
ECON2228 Notes 3

Christopher F Baum

Boston College Economics

2014–2015

cfb (BC Econ) ECON2228 Notes 3 2014–2015 1 / 37



Chapter 3: Multiple regression analysis:
Estimation

In multiple regression analysis, we extend the simple (two-variable)
regression model to consider the possibility that there are additional
explanatory factors that have a systematic effect on the dependent
variable.

The simplest extension is the “three-variable” model, in which a
second explanatory variable is added:

y = β0 + β1x1 + β2x2 + u (1)

where each of the slope coefficients are now partial derivatives of y
with respect to the x variable which they multiply: that is, holding x2
fixed, β1 = ∂y/∂x1.
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This extension also allows us to consider nonlinear relationships, such
as a polynomial in z, where x1 = z and x2 = z2. Then, the regression
is linear in x1 and x2, but nonlinear in z : ∂y/∂z = β1 + 2β2z.

The key assumption for this model, analogous to that which we
specified for the simple regression model, involves the independence
of the error process u and both regressors, or explanatory variables:

E (u | x1, x2) = 0. (2)

This assumption of a zero conditional mean for the error process
implies that it does not systematically vary with the x ′s nor with any
linear combination of the x ′s; u is independent, in the statistical sense,
from the distributions of the x ′s.
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The model may now be generalized to the case of k regressors:

y = β0 + β1x1 + β2x2 + ...+ βkxk + u (3)

where the β coefficients have the same interpretation: each is the
partial derivative of y with respect to that x , holding all other x ′s
constant (ceteris paribus), and the u term is that nonsystematic part of
y not linearly related to any of the x ′s.
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The dependent variable y is taken to be linearly related to the x ′s,
which may bear any relation to each other (e.g. polynomials or other
transformations) as long as there are no exact linear dependencies
among the regressors. That is, no x variable can be an exact linear
transformation of another, or the regression estimates cannot be
calculated. The independence assumption now becomes:

E (u | x1, x2, ..., xk ) = 0. (4)
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Mechanics and interpretation of OLS

Consider first the “three-variable model” given above in (1). The
estimated OLS equation contains the parameters of interest:

ŷ = b0 + b1x1 + b2x2 (5)

We may define the ordinary least squares criterion in terms of the OLS
residuals, calculated from a sample of size n, from this expression:

min S =
n∑

i=1

(yi − b0 − b1xi1 − b2xi2)2 (6)

where the minimization of this expression is performed with respect to
each of the three parameters, {b0,b1,b2}.
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In the case of k regressors, these expressions include terms in bk , and
the minimization is performed with respect to the (k + 1) parameters
{b0,b1,b2, ...bk}. For this to be feasible, n > (k + 1) : that is, we must
have a sample larger than the number of parameters to be estimated
from that sample. The minimization is carried out by differentiating the
scalar S with respect to each of the b′s in turn, and setting the
resulting first order condition to zero.

This gives rise to (k + 1) simultaneous equations in (k + 1) unknowns,
the regression parameters, which are known as the least squares
normal equations. The normal equations are expressions in the sums
of squares and cross products of the y and the regressors, including a
first “regressor” which is a column of 1′s, multiplying the constant term.
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For the “three-variable” regression model, we can write out the normal
equations as: ∑

y = n b0 + b1
∑

x1 + b2
∑

x2 (7)∑
x1y = b0

∑
x1 + b1

∑
x2

1 + b2
∑

x1x2∑
x2y = b0

∑
x2 + b1

∑
x1x2 + b2

∑
x2

2

Just as in the “two-variable” case, the first normal equation can be
interpreted as stating that the regression surface (in 3-space) passes
through the multivariate point of means {x̄1, x̄2, ȳ}. These three
equations may be uniquely solved, by normal algebraic techniques or
linear algebra, for the estimated least squares parameters.
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This extends to the case of k regressors and (k + 1) regression
parameters. In each case, the regression coefficients are considered
in the ceteris paribus sense: that each coefficient measures the partial
effect of a unit change in its variable, or regressor, holding all other
regressors fixed. If a variable is a component of more than one
regressor—as in a polynomial relationship, as discussed above–the
total effect of a change in that variable is additive.
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Fitted values, residuals, and their properties

Just as in simple regression, we may calculate fitted values, or
predicted values, after estimating a multiple regression. For
observation i , the fitted value is

ŷi = b0 + b1xi1 + b2xi2 + ...+ bkxik (8)

The residual is the difference between the actual value of y and the
fitted value:

ei = yi − ŷi (9)
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As with simple regression, the sum of the residuals is zero; they have,
by construction, zero covariance with each of the x variables, and thus
zero covariance with ŷ ; and since the average residual is zero, the
regression surface passes through the multivariate point of means,
{x̄1, x̄2, ..., x̄k , ȳ}.
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There are two instances where the simple regression of y on x1 will
yield the same coefficient as the multiple regression of y on x1 and x2,
with respect to x1.

