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Chapter 2: The simple regression model

Most of this course will be concerned with use of a regression model:
a structure in which one or more explanatory variables are considered
to generate an outcome variable, or dependent variable.

We begin by considering the simple regression model, in which a
single explanatory, or independent, variable is involved. We often
speak of this as ‘two-variable’ regression, or ‘Y on X regression’.
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Algebraically,
yi = β0 + β1xi + ui (1)

is the relationship presumed to hold in the population for each
observation i .

The values of y are expected to lie on a straight line, depending on the
corresponding values of x . Their values will differ from those predicted
by that line by the amount of the error term, or disturbance, u, which
expresses the net effect of all factors other than x on the outcome y :
that is, it reflects the assumption of ceteris paribus, or ‘all else equal’.
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We often speak of x as the ‘regressor’ in this relationship. less
commonly we speak of y as the ‘regressand.’ The coefficients of the
relationship, β0 and β1, are the regression parameters, to be estimated
from a sample. They are presumed constant in the population, so that
the effect of a one-unit change in x on y is assumed constant for all
values of x .

As long as we include an intercept in the relationship, we can always
assume that E (u) = 0, since a nonzero mean for u could be absorbed
by the intercept term.
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The crucial assumption in this regression model involves the
relationship between x and u. We consider x a random variable, as is
u, and concern ourselves with the conditional distribution of u given x .
If that distribution is equivalent to the unconditional distribution of u,
then we can conclude that there is no relationship between x and u.

To state this formally, we assume that

E (u | x) = E (u) = 0 (2)

or that the u process has a zero conditional mean. This assumption
states that the unobserved factors involved in the regression function
are not related in any systematic manner to the observed factors.
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For instance, consider a regression of individuals’ hourly wage on the
number of years of education they have completed. There are, of
course, many factors influencing the hourly wage earned beyond the
number of years of formal schooling.

In working with this regression function, we are assuming that the
unobserved factors—excluded from the regression we estimate, and
thus relegated to the u term—are not systematically related to years of
formal schooling.

This may not be a tenable assumption; we might consider “innate
ability” as such a factor, and it is probably related to success in both the
educational process and the workplace. Thus, innate ability—which we
cannot measure without some proxies—may be positively correlated to
the education variable, which would invalidate assumption (2).
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The population regression function, given the zero conditional mean
assumption, is

E (y | x) = β0 + β1xi (3)

This allows us to separate y into two parts: the systematic part, related
to x , and the unsystematic part, which is related to u. As long as
assumption (2) holds, those two components are independent in the
statistical sense.

Let us now derive the ordinary least squares (OLS) estimates of the
regression parameters.
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The ordinary least squares estimates

Let [(xi , yi) : i = 1, ...,n] denote a random sample of size n from the
population, where yi and xi are presumed to obey the relation (1).
Assumption (2) allows us to state that E(u) = 0, and given that
assumption, that Cov(x ,u) = E(xu) = 0, where Cov(·) denotes the
covariance between the random variables.

These assumptions can be written in terms of the regression error:

E (yi − β0 − β1xi) = 0 (4)
E [xi (yi − β0 − β1xi)] = 0
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These two equations place two restrictions on the joint probability
distribution of x and u. As there are two unknown parameters to be
estimated, we can solve these equations to provide solutions for those
two parameters. We choose estimators b0 and b1 to solve the sample
counterparts of these equations, making use of the principle of the
method of moments:

n−1
n∑

i=1

(yi − b0 − b1xi) = 0 (5)

n−1
n∑

i=1

xi (yi − b0 − b1xi) = 0

These are the so-called normal equations of least squares. Why is this
method said to be “least squares”? Because as we shall see, it is
equivalent to minimizing the sum of squares of the regression
residuals. How do we solve them?
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The first “normal equation” can be seen to be

b0 = ȳ − b1x̄ (6)

where ȳ and x̄ are the sample averages of those variables. This
implies that the regression line passes through the point of means of
the sample data.
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Substituting this solution into the second normal equation, we now
have one equation in one unknown, b1 :

