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Abstract

As the COVID-19 pandemic has progressed in the U.S., “hotspots” have been shift-
ing geographically over time to suburban and rural counties showing a high preva-
lence of the disease. We analyze daily U.S. county-level variations in COVID-19 con-
firmed case counts to evaluate the spatial dependence between neighboring counties.
We find strong evidence of county-level socioeconomic factors influencing the spatial
spread. We show the potential of combining spatial econometric techniques and so-
cioeconomic factors in assessing the spatial effects of COVID-19 among neighboring
counties.
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1 Introduction

“In a quickly changing pandemic landscape...county-level data and analysis is crucial to

understanding needs and supporting planning efforts.” !

In January 2020, the first confirmed case of COVID-19 in the U.S. was reported
in the state of Washington (Holshue et al. 2020). The first U.S. deaths were officially
reported in February in Washington by the CDC and in California.> By mid-March,
COVID-19 transmission had become widespread, tending to cluster in certain sub-
regions and accelerated with rapidly increasing case counts more than 1,000-fold with

*We thank participants in the International Workshop on Computational Economics and Econometrics,
Rome, and the Stata Conference 2020, London for their comments.

ICenter for Spatial Data Science, University of Chicago.

2See https:/ /time.com /5825320 california-coronavirus-february-first-death /.
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New York City being the outbreak’s focal point, with other urban areas in the North-
east and Midwest seriously affected (see Appendix). Since then all 50 states and D.C.
implemented various actions such as non-pharmaceutical public health interventions
(PHIs) to slow down and contain the transmission of the ongoing coronavirus pan-
demic. These measures include social distancing, business closures, school closings,
public gathering restrictions, travel limitations and stay-at-home orders.?> Some local
governments such as Sonoma County, CA have also implemented stay-at-home and
shelter-in-place orders.*

A rapidly growing literature on spatial geographic aspects related to COVID-19
includes Bailey et al. (2020), Coven & Gupta (2020), Guliyev (2020), Kang et al. (2020),
Kuchler et al. (2020), and Mollalo et al. (2020).

In the following, we briefly describe the data that we use in this study.

2 Data

We constructed a cross-sectional data set for counties of the 48 contiguous U.S.
states and the District of Columbia for Spring 2020. Daily data on COVID-19 con-
firmed cases for each U.S. state and county were obtained from USAFacts.” The data
include the state, the county, its Federal Information Processing System (FIPS) code,
and the daily confirmed case counts of COVID-19 from March 1, 2020 until the present.
Descriptive statistics on confirmed cases for county j and date ¢ are presented in Ta-
ble 1. The Appendix contains county-level choropleth maps showing the spread of
COVID-19 cases for March 1, April 1, April 30 and the last date referenced in the anal-
ysis, May 23, 2020.

We obtain additional data from a variety of sources. Because of differences in pop-
ulation across counties, the number of confirmed COVID-19 cases is adjusted in each
county by dividing the confirmed counts by the total population of each county in
2018, the latest county resident population estimates with demographic characteris-
tics available from the U.S. Census Bureau. Using this same data source, we gathered
information on gender and race at the county level across five aggregated age groups.®
These data were included in the spatial models as covariates in percentage units. In ad-
dition to this demographic information, we added county-level data for 2018 on three
socioeconomic factors: median income, prevalence of PM2.5 pollution” and the per-
cent of residents lacking health insurance from the County Health Rankings database.

3A complete list of the interventions implemented in each state and their effective dates are available at
the Institute for Health Metrics and Evaluation, University of Washington.

#See https:/ /socoemergency.org/order-of-the-health-officer-shelter-in-place /.

>These data were originally obtained from Johns Hopkins Center for Systems Science and Engineering
(CSSE). However, those data did not distinguish cases in the boroughs of New York City.

®Below 20 years, between 20 and 39 years, between 40 and 59 years, between 60 and 79 years, and 80
years or more.

7PM2.5 describes fine inhalable particles, with diameters 2.5 micrometers and smaller where PM denotes
particulate matter.
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Finally, we added county-level data from PolicyMap and CDC BRFSS (2020) for their
COVID-19 Health Risk Index. This index incorporates the prevalence of five health
conditions which have been considered as risk factors for COVID-19 infections® from
the CDC’s Behavioral Risk Factor Surveillance System (BRFSS) at the county level, and
is available in z-score form.