In general, the simple regression coefficient will not equal the multiple
regression coefficient, as the simple regression ignores the effect of x2
(and considers that it can be viewed as nonsystematic, captured in the
error u).

When will the two coefficients be equal? First, when the coefficient of
x2 is truly zero—that is, when x2 really does not belong in the model.
Second, when x1 and x2 are uncorrelated in the sample. This is likely
to be quite rare in actual data. However, these two cases suggest
when the two coefficients will be similar; when x2 is relatively
unimportant in explaining y , or when it is very loosely related to x1.
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We can define the same three sums of squares—SST , SSE ,
SSR −−as in simple regression, and R2 is still the ratio of the
explained sum of squares (SSE) to the total sum of squares (SST ). It
is no longer a simple correlation (e.g. ryx ) squared, but it still has the
interpretation of a squared simple correlation coefficient: the
correlation between y and ŷ , rŷy .

A very important principle is that R2 never decreases when an
explanatory variable is added to a regression. No matter how irrelevant
that variable may be, the R2 of the expanded regression will be no less
than that of the original regression. Thus, the regression R2 may be
arbitrarily increased by adding variables (even unimportant variables),
and we should not be impressed by a high value of R2 in a model with
a long list of explanatory variables.
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Just as with simple regression, it is possible to fit a model through the
origin, suppressing the constant term. It is important to note that many
of the properties we have discussed no longer hold in that case: for
instance, the least squares residuals (the ei ) no longer have a zero
sample average, and the R2 from such an equation can actually be
negative—that is, the equation does worse than the naïve “model”
which specifies that ŷ = ȳ for all i .

If the population intercept β0 differs from zero, the slope coefficients
computed in a regression through the origin will be biased. Therefore,
we often will include an intercept, and let the data determine whether it
should be zero.

cfb (BC Econ) ECON2228 Notes 3 2014–2015 14 / 37



Expected value of the OLS estimators

We now discuss the statistical properties of the OLS estimators of the
parameters in the population regression function. The population
model is taken to be (3). We assume that we have a random sample of
size n on the variables of the model. The multivariate analogue to our
assumption about the error process is now:

E (u | x1, x2, ..., xk ) = 0 (10)

so that we consider the error process to be independent of each of the
explanatory variables’ distributions.
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This assumption would not hold if we misspecified the model: for
instance, if we ran a simple regression with inc as the explanatory
variable, but the population model also contained inc2. Since inc and
inc2 will have a positive correlation, the simple regression’s parameter
estimates will be biased.

This bias will also appear if there is a separate, important factor that
should be included in the model; if that factor is correlated with the
included regressors, their coefficients will be biased.
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In the context of multiple regression, with several independent
variables, we must make an additional assumption about their
measured values:

Proposition
In the sample, none of the independent variables x may be expressed
as an exact linear relation of the others (including a vector of 1s).
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Every multiple regression that includes a constant term can be
considered as having a variable x0i = 1 ∀i . This proposition states that
each of the other explanatory variables must have nonzero sample
variance: that is, it may not be a constant in the sample.

Second, the proposition states that there is no perfect collinearity, or
multicollinearity, in the sample. If we could express one x as a linear
combination of the other x variables, this assumption would be
violated. If we have perfect collinearity in the regressor matrix, the OLS
estimates cannot be computed; mathematically, they do not exist.
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A trivial example of perfect collinearity would be the inclusion of the
same variable twice, measured in different units (or via a linear
transformation, such as temperature in degrees F versus C).

The key concept: each regressor we add to a multiple regression must
contain information at the margin. It must tell us something about y
that we do not already know (where knowledge is defined in a linear
sense of the term).
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For instance, if we consider x1: proportion of football games won, x2:
proportion of games lost, and x3: proportion of games tied, and we try
to use all three as explanatory variables to model alumni donations to
the athletics program, we find that there is perfect collinearity: since for
every college in the sample, the three variables sum to one by
construction.