0 =
n∑

i=1

xi (yi − (ȳ − b1x̄)− b1xi)

n∑
i=1

xi (yi − ȳ) = b1

n∑
i=1

xi (xi − x̄)

b1 =

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)2

b1 =
Cov(x , y)

Var(x)
(7)
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The slope estimate is merely the ratio of the sample covariance of x
and y to the variance of x , which, must be nonzero for the estimates to
be computed. This merely implies that not all of the sample values of x
can take on the same value. There must be diversity in the observed
values of x .

These estimates, b0 and b1, are said to be the ordinary least squares
(OLS) estimates of the regression parameters, as they can be derived
by solving the least squares problem:

min
b0,b1

S =
n∑

i=1

e2
i =

n∑
i=1

(yi − b0 − b1xi)
2 (8)
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Here we minimize the sum of squared residuals, or differences
between the regression line and the values of y , by choosing b0 and
b1. If we take the derivatives ∂S/∂b0 and ∂S/∂b1 and set the resulting
first order conditions to zero, the two equations that result are exactly
the OLS solutions for the estimated parameters shown earlier.

The least squares parameter estimates minimize the sum of squared
residuals, in the sense that any other line drawn through the scatter of
(x , y) points would yield a larger sum of squared residuals. The OLS
estimates provide the unique solution to this problem, and can always
be computed if Var(x) > 0 and n ≥ 2.
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The estimated OLS regression line is then

ŷi = b0 + b1xi (9)

where the “hat” denotes the predicted value of y corresponding to that
value of x . This is the sample regression function (SRF),
corresponding to the population regression function, or PRF (3). The
population regression function is fixed, but unknown, in the population;
the SRF is a function of the particular sample that we have used to
derive it, and a different SRF will be forthcoming from a different
sample.
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Our primary interest in these estimates usually involves
b1 = ∂y/∂x = ∆y/∆x , the amount by which y is predicted to change
from a unit change in the level of x . This slope is often of economic
interest, whereas the constant term in many regressions is devoid of
economic meaning. In some cases, though, it has an economic
interpretation.
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For instance, a regression of major companies’ CEO salaries on the
firms’ return on equity—a measure of economic performance—yields
the regression estimates:

. bcuse ceosal1, clear nodesc

. regress salary roe

Source SS df MS Number of obs = 209
F( 1, 207) = 2.77

Model 5166419.04 1 5166419.04 Prob > F = 0.0978
Residual 386566563 207 1867471.32 R-squared = 0.0132

Adj R-squared = 0.0084
Total 391732982 208 1883331.64 Root MSE = 1366.6

salary Coef. Std. Err. t P>|t| [95% Conf. Interval]

roe 18.50119 11.12325 1.66 0.098 -3.428196 40.43057
_cons 963.1913 213.2403 4.52 0.000 542.7902 1383.592
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These estimates imply that a one percent increase in ROE over the
past three years is worth $18,501 to a CEO, on average. The average
annual salary for the 209 CEOs in the sample is $1.28 million, so the
increment is about 1.4% of that average salary. The SRF can also be
used to predict what a CEO will earn for any level of ROE; points on
the estimated regression function are such predictions.
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Mechanics of OLS

Some algebraic properties of the OLS regression line:

(1) The sum (and average) of the OLS residuals is zero:

n∑
i=1

ei = 0 (10)

which follows from the first normal equation, which specifies that the
estimated regression line goes through the point of means (x̄ , ȳ), so
that the mean residual must be zero.
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(2) By construction, the sample covariance between the OLS residuals
and the regressor is zero:

Cov(e, x) =
n∑

i=1

xiei = 0 (11)

This is not an assumption, but follows directly from the second normal
equation. The estimated coefficients, which give rise to the residuals,
are chosen to make it so.
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(3) Each value of the dependent variable may be written in terms of its
prediction and its error, or regression residual:

yi = ŷi + ei

so that OLS decomposes each yi into two parts: a fitted value and a
residual.

