a noise-signal ratio of 4/13, the coefficient that is 9/13 of the true value.
Simulating a model with endogenous regressors

In order to simulate how a violation of the zero conditional mean assumption, $E[u|X] = 0$, causes inconsistency, we simulate a DGP in which that correlation is introduced:

$$y = \alpha + \beta x + u, \quad u \sim N(0, 1)$$
$$x = z + \rho u, \quad z \sim N(0, 1)$$

and then estimate the regression of y on x via OLS.
The program returns the t-statistic for a test of β_x against its true value of 2.0, as well as the p-value of that test and an indicator of rejection at the 95% level.
Setting \(\rho \), the correlation between regressor and error to 0.5, we find a serious bias in the estimated coefficient:

```
. set seed 10101
. glo numobs = 150
. glo numrep = 1000
. glo corrxu = 0.5
. glo ols = 1
. simulate b2r=r(b2) se2r=r(se2) t2r=r(t2) p2r=r(p2) r2r=r(r2), ///
  > reps($numrep) noleg nodots saving(endog, replace): endog
```

```
. mean b2r se2r r2r
```

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>b2r</td>
<td>2.397172</td>
<td>0.0021532</td>
<td>2.392946 2.401397</td>
</tr>
<tr>
<td>se2r</td>
<td>0.0660485</td>
<td>0.0001693</td>
<td>0.0657163 0.0663807</td>
</tr>
<tr>
<td>r2r</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A smaller value of $\rho = 0.2$ reduces the bias in the estimated coefficient:

```
. set seed 10101
. glo numobs = 150
. glo numrep = 1000
. glo corrxu = 0.2
. glo ols = 1
. simulate b2r=r(b2) se2r = r(se2) t2r=r(t2) p2r=r(p2) r2r=r(r2), ///
   reps($numrep) noleg nodots saving(endog, replace): endog
. mean b2r se2r r2r
```

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>b2r</td>
<td>2.187447</td>
<td>.0025964</td>
<td>2.182352 2.192542</td>
</tr>
<tr>
<td>se2r</td>
<td>.0791955</td>
<td>.0002017</td>
<td>.0787998 .0795912</td>
</tr>
<tr>
<td>r2r</td>
<td>.645</td>
<td>.0151395</td>
<td>.6152911 .6747089</td>
</tr>
</tbody>
</table>

The upward bias is still about 10% of the DGP value, and rejection of the true null still occurs in 64.5% of the simulations.
We can also demonstrate the inconsistency of the estimator by using a much larger sample size:

```
. set seed 10101
. glo numobs = 15000
. glo numrep = 1000
. glo corrxu = 0.2
. glo ols = 1
. simulate b2r=r(b2) se2r = r(se2) t2r=r(t2) p2r=r(p2) r2r=r(r2), ///
   reps($numrep) noleg nodots saving(endog, replace): endog
. mean b2r se2r r2r
```

Mean estimation

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>b2r</td>
<td>2.19204</td>
<td>.0002448</td>
<td>2.19156 2.19252</td>
</tr>
<tr>
<td>se2r</td>
<td>.0078569</td>
<td>2.04e-06</td>
<td>.0078529 .0078609</td>
</tr>
<tr>
<td>r2r</td>
<td>1</td>
<td>0</td>
<td>. .</td>
</tr>
</tbody>
</table>

With $N=15,000$, the rejection of the true null occurs in every simulation.
By setting the global macro `ols` to 0, we can simulate the performance of the instrumental variables estimator of this exactly identified model, which should be consistent:

```
  . set seed 10101
  . glo numobs = 150
  . glo numrep = 1000
  . glo corrxu = 0.5
  . glo ols = 0
  . simulate b2r=r(b2) se2r=r(se2) t2r=r(t2) p2r=r(p2) r2r=r(r2), ///
    > reps($numrep) noleg nodots saving(endog, replace): endog
  . mean b2r se2r r2r
```

```
Mean estimation
Number of obs  =  1000

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>b2r</td>
<td>1.991086</td>
<td>.0026889</td>
<td>1.985809 1.996362</td>
</tr>
<tr>
<td>se2r</td>
<td>.0825012</td>
<td>.000302</td>
<td>.0819086  .0830939</td>
</tr>
<tr>
<td>r2r</td>
<td>.029</td>
<td>.0053092</td>
<td>.0185816  .0394184</td>
</tr>
</tbody>
</table>
```

The rejection frequency of the true null is only 2.9%, indicating that the IV estimator is consistently estimating β_x.