We now present an introduction to Stata’s \texttt{gsem} command, which extends the facilities of the \texttt{sem} command to implement a broader set of applications of structural equation modeling: thus, generalized structural equation modeling. As \texttt{gsem} has many capabilities, we can only discuss a limited subset of its features and give some illustrations of its use.
To understand Stata’s extension of the SEM framework, we must introduce the concept of the Generalized Linear Model: something that has been a component of Stata for many years as the `glm` command.

The generalized linear model (GLM) framework of McCullaugh and Nelder (1989) is common in applied work in biostatistics, but has not been widely applied in econometrics. It offers many advantages, and should be more widely known.
GLM estimators are maximum likelihood estimators that are based on a density in the linear exponential family (LEF). These include the normal (Gaussian) and inverse Gaussian for continuous data, Poisson and negative binomial for count data, Bernoulli for binary data (including logit and probit) and Gamma for duration data.
GLM estimators are essentially generalizations of nonlinear least squares, and as such are optimal for a nonlinear regression model with homoskedastic additive errors. They are also appropriate for other types of data which exhibit intrinsic heteroskedasticity where there is a rationale for modeling the heteroskedasticity.

The GLM estimator \(\hat{\theta} \) maximizes the log-likelihood

\[
Q(\theta) = \sum_{i=1}^{N} \left[a(m(x_i, \beta)) + b(y_i) + c(m(x_i, \beta)) \right]
\]

where \(m(x, \beta) = E(y|x) \) is the conditional mean of \(y \), \(a(\cdot) \) and \(c(\cdot) \) correspond to different members of the LEF, and \(b(\cdot) \) is a normalizing constant.
For instance, for the Poisson, where the mean equals the variance,
\[a(\mu) = -\mu \text{ and } c(\mu) = \log(\mu). \]
Given definitions of these two functions, the mean and variance are
\[E(y) = \mu = -\frac{a'(\mu)}{c'(\mu)} \text{ and } \]
\[\text{Var}(y) = \frac{1}{c' (\mu)}. \]
For the Poisson, \(a'(\mu) = 1, c'(\mu) = \frac{1}{\mu}, \) so
\[E(y) = \text{Var}(y) = \mu. \]

GLM estimators are consistent provided that the conditional mean function is correctly specified: that \(E(y_i | x_i) = m(x_i, \beta). \) If the variance function is not correctly specified, a robust estimate of the VCE should be used.
To use the GLM estimator, you must specify two options: the *family()* option, which defines the member of the LEF to be employed, and the *link()* option, which is the inverse of the conditional mean function. The *family* option may be chosen as *gaussian*, *igaussian*, *binomial*, *poisson*, *nbinomial*, or *gamma*.

The link function essentially expresses the transformation to be applied to the dependent variable. Each family has a canonical link, which is chosen if not specified: for instance, *family*(gaussian) has default *link*(identity), so that a GLM with those two options would essentially be linear regression via maximum likelihood.

The *binomial* family has a default *link*(logit), while the *poisson* and *nbinomial* families share *link*(log). However, a number of other combinations of *family* and *link* are valid: for instance, *link*(power n) is valid for all distributional families.
What, then, is Stata’s Generalized Structural Equation Model, or *gsem*? Essentially, the combination of the *sem* modeling capabilities we have discussed thus far with the broader *glm* estimation framework, allowing us to build models that include latent variables as well as response variables that are not continuous measures.
`sem` fits standard linear SEMs, and `gsem` fits generalized SEMs.

In `sem`, responses are continuous and models are linear regression.

In `gsem`, responses are continuous or binary, ordinal, count, or multinomial. Models are linear regression, gamma regression, logit, probit, ordinal logit, ordinal probit, Poisson, negative binomial, multinomial logit, and more.

