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Simulation for estimation and testing Introduction

Monte Carlo simulation is a useful and powerful tool for investigating
the properties of econometric estimators and tests. The power is
derived from being able to define and control the statistical
environment in which you fully specify the data generating process
(DGP) and use those data in controlled experiments.

Many of the estimators we commonly use only have an asymptotic
justification. When using a sample of a particular size, it is important to
verify how well estimators and postestimation tests are likely to
perform in that environment. Monte Carlo simulation may be used,
even when we are confident that the estimation techniques are
appropriate, to evaluate their performance: for instance, their empirical
rate of convergence when some of the underlying assumptions may
not be satisfied.
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Simulation for estimation and testing Introduction

In many situations, we must write a computer program to compute an
estimator or test. Simulation is a useful tool in that context to check the
validity of the code in a controlled setting, and verify that it handles all
plausible configurations of data properly. For instance, a routine that
handles panel, or longitudinal, data should be validated on both
balanced and unbalanced panels if it is valid to apply that procedure in
the unbalanced case.

Simulation is perhaps a greatly underutilized tool, given the ease of its
use in Stata and similar econometric software languages. When
conducting applied econometric studies, it is important to assess the
properties of the tools we use, whether they are ‘canned’ or
user-written. Simulation can play an important role in that process.
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Simulation for estimation and testing Pseudo-random number generators

Pseudo-random number generators

A key element in Monte Carlo simulation and bootstrapping is the
pseudo-random number (PRN) generator. The term random number
generator is an oxymoron, as computers with a finite number of binary
bits actually use deterministic devices to produce long chains of
numbers that mimic the realizations from some target distribution.
Eventually, those chains will repeat; we cannot achieve an infinite
periodicity for a PRNG.

All PRNGs are based on transformations of draws from the uniform
(0,1) distribution. A simple PRNG uses the deterministic rule

Xj = (kXj−1 + c) mod m, j = 1, . . . , J

where mod is the modulo operator, to produce a sequence of
integers between 0 and (m − 1). The sequence Rj = Xj/m is then a
sequence of J values between 0 and 1.
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Simulation for estimation and testing Pseudo-random number generators

Using 32-bit integer arithmetic, as is common, m = 231 − 1 and the
maximum periodicity is that figure, which is approximately 2.1× 109.
That maximum will only be achieved with optimal choices of k , c and
X0; with poor choices, the sequence will repeat more frequently than
that.

These values are not truly random: if you start the PRNG with the
same X0, known as the seed of the PRNG, you will receive exactly the
same sequence of pseudo-random draws. That is an advantage when
validating computer code, as you will want to ensure that the program
generates the same deterministic results when presented with a given
sequence of pseudo-random draws. In Stata, you may

set seed nnnnnnnn

before any calls to a PRNG to ensure that the starting point is fixed.
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Simulation for estimation and testing Pseudo-random number generators

If you do not specify a seed value, the seed is chosen from the time of
day to millisecond precision, so even if you rerun the program at
10:00:00 tomorrow, you will not be using the same seed value. Stata’s
basic PRNG is runiform(), which takes no arguments (but the
parentheses must be typed). Its maximum value is 1− 2−32.

As mentioned, all other PRNGs are transformations of that produced
by the uniform PRNG. To draw uniform values over a different range:
e.g., over the interval [a,b),

gen double varname = a+(b-a)*runiform()

and to draw (pseudo-)random integers over the interval (a,b),

gen double varname = a+int((b-a+1)*runiform())
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Simulation for estimation and testing Pseudo-random number generators

If we draw using the runiform() PRNG, we see that its theoretical
values of µ = 0.5, σ =

√
1/12 = 0.28867513 appear as we increase

sample size:
. qui set obs 1000000

. set seed 10101

. g double x1k = runiform() in 1/1000
(999000 missing values generated)

. g double x10k = runiform() in 1/10000
(990000 missing values generated)

. g double x100k = runiform() in 1/100000
(900000 missing values generated)

. g double x1m = runiform()

. su

Variable Obs Mean Std. Dev. Min Max

x1k 1000 .5150332 .2934123 .0002845 .9993234
x10k 10000 .4969343 .288723 .000112 .999916

x100k 100000 .4993971 .2887694 7.72e-06 .999995
x1m 1000000 .4997815 .2887623 4.85e-07 .9999998
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Simulation for estimation and testing Pseudo-random number generators

The sequence is deterministic: that is, if we rerun this do-file, we will
get exactly the same draws every time, as we have set the seed of the
PRNG. However, the draws should be serially uncorrelated. If that
condition is satisfied, then the autocorrelations of this series should be
negligible:

. g t = _n

. tsset t
time variable: t, 1 to 1000000

delta: 1 unit

. pwcorr L(0/5).x1m, star(0.05)

x1m L.x1m L2.x1m L3.x1m L4.x1m L5.x1m

x1m 1.0000
L.x1m -0.0011 1.0000
L2.x1m -0.0003 -0.0011 1.0000
L3.x1m 0.0009 -0.0003 -0.0011 1.0000
L4.x1m 0.0009 0.0009 -0.0003 -0.0011 1.0000
L5.x1m 0.0007 0.0009 0.0009 -0.0003 -0.0011 1.0000

. wntestq x1m

Portmanteau test for white noise

Portmanteau (Q) statistic = 39.7976
Prob > chi2(40) = 0.4793
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Simulation for estimation and testing Pseudo-random number generators

Both pwcorr, which computes significance levels for pairwise
correlations, and the Ljung–Box–Pierce Q test, or portmanteau test,
fail to detect any departure from serial independence in the uniform
draws produced by the runiform() PRNG.
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Simulation for estimation and testing Draws from the normal distribution