Property (3) also implies that Cov(e, ŷ) = 0, as ŷ is a linear
transformation of x , and linear transformations have linear effects on
covariances. Thus, the fitted values and residuals are uncorrelated in
the sample.
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Taking this property and applying it to the entire sample, we define

SST =
n∑

i=1

(yi − ȳ)2

SSE =
n∑

i=1

(ŷi − ȳ)2

SSR =
n∑

i=1

e2
i

as the Total sum of squares, Explained sum of squares, and Residual
sum of squares, respectively. Note that SST expresses the total
variation in y around its mean (and we do not strive to “explain” its
mean; only how it varies about its mean).
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The second quantity, SSE , expresses the variation of the predicted
values of y around the mean value of y (and it is trivial to show that ŷ
has the same mean as y).

The third quantity, SSR, is the same as the least squares criterion S
from (8).

Given these sums of squares, we can generalize the decomposition
mentioned above into

SST = SSE + SSR (12)

or, the total variation in y may be divided into that which is explained
and that which is unexplained, i.e. left in the residual category.
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To prove the validity of (12):

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

((yi − ŷi) + (ŷi − ȳ))2

=
n∑

i=1

[ei + (ŷi − ȳ)]2

=
n∑

i=1

e2
i + 2

n∑
i=1

ei (ŷi − ȳ) +
n∑

i=1

(ŷi − ȳ)2

SST = SSR + SSE

given that the middle term in this expression is equal to zero. But this
term is the sample covariance of e and y , given a zero mean for e, and
by (11) we have established that this is zero.
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How good a job does this SRF do? Does the regression function
explain a great deal of the variation of y , or not very much? That can
now be answered by making use of these sums of squares:

R2 = [rxy ]2 =
SSE
SST

= 1− SSR
SST

The R2 measure (sometimes termed the coefficient of determination)
expresses the percent of variation in y around its mean “explained” by
the regression function. It is an r , or simple correlation coefficient,
squared, in this case of simple regression on a single x variable. Since
the correlation between two variables ranges between -1 and +1, the
squared correlation ranges between 0 and 1. In that sense, R2 is like a
batting average.
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When R2 = 0, the model we have built fails to explain any of the
variation in the y values around their mean: unlikely, but it is certainly
possible to have a very low value of R2.

In the case where R2 = 1, all of the points lie on the SRF. That is
unlikely when n > 2, but it may be the case that all points lie close to
the line, in which case R2 will approach 1.

We cannot make any statistical judgment based directly on R2, or even
say that a model with a higher R2 and the same dependent variable is
necessarily a better model; but other things equal, a higher R2 will be
forthcoming from a model that captures more of y ′s behavior.
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In cross-sectional analyses, where we are trying to understand the
idiosyncracies of individual behavior, very low R2 values are common,
and do not necessarily denote a failure to build a useful model. In
time-series analyses, much higher R2 values are often commonly
observed, as many economic and financial variables move together
over time.
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How do the quantities we have estimated change when the units of
measurement are changed? In the estimated model of CEO salaries,
as the y variable was measured in thousands of dollars, the intercept
and slope coefficient refer to those units as well.

If we measured salaries in dollars, the intercept and slope would be
multiplied by 1000, but nothing would change. The correlation between
y and x is not affected by linear transformations, so we would not alter
the R2 of this equation by changing its units of measurement.
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Likewise, if ROE was measured in decimals rather than per cent, it
would merely change the units of measurement of the slope
coefficient. Dividing r by 100 would cause the slope to be multiplied by
100. In the original equation, with r in percent, the slope is 18.501
(thousands of dollars per one unit change in r). If we expressed r in
decimal form, the slope would be 1850.1. A change in r from 0.10 to
0.11—a one per cent increase in ROE—would be associated with a
change in salary of (0.01)(1850.1)=18.501 thousand dollars. Again,
the correlation between salary and ROE would not be altered.
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This principle also applies for a transformation such as F = 32 + 9
5C.