There is no information in, e.g., x3 once we know the other two, so
including it in a regression with the other two makes no sense (and
renders that regression uncomputable). We can leave any one of the
three variables out of the regression; it does not matter which one.
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Note that this proposition is not an assumption about the population
model: it is an implication of the sample data we have to work with.
Note also that this only applies to linear relations among the
explanatory variables: a variable and its square, for instance, are not
linearly related, so we may include both in a regression to capture a
nonlinear relation between y and x .
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Given the four assumptions: that of the population model, the random
sample, the zero conditional mean of the u process, and the absence
of perfect collinearity, we can demonstrate that the OLS estimators of
the population parameters are unbiased:

Ebj = βj , j = 0, ..., k (11)

What happens if we misspecify the model by including irrelevant
explanatory variables: x variables that, unbeknowst to us, are not
contained in the population model? Fortunately, this does not damage
the estimates. The regression will still yield unbiased estimates of all of
the coefficients, including unbiased estimates of these variables’
coefficients, which are zero in the population.
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It may be improved by removing such variables, since including them
in the regression consumes degrees of freedom (and reduces the
precision of the estimates); but the effect of overspecifying the model is
rather benign.

The same applies to overspecifying a polynomial order; including
quadratic and cubic terms when only the quadratic term is needed will
be harmless, and you will find that the cubic term’s coefficient is far
from significant.
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However, the opposite case—where we underspecify the model by
mistakenly excluding a relevant explanatory variable—is much more
serious. Let us formally consider the direction and size of bias in this
case. Assume that the population model is:

y = β0 + β1x1 + β2x2 + u (12)

We do not recognize the importance of x2, and mistakenly consider the
relationship

y = β0 + β1x1 + u (13)

to be fully specified.
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What are the consequences of estimating the latter relationship? We
can show that in this case:

Eb1 = β1 + β2

∑n
i=1 (xi1 − x̄1) xi2∑n

i=1 (xi1 − x̄1)2 (14)

so that the OLS coefficient b1 will be biased—not equal to its
population value of β1, even in an expected sense—in the presence of
the second term.

That term will be nonzero when β2 is nonzero (which it is, by
assumption) and when the fraction is nonzero. But the fraction is
merely a simple regression coefficient in the auxiliary regression of x2
on x1. If the regressors are correlated with one another, that regression
coefficient will be nonzero, and its magnitude will be related to the
strength of the correlation (and the units of the variables).
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Say that the auxiliary regression is:

x1 = d0 + d1x2 + u (15)

with d1 > 0, so that x1 and x2 are positively correlated (e.g. as income
and wealth would be in a sample of household data). Then we can
write the bias as:

Eb1 − β1 = β2d1 (16)

and its sign and magnitude will depend on both the relation between y
and x2 and the interrelation among the explanatory variables. If there
is no such relationship—if x1 and x2 are uncorrelated in the
sample—then b1 is unbiased (since in that special case multiple
regression reverts to simple regression).
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In all other cases, though, there will be bias in the estimation of the
underspecified model. If the left side of (16) is positive, we say that b1
has an upward bias: the OLS value will be too large. If it were
negative, we would speak of a downward bias. If the OLS coefficient is
closer to zero than the population coefficient, we would say that it is
“biased toward zero” or attenuated.

It is more difficult to evaluate the potential bias in a multiple regression,
where the population relationship involves k variables and we include,
for instance, k − 1 of them. All of the OLS coefficients in the
underspecified model will generally be biased in this circumstance
unless the omitted variable is uncorrelated with each included
regressor (a very unlikely outcome).
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What we can take away as a general rule is the asymmetric nature of
specification error: it is far more damaging to exclude a relevant
variable than to include an irrelevant variable. When in doubt (and we
almost always are in doubt as to the nature of the true relationship) we
will always be better off erring on the side of caution, and including
variables that we are not certain should be part of the explanation of y .
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Variance of the OLS estimators

We first reiterate the assumption of homoskedasticity in the context of
the k−variable regression model:

Var (u | x1, x2, ..., xk ) = σ2 (17)

If this assumption is satisfied, then the error variance is identical for all
combinations of the explanatory variables. If it is violated, we say that
the errors are heteroskedastic, and must be concerned about our
computation of the OLS estimates’ variances.

The OLS estimates are still unbiased in this case, but our estimates of
their variances are not.
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Given this assumption, plus the four made earlier, we can derive the
sampling variances, or precision, of the OLS slope estimators:

Var
(
bj
)

=
σ2

SSTj

(
1− R2

j

) , j = 1, ..., k (18)

where SSTj is the total variation in xj about its mean, and R2
j is the R2

from an auxiliary regression from regressing xj on all other x variables,
including the constant term.