Draws from the normal distribution

To consider a more useful task, we may want to draw from the normal
distribution, By default, the rnormal() function produces draws from
the standard normal, with µ = 0, σ = 1. If we want to draw from
N(m, s2),

gen double varname = rnormal(m, s)

The function can also be used with a single argument, the desired
mean, with the standard deviation set to 1.
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Simulation for estimation and testing Draws from other continuous distributions

Draws from other continuous distributions

Similar functions exist in Stata for Student’s t with n d.f. and χ2(m) with
m d.f.: the functions rt(n) and rchi2(m), respectively. There is no
explicit function for the F (h,n) for the F distribution with h and n d.f.,
so this can be done as the ratios of draws from the χ2(h) and χ2(n)
distributions:

. set obs 100000
obs was 0, now 100000

. set seed 10101

. gen double xt = rt(10)

. gen double xc3 = rchi2(3)

. gen double xc97 = rchi2(97)

. gen double xf = ( xc3 / 3 ) / (xc97 / 97 ) // produces F[3, 97]

. su

Variable Obs Mean Std. Dev. Min Max

xt 100000 .0064869 1.120794 -7.577694 8.765106
xc3 100000 3.002999 2.443407 .0001324 25.75221
xc97 100000 97.03116 13.93907 45.64333 171.9501
xf 100000 1.022082 .8542133 .0000343 8.679594
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Simulation for estimation and testing Draws from other continuous distributions

In this example, the t-distributed RV should have mean zero; the χ2(3)
RV should have mean 3.0; the χ2(97) RV should have mean 97.0; and
the F (3,97) should have mean 97/(97-2) = 1.021. We could compare
their higher moments with those of the theoretical distributions as well.

We may also draw from the two-parameter Beta(a,b) distribution,
which for a,b > 0 yields µ = a/(a + b), σ2 = ab/((a + b)2(a + b + 1)),
using rbeta(a,b). Likewise, we can draw from a two-parameter
Gamma(a,b) distribution, which for a,b > 0 yields µ = ab and
σ2 = ab2. Many other continuous distributions can be expressed in
terms of the Beta and Gamma distributions; note that the latter is often
called the generalized factorial function.
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Simulation for estimation and testing Draws from discrete distributions

Draws from discrete distributions

You may also produce pseudo-random draws from several discrete
probability distributions. For the binomial distribution Bin(n,p), with n
trials and success probability p, use binomial(n,p). For the
Poisson distribution with µ = σ2 = m, use poisson(m).

. set obs 100000
obs was 0, now 100000

. set seed 10101

. gen double xbin = rbinomial(100, 0.8)

. gen double xpois = rpoisson(5)

. su

Variable Obs Mean Std. Dev. Min Max

xbin 100000 79.98817 3.991282 61 94
xpois 100000 4.99788 2.241603 0 16

. di r(Var) // variance of the last variable summarized
5.0247858

The means of these two variables are close to their theoretical values,
as is the variance of the Poisson-distributed variable.
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An illustration of simulation

A first illustration

As a first illustration of Monte Carlo simulation in Stata, we
demonstrate the central limit theorem result that in the limit, a
standardized sample mean, (x̄N − µ)/(σ/

√
N), has a standard normal

distribution, N(0,1), so that the sample mean is approximately
normally distributed as N →∞. We first consider a single sample of
size 30 drawn from the uniform distribution.

. set obs 30
obs was 0, now 30

. set seed 10101

. gen double x = runiform()

. su

Variable Obs Mean Std. Dev. Min Max

x 30 .5459987 .2803788 .0524637 .9983786
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An illustration of simulation

We see that the mean of this sample, 0.546, is quite far from the
theoretical value of 0.5, and the resulting values do not look very
uniformly distributed when viewed as a histogram. For large samples,
the histogram should approach a horizontal line at density = 1.
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An illustration of simulation

To illustrate the features of the distribution of sample mean for a fixed
sample size of 30, we conduct a Monte Carlo experiment using Stata’s
simulate prefix. As with other prefix commands in Stata such as by,
statsby, or rolling, the simulate prefix can execute a single
Stata command repeatedly.

Using Monte Carlo, we usually must write the ad hoc Stata command,
or program, that produces the desired result. That program will be
called repeatedly by simulate, which will produce a new dataset of
simulated results: in this case, the sample mean from each sample of
size 30.
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An illustration of simulation ado-file programming

In Stata terms, what we must write is an ado-file: a file containing a
Stata program of the same name that adds a new verb to the Stata
language. In the case of simulate, this is quite straightforward, as
the program’s structure is formulaic, focusing on the results to be
produced and returned in the stored results.

The same methodology and programming constructs will be relevant if
you are using Stata’s maximum likelihood commands, ml, for which
you must write a program containing the (log-)likelihood function.

Serious uses of the generalized method of moments command, gmm,
require you to write a program containing the moment conditions, or
orthogonality conditions. The same techniques may be used for
Stata’s nonlinear least squares commands (nl and nlsur).
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An illustration of simulation The simulate command prefix

The simulate command has the syntax

simulate [exp_list], reps(n) [options]: command

Per the usual notation for Stata syntax, the [bracketed] items are
optional, and those in italics are to be filled in. All options for
simulate, including the ‘required option’ reps()), appear before the
colon (:), while any options for command appear after a comma in
the command. The quantities to be calculated and stored by your
command are specified in exp_list.