`gsem` also has the ability to fit multilevel mixed SEMs. Multilevel mixed models refer to the simultaneous handling of group-level effects, which can be nested or crossed. Thus you can include unobserved and observed effects for subjects, subjects within group, group within subgroup, ... , or for subjects, group, subgroup, ... This extends Stata’s `mixed` framework.
Models supported by GSEM

We now consider a number of models that are supported by the SEM methodology. The first is the *single-factor measurement model*, in which we consider several observed variables as influencing a single latent factor, as we considered earlier. The difference is that we now allow for a *generalized response*, rather than assuming that the response is continuous, driven by Gaussian errors. This can be graphically represented:
Models supported by GSEM

The one-factor measurement model, generalized response

\[X \]

- Bernoulli
- probit

\[x1 \]
- Bernoulli
- probit

\[x2 \]
- Bernoulli
- probit

\[x3 \]
- Bernoulli
- probit

\[x4 \]
- Bernoulli
- probit
In this model, we have four observed factors, each of which is a binary (pass/fail) outcome. The latent factor, being related to only binary measurements, will have different properties than a model based on continuous measurements. Thus, the errors are presumed to follow a Bernoulli distribution, and the GLM link function is the probit. Notice that those specifications show up in the graphical diagram. We may implement this model using `gsem` as:

```
gsem (x1 x2 x3 x4 <-X), probit
```
If one or more of these measurements was continuous, we could use a different family and link for that part of the model. Say that measurement 4 was not only a pass/fail mark, but the score on a test. Then that equation would be fit with the `gsem` default of Gaussian errors and the Identity link.

\[gsem (x1 \ x2 \ x3 \ <-X, \ probit) \ (s4<-X) \]
We could use \texttt{gsem} to fit a standard logistic regression, which is equivalent to the logit model in the GLM framework. The model here considers the probability of low birth weight as related to a number of observed factors about the mother’s medical condition, weight, race, and smoking status. We may implement this model using \texttt{gsem} as:

\begin{verbatim}
gsem (low <- age lwt i.race smoke ptl ht ui), logit
\end{verbatim}

where \texttt{i.race} is the standard factor variable notation, indicating that one race should be omitted and indicator variables created for each of the other race categories. Graphically:
Models supported by GSEM

Logistic regression

- Models supported by GSEM
- Logistic regression
- Bernoulli
- Logit
- age
- lwt
- 1b.race
- 2.race
- 3.race
- smoke
- ptl
- ht
- ui

Christopher F Baum (BC / DIW) Introduction to GSEM in Stata Boston College, Spring 2016 15 / 39
Ordered probit and ordered logit

We can also use ordered probit or ordered logit models in the GSEM framework to deal with variables, such as responses on a Likert scale, where there is assumed to be an underlying factor, with ranges of that latent variable ‘binned’ into observed discrete categories. We may implement this model for a latent factor, relating attitudes toward science in a pure measurement framework to four Likert sale variables, as:

\[
gsem (y_1 \ y_2 \ y_3 \ y_4 \ <- \ SciAtt), \ oprobit
\]

Ordered logit could also be used, yielding almost identical results, while making use of the logistic distribution rather than the Gaussian.
Models supported by GSEM

Ordered probit and ordered logit

SciAtt

y1

y2

y3

y4

Christopher F Baum (BC / DIW) Introduction to GSEM in Stata Boston College, Spring 2016
The Tobit regression model combines a binary outcome, which indicates censoring, and a continuous outcome for uncensored observations. Censoring may be from below, above or both. For instance, we may have a response to “how much did you spend on a new car last year?”, where responses of 0 indicate non-purchase. This may be implemented as:

```stata
  gsem mpg <- wgt, family(gaussian, lcensored(17))
```

where the `lcensored` option indicates that left-censoring at the value 17 is applied. Graphically:
Models supported by GSEM

Tobit model

Christopher F Baum (BC / DIW) Introduction to GSEM in Stata Boston College, Spring 2016 19 / 39
Interval regression (as implemented by Stata’s `intreg`) fits a model where the response lies in an interval, as described by two dependent variables. For instance, from a survey we may have the information that a worker’s wage is between $10.00 and $11.99, or between $12.00 and $13.99. Those values would appear as the lower and upper limits in the interval regression. The GSEM implementation of this model can be represented as:

```
gsem wagel <- age c.age#c.age nev_mar rural school tenure, family(gaussian, udepvar(wage2))
```

where `wagel` would be the lower-limit values, and the `udepvar` option specifies the variable containing the upper-limit values. Graphically:
Models supported by GSEM