It would not matter whether we viewed temperature in degrees F or
degrees C as a causal factor in estimating the demand for heating oil,
as the correlation between the dependent variable and temperature
would be unchanged by switching from Fahrenheit to Celsius degrees.
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Functional form

Simple linear regression is a workable tool if we have a presumed
linear relationship between y and x , but what if theory suggests that
the relation should be nonlinear? It turns out that the “linearity” of
regression refers to y being expressed as a linear function of x ,but
neither y nor x need be the “raw data” of our analysis.
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For instance, regressing y on t (a time trend) would allow us to analyze
a linear trend, or constant growth, in the data. What if we expect the
data to exhibit exponential growth, as would population, or sums
earning compound interest? If the underlying model is

y = A exp (rt) (13)
log y = log A + rt

y∗ = A∗ + rt

so that the “single-log” transformation may be used to express a
constant-growth relationship, in which r is the regression slope
coefficient that directly estimates ∂ log y/∂t .
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Likewise, the “double-log” transformation can be used to express a
constant-elasticity relationship, such as that of a Cobb–Douglas
production function:

y = Axα (14)
log y = log A + α log x

y∗ = A∗ + αx∗
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In this context, the slope coefficient α is an estimate of the elasticity of
y with respect to x , given that ηy ,x = ∂ log y/∂ log x by the definition of
elasticity. The original equation is nonlinear, but the transformed
equation is a linear function which may be estimated by OLS
regression.

cfb (BC Econ) ECON2228 Notes 2 2014–2015 33 / 47



Likewise, a model in which y is thought to depend on 1/x (the
reciprocal model) may be estimated by linear regression by just
defining a new variable, z, equal to 1/x (presuming x > 0). That model
has an interesting interpretation if you work out its algebra.

We often use a polynomial form to allow for nonlinearities in a
regression relationship. For instance, rather than including only x as a
regressor, we may include x and x2, with coefficients β and γ.
Although this relationship is linear in the parameters, it implies that
∂y
∂x = β + 2γx , so that the effect of x on y now depends on the level of
x for that observation, rather than being a constant factor.
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Properties of OLS estimators

Now let us consider the properties of the regression estimators we
have derived, considering b0 and b1 as estimators of their respective
population quantities. To establish the unbiasedness of these
estimators, we must establish several propositions:

Proposition
SLR1: in the population, the dependent variable y is related to the
independent variable x and the error u as

y = β0 + β1x + u
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Proposition
SLR2: we can estimate the population parameters from a sample of
size n, {(xi , yi), i = 1, ...,n}.

Proposition
SLR3: the error process has a zero conditional mean:

E (u | x) = 0.

Proposition
SLR4: the independent variable x has a positive variance:

(n − 1)−1
n∑

i=1

(xi − x̄)2 > 0.

cfb (BC Econ) ECON2228 Notes 2 2014–2015 36 / 47



Given these four assumptions, we may proceed, considering the
intercept and slope estimators as random variables. We may express
the slope estimator in terms of population coefficients and errors:

b1 =

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)2 =

∑n
i=1 (xi − x̄) yi

s2
x

(15)

where we have defined s2
x as the total variation in x (not the variance

of x).
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Substituting, we can write the slope estimator as:

b1 =

∑n
i=1 (xi − x̄) yi

s2
x

=

∑n
i=1 (xi − x̄) (β0 + β1xi + ui)

s2
x

=
β0

∑n
i=1 (xi − x̄) + β1

∑n
i=1 (xi − x̄) xi +

∑n
i=1 (xi − x̄) ui

s2
x

The first term in the numerator is algebraically zero, given that the
deviations around the mean sum to zero. The second term can be
written as

∑n
i=1 (xi − x̄)2 = s2

x , so that the second term is merely β1
when divided by s2

x .
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This expression can be rewritten as:

b1 = β1 +
1
s2

x

n∑
i=1

(xi − x̄) ui

showing that any randomness in the estimates of b1 is derived from
the errors in the sample, weighted by the deviations of their respective
x values.