We will employ the saving() option of simulate, which will create a
new Stata dataset from the results produced in the exp_list. If
successful, it will have n observations, one for each of the replications.
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An illustration of simulation Developing a simulation program

We illustrate a program which may be called by simulate:

. prog drop _all

. prog onesample, rclass
1. version 12
2. drop _all
3. qui set obs 30
4. g double x = runiform()
5. su x, meanonly
6. ret sca mu = r(mean)
7. end

The program is named onesample and declared rclass, which is
necessary for the program to return stored results as r(). We have
hard-coded the sample size of 30 observations, specifying that the
program should create a uniform RV, compute its mean, and return it
as a numeric scalar to simulate as r(mu).

For future use, the program should be saved in onesample.ado on
the adopath, preferably in your PERSONAL directory. Use adopath to
locate that directory.
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An illustration of simulation Developing a simulation program

When you write a simulation program, you should always run it once
as a check that it performs as it should, and returns the item or items
that are meant to be used by simulate:

. set seed 10101

. onesample

. return list

scalars:
r(mu) = .5459987206074098

Note that the mean of the series that appears in the return list is
the same as that which we computed earlier from the same seed.
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An illustration of simulation Executing the simulation

Executing the simulation

We are now ready to invoke simulate: to produce the Monte Carlo
results:

. loc srep 10000

. simulate xbar = r(mu), seed(10101) reps(`srep´) nodots ///
> saving(muclt, replace) : onesample

command: onesample
xbar: r(mu)

We expect that the variable xbar in the dataset we have created,
muclt.dta, will have a mean of 0.5 and a standard deviation of√

(1/12)/30 = 0.0527.
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An illustration of simulation Executing the simulation

. use muclt, clear
(simulate: onesample)

. su

Variable Obs Mean Std. Dev. Min Max

xbar 10000 .4995835 .0533809 .3008736 .6990562
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An illustration of simulation Executing the simulation

Although the mean and standard deviation of the simulated distribution
are not exactly in line with the theoretical values, they are quite close,
and the empirical distribution of the 10,000 sample means is quite
close to that of the overlaid normal distribution.

We might want to make our program more general by allowing for
other sample sizes:

. prog drop _all

. prog onesamplen, rclass
1. version 12
2. syntax [, N(int 30)]
3. drop _all
4. qui set obs `n´
5. g double x = runiform()
6. su x, meanonly
7. ret sca mu = r(mean)
8. end

We have added an n() option that allows onesamplen to use a
different sample size if specified, with a default of 30.
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An illustration of simulation Executing the simulation

Again, we should check to see that the program works properly with
this new feature, and produces the same result as we could manually:

. set seed 10101

. set obs 300
obs was 0, now 300

. gen double x = runiform()

. su x

Variable Obs Mean Std. Dev. Min Max

x 300 .5270966 .2819105 .0010465 .9983786

. set seed 10101

. onesamplen, n(300)

. return list

scalars:
r(mu) = .527096571639025
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An illustration of simulation Executing the simulation

We can now execute our new version of the program with a different
sample size. Notice that the option is that of onesamplen, not that of
simulate. We expect that the variable xbar in the dataset we have
created, muclt300.dta, will have a mean of 0.5 and a standard
deviation of

√
(1/12)/300 = .01667.

. loc srep 10000

. loc sampn 300

. simulate xbar = r(mu), seed(10101) reps(`srep´) nodots ///
> saving(muclt300, replace) : onesamplen, n(`sampn´)

command: onesamplen, n(300)
xbar: r(mu)

(note: file muclt300.dta not found)

. use muclt300, clear
(simulate: onesamplen)

. su

Variable Obs Mean Std. Dev. Min Max

xbar 10000 .5000151 .0164797 .4367322 .5712539

The results are quite close to the theoretical values.
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An illustration of simulation Executing the simulation
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More details on PRNGs

More details on PRNGs

Bill Gould’s entries in the Stata blog, Not Elsewhere Classified, discuss
several ways in which the runiform() PRNG can be useful:

shuffling observations in random order: generate a uniform RV
and sort on that variable
drawing a subsample of n observations without replacement:
generate a uniform RV, sort on that variable, and
keep in 1/n; see help sample

drawing a p% random sample without replacement:
keep if runiform() <= P/100; see help sample

drawing a subsample of n observations with replacement, as
needed in bootstrap methods; see help sample
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More details on PRNGs Inverse-probability transformations

Inverse-probability transformations

Let F (x) = Pr(X ≤ x) denote the cdf of RV x . Given a random draw of
a uniformly distributed RV r ,0 ≤ r ≤ 1, the inverse transformation
x = F−1(r) provides a unique value of x , which will be a good
approximation of a random draw from F (x).

This inverse-probability transformation method allows us to generate
pseudo-RVs for any distribution for which we can provide the inverse
CDF. Although the normal distribution lacks a closed form, there are
good numerical approximations to its inverse CDF. That allows a
method such as

gen double xn = invnormal(runiform())

and until recently, that was the way in which one produced
pseudo-random normal variates in Stata.
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More details on PRNGs Inverse-probability transformations

We might want to draw from the unit exponential distribution,
F (x) = 1− e−x , which has analytical inverse x = − log(1− r).
So the method yields

gen double xexp = -log(1-runiform())

One can also apply this method to a discrete CDF, with the convention
that the left limit of a flat segment is taken as the x value.
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More details on PRNGs Direct transformations