We see immediately that this formula applies to simple regression,
since the formula we derived for the slope estimator in that instance is
identical, given that R2

j = 0 in that instance (there are no other x
variables).
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Given the population error variance σ2, what will make a particular
OLS slope estimate more precise? Its precision will be increased (i.e.
its sampling variance will be smaller) the larger is the variation in the
associated x variable. Its precision will be decreased, the larger the
amount of variable xj that can be “explained” by other variables in the
regression.

In the case of perfect collinearity, R2
j = 1, and the sampling variance

goes to infinity. If R2
j is very small, then this variable makes a large

marginal contribution to the equation, and we may calculate a relatively
more precise estimate of its coefficient. If R2

j is quite large, the
precision of the coefficient will be low, since it will be difficult to “partial
out” the effect of variable j on y from the effects of the other
explanatory variables (with which it is highly correlated).

cfb (BC Econ) ECON2228 Notes 3 2014–2015 31 / 37



However, the assumption that there is no perfect collinearity does not
preclude R2

j from being close to unity: it only states that it is less than
unity. The principle stated above when we discussed collinearity, that
at the margin, each explanatory variable must add information that we
do not already have, in whole or in large part, if that variable is to have
a meaningful role in a regression model of y .

This formula for the sampling variance of an OLS coefficient also
explains why we might not want to overspecify the model: if we include
an irrelevant explanatory variable, the point estimates are unbiased,
but their sampling variances will be larger than they would be in the
absence of that variable (unless the irrelevant variable is uncorrelated
with the relevant explanatory variables).
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How do we make (18) operational? As written, it cannot be computed,
since it depends on the unknown population parameter σ2. Just as in
the case of simple regression, we must replace σ2 with a consistent
estimate:

s2 =

∑n
i=1 e2

i
(n − (k + 1))

=

∑n
i=1 e2

i
(n − k − 1)

(19)

where the numerator is just SSR, and the denominator is the sample
size, less the number of estimated parameters: the constant and k
slopes. In simple regression, we computed s2 using a denominator of
2: intercept plus slope.
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Now, we must account for the additional slope parameters. This also
suggests that we cannot estimate a k−variable regression model
without having a sample of size at least (k + 1). Indeed, just as two
points define a straight line, the degrees of freedom in simple
regression will be positive iff n > 2. For multiple regression, with k
slopes and an intercept, n > (k + 1). Of course, in practice, we would
like to use a much larger sample than this in order to make inferences
about the population.
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The positive square root of s2 is known as the standard error of
regression, or SER. Stata reports s on the regression output labelled
”Root MSE”, or root Mean Squared Error. It is in the same units as the
dependent variable, and is the numerator of our estimated standard
errors of the OLS coefficients. The magnitude of the SER is often
compared to the mean of the dependent variable to gauge the
regression’s ability to “explain” the data.

In the presence of heteroskedasticity, where the variance of the error
process is not constant over the sample, the estimate of s2 presented
above will be biased. Likewise, the estimates of coefficients’ standard
errors will be biased, since they depend on s2. If there is reason to
worry about heteroskedasticity in a particular sample, we must work
with a different approach to compute these measures.
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Efficiency of OLS estimators

An important result, which underlays the widespread use of OLS
regression, is the Gauss-Markov Theorem, describing the relative
efficiency of the OLS estimators. Under the assumptions that we have
made above for multiple regression, and making no further
distributional assumptions about the error process, we may show that:

Proposition
Gauss–Markov: Among the class of linear, unbiased estimators of the
population regression function, OLS provides the best estimators, in
terms of minimum sampling variance. Thus, OLS estimators are best
linear unbiased estimators (BLUE).
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This theorem only considers estimators that have these two properties
of linearity and unbiasedness. Linearity means that the estimator, the
rule for computing the estimates, can be written as a linear function of
the data y : essentially, as a weighted average of the y values. OLS
estimators clearly meet this requirement. Under the assumptions
above, OLS estimators are also unbiased.

Given those properties, the proof of the Gauss-Markov theorem
demonstrates that the OLS estimators have the minimum sampling
variance of any possible estimator: that is, they are the “best,” or most
precise, that could possibly be calculated. This theorem is not based
on the assumption that, for instance, the u process is Normally
distributed; only that it is independent of the x variables and
homoskedastic (that is, that the u process is i .i .d .).
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