Interval regression

Christopher F Baum (BC / DIW) Introduction to GSEM in Stata Boston College, Spring 2016 21 / 39
The Heckman regression with selection, as implemented in \texttt{heckman}, can also be considered in the GSEM framework. This model deals with a continuous outcome that is observed only when another equation determines that the observation is selected, and the errors of the two equations are allowed to be correlated. Subjects often choose to participate in an event or medical trial or even the labor market, and thus the outcome of interest might be correlated with the decision to participate.
The Heckman selection model can be recast as a two-equation SEM—one linear regression (for the continuous outcome) and the other censored regression (for selection)—and with a latent variable L added to both equations. The latent variable is constrained to have variance 1 and to have coefficient 1 in the selection equation, leaving only the coefficient in the continuous-outcome equation to be estimated. For identification, the variance from the censored regression will be constrained to be equal to that of the linear regression.
This may be implemented as:

```
gsem (wage <- educ age L)  
   (selected <- married children educ age L@1,  
    family(gaussian, udepvar(notselected))),  
   var(L@1 e.wage@a e.selected@a)
```

where the variable `wage` is only observed when the `notselected` variable is 0. The `selected` and `notselected` variables are complements. The variables `married` and `children` are assumed to only affect the probability of labor force participation, while `educ` and `age` are presumed to affect both LFP and the level of the wage for working women.

Like Roodman’s `cmp`, Stata considers missing values on an equation-by-equation basis, so the fact that `wage` is missing for non-working women is not a problem. Graphically:
Models supported by GSEM

Heckman selection model

married
children
educ
age
selected
Gaussian
identity
ε₁
wage
ε₂
L₁
1

Christopher F Baum (BC / DIW) Introduction to GSEM in Stata Boston College, Spring 2016 25 / 39
Endogenous treatment-effects model

The treatment-effects model attempts to measure the effect of a “treatment” on a continuous outcome. For instance, we might hypothesize that belonging to a labor union has an effect on wages, and we want to measure the effect. This differs from the Heckman selection model in that here we observe the outcome—the wage—for all observations.

The econometric problem is that those persons with certain characteristics, for instance, higher education, might be more or less likely to be ‘treated’. Thus, we must take account of the non-experimental nature of the data at hand, rather than merely regressing wage on union with controls.
We may implement this, similar to the Heckman model, with a latent variable related to the probability of being treated. Variables llunion and ulunion are complements, reflecting the observed union indicator.

```stata

gsem (wage <- age grade i.smsa i.black tenure 1.union L) 
   (llunion <- i.black tenure i.south L@1, 
    family(gaussian, udepvar(ulunion))), 
   var(L@1 e.wage@a e.llunion@a)
```
Models supported by GSEM

Endogenous treatment-effects model

1.south

1.black

tenure

age

grade

1.smsa

1.union

ɛ₁

Gaussian

identity

ilunion

ɛ₂

L₁

wage
The GSEM framework may be used to implement Item Response Theory (IRT) models such as the Rasch model. In this example, we have eight binary measurements from a math test, and we want to generate a single latent factor, Math Ability, and evaluate how difficult each of the questions were. This can be done by constraining the effects of each observed variable on the latent factor to 1; the estimated intercepts then gauge difficulty. A logit link is used, as all of the observed variables follow a Bernoulli distribution.

\[\text{gsem (MathAb -> (q1-q8)@1), logit}\]
Models supported by GSEM

One-parameter IRT (Rasch) model

Bernoulli

MathAb

q1

logit

q2

Bernoulli

logit

q3

Bernoulli

logit

q4

Bernoulli

logit

q5

Bernoulli

logit

q6

Bernoulli

logit

q7

Bernoulli

logit

q8

Bernoulli

logit

b

b

b

b

b

b

b

b

b
We consider the Math Ability problem, noting that students are nested within schools. We include a latent variable at the school level to account for possible school-by-school effects. This makes the estimation problem into a multilevel model. In the graphical representation, school shows up as a latent variable at the school level.

```
 gsem (MathAb M1[school] -> q1-q8), logit
```
Models supported by GSEM