Direct transformations

When we want draws from Y = g(X ), then the direct transformation
method involves drawing from the distribution of X and applying the
transformation g(·). This in fact is the method used in common PRNG
functions:

a χ2(1) draw is the square of a draw from N(0,1)

a χ2(m) is the sum of m independent draws from χ2(1)

a F (m1,m2) draw is (v1/m1)/(v2/m2), where v1, v2 are
independent draws from χ2(m1), χ2(m2)

a t(m) draw is u =
√

v/m, where u, v are independent draws
from N(0,1), χ2(m)
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More details on PRNGs Mixtures of distributions

Mixtures of distributions

A widely used discrete distribution is the negative binomial, which can
be written as a Poisson–Gamma mixture. If y/λ ∼Poisson(λ) and
λ/µ, α ∼ Γ(µ, αµ), then y/µ, α ∼ NB2(µ, µ+ αµ2). The NB2 can be
seen as a generalization of the Poisson, which would impose the
constraint that α = 0.1

Draws from the NB2(1,1) distribution can be achieved by a two-step
method: first draw ν from Γ(1,1), then draw from Poisson(ν).
To draw from NB2(µ,1), first draw ν from Γ(µ,1).

1An alternative parameterization of the variance is known as the NB1
distribution.
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More details on PRNGs Draws from the truncated normal

Draws from the truncated normal

In censoring or truncation models, we often encounter the truncated
normal distribution. With truncation, realizations of X are constrained
to lie in (a,b), one of which could be ±∞. Given X ∼ TNa,b(µ, σ2), the
µ, σ2 parameters describe the untruncated distribution of X .

Given draws from a uniform distribution u,
define a∗ = (a− µ)/σ, b∗ = (b − µ)/σ:

x = µ+ σΦ−1 [Φ(a∗) + (Φ(b∗)− Φ(a∗))u]

where Φ(·) is the CDF of the normal distribution.
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More details on PRNGs Draws from the truncated normal

. qui set obs 10000

. set seed 10101

. sca a = 0

. sca b = 12 // draws from N(5, 4^2) truncated [0,12]

. sca mu = 5

. sca sigma = 4

. sca astar = (a - mu) / sigma

. sca bstar = (b - mu) / sigma

. g double u = runiform()

. g double w = normal(astar) + (normal(bstar) - normal(astar)) * u

. g double xtrunc = mu + sigma * invnormal(w)

. su xtrunc

Variable Obs Mean Std. Dev. Min Max

xtrunc 10000 5.436194 2.951024 .0022294 11.99557

Note that normal() is the normal CDF, with invnormal() its
inverse. This double truncation will increase the mean, as a is closer to
µ than is b. With the truncated normal, the variance always declines:
in this case σ = 2.95 rather than 4.0.
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More details on PRNGs Draws from the multivariate normal

Draws from the multivariate normal

Draws from the multivariate normal are simpler to implement than
draws from many multivariate distributions because linear
combinations of normal RVs are also normal.

Direct draws can be made using the drawnorm command, specifying
mean vector µ and covariance matrix Σ. For instance, to draw two RVs
with means of (10,20), variances (4,9) and covariance = 3 (correlation
0.5):
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More details on PRNGs Draws from the multivariate normal

. qui set obs 10000

. set seed 10101

. mat mu = (10,20)

. sca cov = 0.5 * sqrt(4 * 9)

. mat sigma = (4, cov \ cov, 9)

. drawnorm double y1 y2, means(mu) cov(sigma)

. su y1 y2

Variable Obs Mean Std. Dev. Min Max

y1 10000 9.986668 1.9897 2.831865 18.81768
y2 10000 19.96413 2.992709 8.899979 30.68013

. corr y1 y2
(obs=10000)

y1 y2

y1 1.0000
y2 0.4979 1.0000
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Simulation applied to regression

Simulation applied to regression

In using Monte Carlo simulation methods in a regression context, we
usually compute parameters, their VCE or summary statistics for each
of S generated datasets, and evaluate their empirical distribution.

As an example, we evaluate the finite-sample properties of the OLS
estimator with random regressors and a skewed error distribution. If
the errors are i .i .d ., then this skewness will have no effect on the
asymptotic properties of OLS. In comparison to non-skewed error
distributions, we will need a larger sample size for the asymptotic
results to hold.
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Simulation applied to regression

We consider the DGP

y = β1 + β2x + u, u ∼ χ2(1)− 1, x ∼ χ2(1)

where β1 = 1, β2 = 2, N = 150. The error is independent of x ,
ensuring consistency of OLS, with a mean of zero, variance of 2,
skewness of

√
8 and kurtosis of 15, compared to the normal error with

a skewness of 0 and kurtosis of 3.

For each simulation, we obtain parameter estimates, standard errors,
t-values for the test that β2 = 2 and the outcome of a two-tailed test of
that hypothesis at the 0.05 level.

We store the sample size in a global macro, as we may want to change
it without revising the program.
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Simulation applied to regression

. // Analyze finite-sample properties of OLS
. capt prog drop chi2data

. program chi2data, rclass
1. version 12
2. drop _all
3. set obs $numobs
4. gen double x = rchi2(1)
5. gen double y = 1 + 2*x + rchi2(1)-1 // demeaned chi^2 error
6. reg y x
7. ret sca b2 =_b[x]
8. ret sca se2 = _se[x]
9. ret sca t2 = (_b[x]-2)/_se[x]

10. ret sca p2 = 2*ttail($numobs-2, abs(return(t2)))
11. ret sca r2 = abs(return(t2)) > invttail($numobs-2,.025)
12. end

The regression returns its coefficients and standard errors to our
program in the _b[ ] and _se[ ] vectors. Those quantity are used
to produce the t statistic, its p-value, and a scalar r2: a binary
rejection indicator which will equal 1 if the computed t-statistic exceeds
the tabulated value for the appropriate sample size.
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Simulation applied to regression