Given the assumed independence of the distributions of x and u
implied by (3), this expression implies that:

E (b1) = β1,

or that b1 is an unbiased estimate of β1, given the propositions above.
The four propositions listed above are all crucial for this result, but the
key assumption is the independence of x and u.
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We are also concerned about the precision of the OLS estimators. To
derive an estimator of the precision, we must add an assumption on
the distribution of the error u :

Proposition
SLR5: (homoskedasticity):

Var (u | x) = Var(u) = σ2.
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This assumption states that the variance of the error term is constant
over the population, and thus within the sample. Given (3), the
conditional variance is also the unconditional variance. The errors are
considered drawn from a fixed distribution, with a mean of zero and a
constant variance of σ2.

If this assumption is violated, we have the condition of
heteroskedasticity, which will often involve the magnitude of the error
variance relating to the magnitude of x , or to some other measurable
factor.
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Given this additional assumption, but no further assumptions on the
nature of the distribution of u, we may demonstrate that:

Var (b1) =
σ2∑n

i=1 (xi − x̄)2 =
σ2

s2
x

(16)

so that the precision of our estimate of the slope is dependent upon
the overall error variance, and is inversely related to the variation in the
x variable. The magnitude of x does not matter, but its variability in the
sample does matter.

If we are conducting a controlled experiment (quite unlikely in
economic analysis) we would want to choose widely spread values of
x to generate the most precise estimate of ∂y/∂x .
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We can likewise prove that b0 is an unbiased estimator of the
population intercept, with sampling variance:

Var (b0) = n−1 σ2 ∑n
i=1 x2

i∑n
i=1 (xi − x̄)2 =

σ2 ∑n
i=1 x2

i

ns2
x

(17)

so that the precision of the intercept depends, as well, upon the
sample size, and the magnitude of the x values.

These formulas for the sampling variances will be invalid in the
presence of heteroskedasticity–that is, when proposition SLR5 is
violated.
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These formulas are not operational, as they include the unknown
parameter σ2. To calculate estimates of the variances, we must first
replace σ2 with a consistent estimate, s2, derives from the least
squares residuals:

ei = yi − b0 − b1xi , i = 1, ...,n (18)

We cannot observe the error ui for a given observation, but we can
generate a consistent estimate of the i th observation’s error with the i th

observation’s least squares residual, ûi .
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Likewise, a sample quantity corresponding to the population variance
σ2 can be derived from the residuals:

s2 =
1

(n − 2)

n∑
i=1

e2
i =

SSR
(n − 2)

(19)

where the numerator is just the least squares criterion, SSR, divided
by the appropriate degrees of freedom. Here, two degrees of freedom
are lost, since each residual is calculated by replacing two population
coefficients with their sample counterparts.
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This now makes it possible to generate the estimated variances and,
more usefully, the estimated standard error of the regression slope:

sb1 =
s
sx

where s is the standard deviation, or standard error, of the disturbance
process (that is,

√
s2), and sx is

√
s2

x .

It is this estimated standard error that will be displayed on the
computer printout when you run a regression, and used to construct
confidence intervals and hypothesis tests about the slope coefficient.
We can calculate the estimated standard error of the intercept term by
the same means.
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Regression through the origin

We could also consider a special case of the model above where we
impose a constraint that β0 = 0, so that y is taken to be proportional to
x .1 This will often be inappropriate; it is generally more sensible to let
the data calculate the appropriate intercept term, and reestimate the
model subject to that constraint only if that is a reasonable course of
action. Otherwise, the resulting estimate of the slope coefficient will be
biased, and may be nonsensical. Unless theory suggests that a strictly
proportional relationship is appropriate, the intercept should be
included in the model.

1This is the regress, noconstant option in Stata.
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