Two-level measurement model (multilevel, generalized response)

![Diagram of a two-level measurement model with MathAb as the latent variable, connected to eight observed variables (q1 to q8) with Bernoulli distributions and logit link functions. Each observed variable is connected to a school level, represented by school1, with coefficients c1 to c8.]

Christopher F Baum (BC / DIW) Introduction to GSEM in Stata Boston College, Spring 2016 32 / 39
This two-factor measurement model contains two latent variables: one measuring Math Ability and a second measuring Math Attitude. While the observed variables related to Ability are pass/fail grades on an eight-question test, those underlying Math Attitude are Likert-scale variables, necessitating the use of an ordinal estimator. The two latent factors are assumed to be correlated. The code:

```
gsem (MathAb -> q1-q8, logit) ///
(MathAtt -> att1-att5, ologit)
```
Models supported by GSEM

Two-factor measurement model (generalized response)

MathAb

q1
Bernoulli
logit
q2
Bernoulli
logit
q3
Bernoulli
logit
q4
Bernoulli
logit
q5
Bernoulli
logit
q6
Bernoulli
logit
q7
Bernoulli
logit
q8
Bernoulli
logit

MathAtt

att1
ordinal
logit
att2
ordinal
logit
att3
ordinal
logit
att4
ordinal
logit
att5
ordinal
logit
In the prior model, we allowed for (and estimated) a covariance between the two latent factors, Math Ability and Math Attitude. We now add a structural component to the model by assuming that there is a causal relationship between Math Attitude and Math Ability. This allows us to test a hypothesis regarding the way in which attitudes toward math may affect ability, as evidenced by the observed test scores.

```plaintext

gsem (MathAb -> q1-q8, logit) ///
    (MathAtt -> att1-att5, ologit) ///
    (MathAtt -> MathAb)
```

As MathAb is now endogenous, an error term appears in the specification.
Models supported by GSEM

Full structural equation model (generalized response)

MathAb

\[\epsilon_1 \]

\[
\begin{array}{ccccccc}
\text{MathAb} & \rightarrow & \text{MathAtt} & \rightarrow & \text{att1} & \rightarrow & \text{q1} \\
& & & & \text{att2} & \rightarrow & \text{q2} \\
& & & & \text{att3} & \rightarrow & \text{q3} \\
& & & & \text{att4} & \rightarrow & \text{q4} \\
& & & & \text{att5} & \rightarrow & \text{q5} \\
& & & & \text{MathAtt} & \rightarrow & \text{MathAb} \\
\end{array}
\]
We now return to a framework similar to that implemented by Roodman’s `cmp`. In this application, we combine a logit equation and a Poisson regression equation. The logit models the probability of low birthweight, while the Poisson counts the number of premature episodes of labor encountered by the mother. We posit a causal relationship between premature labor and low birth weight.

```
gsem (low <- ptl age smoke ht lwt i.race ui, logit) ///
    (ptl <- age smoke ht, poisson)
```

Age, smoking status and an indicator of hypertension are assumed to affect both outcomes, where other controls only enter the logit equation.
Models supported by GSEM

Combined models (generalized responses)

- Bernoulli
- Logit
- Age
- Smoke
- Height
- Light weight
- UI
- PTL

- Poisson
- Log

- Low

Christopher F Baum (BC / DIW)
Introduction to GSEM in Stata
Boston College, Spring 2016
Although we will not illustrate these models, the GSEM framework can also be used to implement:

- MIMIC model (generalized response)
- Multinomial logistic regression
- Random-intercept and random-slope models (multilevel)
- Crossed models (multilevel)

and a number of others. See Stata’s [SEM] manual for details.