We test the program by executing it once and verifying that the stored
results correspond to those which we compute manually:

. set seed 10101

. glo numobs = 150

. chi2data
obs was 0, now 150

Source SS df MS Number of obs = 150
F( 1, 148) = 776.52

Model 1825.65455 1 1825.65455 Prob > F = 0.0000
Residual 347.959801 148 2.35107974 R-squared = 0.8399

Adj R-squared = 0.8388
Total 2173.61435 149 14.5880158 Root MSE = 1.5333

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 2.158967 .0774766 27.87 0.000 2.005864 2.31207
_cons .9983884 .1569901 6.36 0.000 .6881568 1.30862
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Simulation applied to regression

. set seed 10101

. qui chi2data

. ret li

scalars:
r(r2) = 1
r(p2) = .0419507116911909
r(t2) = 2.05180994793611
r(se2) = .0774765768836093
r(b2) = 2.158967211181826

. di r(t2)^2
4.2099241

. test x = 2

( 1) x = 2

F( 1, 148) = 4.21
Prob > F = 0.0420

As the results are appropriate, we can now proceed to produce the
simulation.
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Simulation applied to regression

. set seed 10101

. glo numsim = 1000

. simulate b2f=r(b2) se2f=r(se2) t2f=r(t2) reject2f=r(r2) p2f=r(p2), ///
> reps($numsim) saving(chi2errors, replace) nolegend nodots: ///
> chi2data

. use chi2errors, clear
(simulate: chi2data)

. su

Variable Obs Mean Std. Dev. Min Max

b2f 1000 2.000506 .08427 1.719513 2.40565
se2f 1000 .0839776 .0172588 .0415919 .145264
t2f 1000 .0028714 .9932668 -2.824061 4.556576

reject2f 1000 .046 .2095899 0 1
p2f 1000 .5175819 .2890326 .0000108 .9997773

The mean of simulated b2f is very close to 2.0, implying the absence
of bias. The standard deviation of simulated b2f is close to the mean
of se2f, suggesting that the standard errors are unbiased as well. The
mean rejection rate of 0.046 is close to the size of the test, 0.05.

Christopher F Baum (BC / DIW) Simulation Boston College, Spring 2014 41 / 72



Simulation applied to regression

In order to formally evaluate the simulation results, we use mean to
obtain 95% confidence intervals for the simulation averages:

. mean b2f se2f reject2f

Mean estimation Number of obs = 1000

Mean Std. Err. [95% Conf. Interval]

b2f 2.000506 .0026649 1.995277 2.005735
se2f .0839776 .0005458 .0829066 .0850486

reject2f .046 .0066278 .032994 .059006

The 95% CI for the point estimate is [1.995, 2.006], validating the
conclusion of its unbiasedness. The 95% CI for the standard error of
the estimated coefficient is [0.083, 0.085], which contains the standard
deviation of the simulated point estimates. We can also compare the
empirical distribution of the t statistics with the theoretical distribution
of t148.
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Simulation applied to regression

. kdensity t2f, n($numobs) gen(t2_x t2_d) nograph

. qui gen double t2_d2 = tden(148, t2_x)

. lab var t2_d2 "Asymptotic distribution, t(148)"

. gr tw (line t2_d t2_x) (line t2_d2 t2_x, ylab(,angle(0)))
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-4 -2 0 2 4
r(t2)

density: r(t2) Asymptotic distribution, t(148)
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Simulation applied to regression Size of the test

Size of the test

To evaluate the size of the test, the probability of rejecting a true null
hypothesis: a Type I error, we can examine the rejection rate, r2
above.

The estimated rejection rate from 1000 simulations is 0.046, with a
95% confidence interval of (0.033, 0.059): wide, but containing 0.05.
With 10,000 replications, the estimated rejection rate is 0.049 with a
confidence interval of (0.044, 0.052).

We computed the p-value of the test as p2f. If the t-distribution is the
correct distribution, then p2 should be uniformly distributed on (0,1).
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Simulation applied to regression Size of the test
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Simulation applied to regression Size of the test

Using the computed set of p-values, we can evaluate the test size at
any level of α:

. qui count if p2f < 0.10

. di _n "Nominal size: 0.10" _n "For $numsim simulations: " _n "Test size : "
> r(N)/$numsim

Nominal size: 0.10
For 1000 simulations:
Test size : .093

We see that the test is slightly undersized, corresponding to the
histogram falling short of unity for lower levels of the p-value.
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Simulation applied to regression Power of the test

Power of the test

We can also evaluate the power of the test: its ability to reject a false
null hypothesis. If we fail to reject a false null, we commit a Type II
error. The power of the test is the complement of the probability of
Type II error. Unlike the size, which can be evaluated for any level of α
from a single simulation experiment, power must be evaluated for a
specific null and alternative hypothesis.

We estimate the rejection rate for the test against a false null
hypothesis. The larger the difference between the tested value and the
true value, the greater the power and the rejection rate. This modified
version of the chi2data program estimates the power of a test
against the false null hypothesis βx = 2.1. We create a global macro to
hold the hypothesized value so that it may be changed without revising
the program.
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Simulation applied to regression Power of the test

. capt prog drop chi2datab

. program chi2datab, rclass
1. version 12
2. drop _all
3. set obs $numobs
4. gen double x = rchi2(1)
5. gen y = 1 + 2*x + rchi2(1)-1
6. reg y x
7. ret sca b2 =_b[x]
8. ret sca se2 =_se[x]
9. test x = $hypbx

10. ret sca p2 = r(p)
11. ret sca r2 = (r(p)<.05)
12. end

In this case, all we need do is invoke the test command and make
use of one of its stored results, r(p). The scalar r2 is an indicator
variable which will be 1 when the p-value of the test is below 0.05, 0
otherwise.
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Simulation applied to regression Power of the test

We run the program once to verify its functioning:
. set seed 10101

. glo hypbx = 2.1

. chi2datab
obs was 0, now 500

Source SS df MS Number of obs = 500
F( 1, 498) = 3368.07

Model 5025.95627 1 5025.95627 Prob > F = 0.0000
Residual 743.13261 498 1.49223416 R-squared = 0.8712

Adj R-squared = 0.8709
Total 5769.08888 499 11.5613004 Root MSE = 1.2216

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 1.981912 .0341502 58.04 0.000 1.914816 2.049008
_cons .9134554 .0670084 13.63 0.000 .7818015 1.045109

( 1) x = 2.1

F( 1, 498) = 11.96
Prob > F = 0.0006

. ret li

scalars:
r(r2) = 1
r(p2) = .00059104547771
r(se2) = .03415021735296
r(b2) = 1.981911861267608
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Simulation applied to regression Power of the test

We proceed to run the simulation of test power:
. set seed 10101

. glo numobs = 150

. glo numsim = 1000

. simulate b2f=r(b2) se2f=r(se2) reject2f=r(r2) p2f=r(p2), ///
> reps($numsim) saving(chi2errors, replace) nolegend nodots: ///
> chi2datab

. use chi2errors, clear
(simulate: chi2datab)

. mean b2f se2f reject2f

Mean estimation Number of obs = 1000

Mean Std. Err. [95% Conf. Interval]

b2f 2.000506 .0026649 1.995277 2.005735
se2f .0839776 .0005458 .0829066 .0850486

reject2f .235 .0134147 .2086757 .2613243

We see that the test has quite low power, rejecting the false null
hypothesis in only 23.5% of the simulations. Let’s see how this would
change with a larger sample size.
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Simulation applied to regression Power of the test

We see that with 1500 observations rather than 150, the power is
substantially improved:

. set seed 10101

. glo numsim = 1000

. glo numobs = 1500

. simulate b2f=r(b2) se2f=r(se2) reject2f=r(r2) p2f=r(p2), ///
> reps($numsim) saving(chi2errors, replace) nolegend nodots: ///
> chi2datab

. use chi2errors, clear
(simulate: chi2datab)

. mean b2f se2f reject2f

Mean estimation Number of obs = 1000

Mean Std. Err. [95% Conf. Interval]

b2f 1.999467 .000842 1.997814 2.001119
se2f .0258293 .0000557 .02572 .0259385

reject2f .956 .0064889 .9432665 .9687335

The presence of skewed errors has weakened the ability of the
estimates to reject the false null at smaller sample sizes.
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Simulation applied to regression Power of the test

The other dimension which we may explore is to hold sample size fixed
and plot the power curve, which expresses the power of the test for
various values of the false null hypothesis.

We can produce this set of results by using Stata’s postfile facility,
which allows us to create a new Stata dataset from within the program.
The postfile command is used to assign a handle, list the scalar
quantities that are to be saved for each observation, and the name of
the file to be created. The post command is then called within a loop
to create the observations, and the postclose command to close the
resulting data file.
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Simulation applied to regression Power of the test

. glo numobs = 150

. tempname pwrcurve

. postfile `pwrcurve´ falsenull power using powercalc, replace

. forv i=1600(25)2400 {
2. glo hypbx = `i´/1000
3. qui simulate b2f=r(b2) se2f=r(se2) reject2f=r(r2) p2f=r(p2), ///

> reps($numsim) nolegend nodots: chi2datab
4. qui count if p2f < 0.05
5. loc power = r(N) / $numsim
6. qui post `pwrcurve´ ($hypbx) (`power´)
7. }

. postclose `pwrcurve´
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Simulation applied to regression Power of the test

. use powercalc, clear

. su

Variable Obs Mean Std. Dev. Min Max

falsenull 33 2 .2417385 1.6 2.4
power 33 .5999394 .3497309 .042 .992

. tw (connected power falsenull, yla(,angle(0))), plotregion(style(none))
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Simulation applied to regression simpplot

Evaluating coverage with simpplot

An excellent tool for examining the coverage of a statistical test is the
simpplot routine, written by Maarten Buis of WZB and available from
ssc. From the routine’s description, “simpplot describes the results of
a simulation that inspects the coverage of a statistical test. simpplot
displays by default the deviations from the nominal significance level
against the entire range of possible nominal significance levels. It also
displays the range (Monte Carlo region of acceptance) within which
one can reasonably expect these deviations to remain if the test is well
behaved.”
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Simulation applied to regression simpplot

In this example, adapted from the help file, we consider the
performance of a t-test when the data are not Gaussian, but rather
generated by a χ2(2), with a mean of 2.0. A t-test of the null that µ = 2
is a test of the true null hypothesis. We want to evaluate how well the
t-test performs at various sample sizes: N and N/10.

. capt program drop sim

. program define sim, rclass
1. drop _all
2. qui set obs $numobs
3. gen x = rchi2(2)
4. loc frac = $numobs / 10
5. ttest x=2 in 1/`frac´
6. ret sca pfrac = r(p)
7. ttest x=2
8. ret sca pfull = r(p)
9. end
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Simulation applied to regression simpplot

We choose N = 500 and produce the p-values for the full sample
(pfull) and for N = 50 (pfrac):

. glo numobs = 500

. glo numrep = 1000

. set seed 10101

. simulate pfrac=r(pfrac) pfull=r(pfull), ///
> reps($numrep) nolegend nodots : sim

. loc nfull = $numobs

. loc nfrac = `nfull´ / 10

. lab var pfrac "N=`nfrac´"

. lab var pfull "N=`nfull´"

. simpplot pfrac pfull, main1opt(mcolor(red) msize(tiny)) ///
> main2opt(mcolor(blue) msize(tiny)) ///
> ra(fcolor(gs9) lcolor(gs9))

By default, simpplot graphs the deviations from the nominal
significance level across the range of significance levels. The shaded
area is the region where these deviations should lie if the test is well
behaved.
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Simulation applied to regression simpplot
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Simulation applied to regression simpplot

We can see that for a sample size of 500, the test stays within bounds
for almost all nominal significance levels. For the smaller sample of
N = 50, there are a number of values ‘out of bounds’ for both low and
high nominal significance levels, showing that the test rejects the true
null too frequently at that limited sample size.
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Simulating a spurious regression model

Simulating a spurious regression model

In the context of time series data, we can demonstrate Granger’s
concept of a spurious regression with a simulation. We create two
independent random walks, regress one on the other, and record the
coefficient, standard error, t-ratio and its tail probability in the saved
results from the program. We use a global macro, trcoef, to allow
the program to be used to model both pure random walks and random
walks with drift.

Christopher F Baum (BC / DIW) Simulation Boston College, Spring 2014 60 / 72



Simulating a spurious regression model

. capt prog drop irwd

. prog irwd, rclass
1. version 12
2. drop _all
3. set obs $numobs
4. g double x = 0 in 1
5. g double y = 0 in 1
6. replace x = x[_n - 1] + $trcoef * 2 + rnormal() in 2/l
7. replace y = y[_n - 1] + $trcoef * 0.5 + rnormal() in 2/l
8. reg y x
9. ret sca b = _b[x]

10. ret sca se = _se[x]
11. ret sca t = _b[x]/_se[x]
12. ret sca r2 = abs(return(t)) > invttail($numobs - 2, 0.025)
13. end
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Simulating a spurious regression model

We simulate the model with pure random walks for 10000
observations:

. set seed 10101

. glo numsim = 1000

. glo numobs = 10000

. glo trcoef = 0

. simulate b=r(b) se=r(se) t=r(t) reject=r(r2), reps($numsim) ///
> saving(spurious, replace) nolegend nodots: irwd

. use spurious, clear
(simulate: irwd)

. mean b se t reject

Mean estimation Number of obs = 1000

Mean Std. Err. [95% Conf. Interval]

b -.0305688 .019545 -.0689226 .0077851
se .0097193 .0001883 .0093496 .0100889
t -1.210499 2.435943 -5.990652 3.569653

reject .979 .0045365 .9700979 .9879021

The true null is rejected in 97.9% of the simulated samples.
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Simulating a spurious regression model

We simulate the model of random walks with drift:
. set seed 10101

. glo numsim = 1000

. glo numobs = 10000

. glo trcoef = 1

. simulate b=r(b) se=r(se) t=r(t) reject=r(r2), reps($numsim) ///
> saving(spurious, replace) nolegend nodots: irwd

. use spurious, clear
(simulate: irwd)

. mean b se t reject

Mean estimation Number of obs = 1000

Mean Std. Err. [95% Conf. Interval]

b .2499303 .0001723 .249592 .2502685
se .0000445 4.16e-07 .0000437 .0000453
t 6071.968 53.17768 5967.615 6176.321

reject 1 0 . .

The true null is rejected in 100% of the simulated samples, clearly
indicating the severity of the spurious regression problem.
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Simulating an errors-in-variables model

Simulating an errors-in-variables model

In order to demonstrate how measurement error may cause OLS to
produce biased and inconsistent results, we generate data from an
errors-in-variables model:

y = α + βx∗ + u, x∗ ∼ N(0,9), u ∼ N(0,1)

x = x∗ + v , v ∼ N(0,1)

In the true DGP, y depends on x∗, but we do not observe x∗, only
observing the mismeasured x . Even though the measurement error is
uncorrelated with all other RVs, this still causes bias and inconsistency
in the estimate of β.

We do not need simulate in this example, as a single dataset
meeting these specifications is sufficient.
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Simulating an errors-in-variables model

. set seed 10101

. qui set obs 10000

. mat mu = (0,0,0)

. mat sigmasq = (9,0,0 \ 0,1,0 \ 0,0,1)

. drawnorm xstar u v, means(mu) cov(sigmasq)

. g double y = 5 + 2 * xstar + u

. g double x = xstar + v // mismeasured x

. reg y x

Source SS df MS Number of obs = 10000
F( 1, 9998) =70216.80

Model 320512.118 1 320512.118 Prob > F = 0.0000
Residual 45636.9454 9998 4.56460746 R-squared = 0.8754

Adj R-squared = 0.8753
Total 366149.064 9999 36.6185682 Root MSE = 2.1365

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 1.795335 .0067752 264.98 0.000 1.782054 1.808616
_cons 5.005169 .021366 234.26 0.000 4.963288 5.047051

We see a sizable attenuation bias in the estimate of β, depending on
the noise-signal ratio σ2

v/(σ2
v + σ2

x∗) = 0.1, implying an estimate of 1.8.

Christopher F Baum (BC / DIW) Simulation Boston College, Spring 2014 65 / 72



Simulating an errors-in-variables model

If we increase the measurement error variance, the attenuation bias
becomes more severe:

. set seed 10101

. qui set obs 10000

. mat mu = (0,0,0)

. mat sigmasq = (9,0,0 \ 0,1,0 \ 0,0,4) // larger measurement error variance

. drawnorm xstar u v, means(mu) cov(sigmasq)

. g double y = 5 + 2 * xstar + u

. g double x = xstar + v // mismeasured x

. reg y x

Source SS df MS Number of obs = 10000
F( 1, 9998) =20632.81

Model 246636.774 1 246636.774 Prob > F = 0.0000
Residual 119512.29 9998 11.9536197 R-squared = 0.6736

Adj R-squared = 0.6736
Total 366149.064 9999 36.6185682 Root MSE = 3.4574

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 1.378317 .0095956 143.64 0.000 1.359508 1.397126
_cons 5.007121 .0345763 144.81 0.000 4.939344 5.074897

With a noise-signal ratio of 4/13, the coefficient that is 9/13 of the true
value.
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Simulating a model with endogenous regressors

Simulating a model with endogenous regressors

In order to simulate how a violation of the zero conditional mean
assumption, E [u|X ] = 0, causes inconsistency, we simulate a DGP in
which that correlation is introduced:

y = α + βx + u, u ∼ N(0,1)

x = z + ρu, z ∼ N(0,1)

and then estimate the regression of y on x via OLS.
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Simulating a model with endogenous regressors

. capt prog drop endog

. prog endog, rclass
1. version 12
2. drop _all
3. set obs $numobs
4. g double u = rnormal(0)
5. g double z = rnormal(0)
6. g double x = z + $corrxu * u
7. g double y = 10 + 2 * x + u
8. if ($ols) {
9. reg y x

10. }
11. else {
12. ivreg2 y (x = z)
13. }
14. ret sca b2 = _b[x]
15. ret sca se2 = _se[x]
16. ret sca t2 = (_b[x] - 2) / _se[x]
17. ret sca p2 = 2 * ttail($numobs - 2, abs(return(t2)))
18. ret sca r2 = abs(return(t2) > invttail($numobs - 2, 0.025))
19. end

The program returns the t-statistic for a test of βx against its true value
of 2.0, as well as the p-value of that test and an indicator of rejection at
the 95% level.
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Simulating a model with endogenous regressors

Setting ρ, the correlation between regressor and error to 0.5, we find a
serious bias in the estimated coefficient:
. set seed 10101

. glo numobs = 150

. glo numrep = 1000

. glo corrxu = 0.5

. glo ols = 1

. simulate b2r=r(b2) se2r=r(se2) t2r=r(t2) p2r=r(p2) r2r=r(r2), ///
> reps($numrep) noleg nodots saving(endog, replace): endog

. mean b2r se2r r2r

Mean estimation Number of obs = 1000

Mean Std. Err. [95% Conf. Interval]

b2r 2.397172 .0021532 2.392946 2.401397
se2r .0660485 .0001693 .0657163 .0663807
r2r 1 0 . .
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Simulating a model with endogenous regressors

A smaller value of ρ = 0.2 reduces the bias in the estimated coefficient:
. set seed 10101

. glo numobs = 150

. glo numrep = 1000

. glo corrxu = 0.2

. glo ols = 1

. simulate b2r=r(b2) se2r = r(se2) t2r=r(t2) p2r=r(p2) r2r=r(r2), ///
> reps($numrep) noleg nodots saving(endog, replace): endog

. mean b2r se2r r2r

Mean estimation Number of obs = 1000

Mean Std. Err. [95% Conf. Interval]

b2r 2.187447 .0025964 2.182352 2.192542
se2r .0791955 .0002017 .0787998 .0795912
r2r .645 .0151395 .6152911 .6747089

The upward bias is still about 10% of the DGP value, and rejection of
the true null still occurs in 64.5% of the simulations.
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Simulating a model with endogenous regressors

We can also demonstrate the inconsistency of the estimator by using a
much larger sample size:
. set seed 10101

. glo numobs = 15000

. glo numrep = 1000

. glo corrxu = 0.2

. glo ols = 1

. simulate b2r=r(b2) se2r = r(se2) t2r=r(t2) p2r=r(p2) r2r=r(r2), ///
> reps($numrep) noleg nodots saving(endog, replace): endog

. mean b2r se2r r2r

Mean estimation Number of obs = 1000

Mean Std. Err. [95% Conf. Interval]

b2r 2.19204 .0002448 2.19156 2.19252
se2r .0078569 2.04e-06 .0078529 .0078609
r2r 1 0 . .

With N=15,000, the rejection of the true null occurs in every simulation.
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Simulating a model with endogenous regressors

By setting the global macro ols to 0, we can simulate the performance
of the instrumental variables estimator of this exactly identified model,
which should be consistent:

. set seed 10101

. glo numobs = 150

. glo numrep = 1000

. glo corrxu = 0.5

. glo ols = 0

. simulate b2r=r(b2) se2r=r(se2) t2r=r(t2) p2r=r(p2) r2r=r(r2), ///
> reps($numrep) noleg nodots saving(endog, replace): endog

. mean b2r se2r r2r

Mean estimation Number of obs = 1000

Mean Std. Err. [95% Conf. Interval]

b2r 1.991086 .0026889 1.985809 1.996362
se2r .0825012 .000302 .0819086 .0830939
r2r .029 .0053092 .0185816 .0394184

The rejection frequency of the true null is only 2.9%, indicating that the
IV estimator is consistently estimating βx .
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