Table 2 provides descriptive statistics of the demographic, socioeconomic and health
index risk variables that are used in the spatial econometric models presented below.
The variables White, Black and Hispanic include both males and females but do not
add up to 100%, as Hispanic ethnicity may be combined with any or several of the U.S.
Census Bureau racial categories (White, Black or African American, American Indian
or Alaska Native, Asian, and Native Hawaiian or other Pacific Islander).

Spatial data, including geographic coordinates and the FIPS identifier for each
county for 2018, were obtained from the Census Bureau’s MAF/TIGER geographic
database.

3 Empirical Strategy and Results

In this section, we explore the potential of combining spatial econometric tech-
niques and socioeconomic factors to assess the spatial effects of COVID-19 among
neighboring counties.

To accommodate spatial autoregression in our models and measure spatial spillover
effects of COVID-19, the (IV x V) spatial matrix W was computed using rook contiguity
for the 48 contiguous U.S. states and the District of Columbia, where N is the num-
ber of U.S. counties (FIPS) under study. This weighting matrix measure implies that
counties are considered first-order neighbors if they share a border, and not merely a
vertex. We also tested an inverse distance spatial matrix, which yielded less satisfac-
tory results. Therefore, results reported in Tables 4 and 5 rely on the rook contiguity
matrix rather than on the inverse distance matrix.

3.1 The spatial autoregressive (SAR) model

In econometrics, several estimation procedures have been developed to model spa-
tial dependence and examine the spatial relationships among neighboring units. See
Anselin (1988) for a comprehensive discussion of the use of various estimators (least
squares, maximum likelihood, instrumental variable, and method of moments) to ac-
count for spatial correlation issues in the context of the linear regression model. LeSage
& Pace (2009) provide a textbook introduction to the SAR model. Kelejian & Prucha
(1998, 1999) examined the generalized two stage least squares and the generalized
method of moments estimators, while Lee (2004) derived the properties of the maxi-
mum likelihood estimator and its robust covariance matrix. In this paper, we estimate

80besity, diabetes, high blood pressure, heart disease and chronic obstructive pulmonary disease.
Asthma is not included in the health risk index due to data inconsistency on asthma risk.
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SAR lag models using the maximum likelihood estimator provided by Stata version
16 as the spregress command.

We first estimated a SAR model in which the most recent confirmed case count C} ;
for county j is modeled by C;;_14 and C;;_2s, t = May 23. Table 1 summarizes these
variables. These lag lengths were motivated by the incubation period of COVID-19
and the required isolation period of a fortnight. Considering that spatial dependencies
occur through multiple channels, this model makes use of both a spatial lag of the
dependent variable (C};, confirmed case counts), specified by the spatial contiguity
matrix W, as well as a spatially lagged error term utilizing the same spatial matrix W.

3.2 Incorporating socioeconomic factors

As a second step, we augmented the previous pure SAR model with several so-
cioeconomic factors described in Table 2, motivated by the following stylized facts:

1. Gender: rejection of PHIs by males has been commonly observed in many set-
tings, including lockdown protests in a number of states.

2. Race/ethnicity: minority workers have been more likely to be on the ‘front lines’
in many essential industries, and less likely to be able to work from home con-
finement.

3. Age: while COVID-19 infections are more serious for the aged, who are more
likely to avoid infection if they can do so, younger individuals are more likely to
ignore PHIs and contribute to the spread.

4. Income: counties with lower median income are likely to have lower-quality
health care resources and a higher percentage of minority residents.

5. Pollution: residents of counties with higher levels of air pollution are likely to be
more susceptible to airborne infection due to their exposure to pollutants.

6. Health insurance: residents of counties with a larger fraction lacking health in-
surance are likely to be more susceptible to COVID-19.

7. Complicating health conditions: residents of counties with higher health risk
indices are likely to be more susceptible to COVID-19.

These are the rationales for the inclusion of the county-level fraction of males, the
fractions of Blacks and Hispanics, the fraction in the 20-39 year age group,’ the level
of PM2.5, median income, the fraction of uninsured and the standardized health risk
index in the estimated models. In addition, Persico & Johnson (2020) found a strong,
positive relationship between pollution and COVID-19 mortality and case rates, es-
pecially in counties with higher populations of Black, lower income and unemployed

Preliminary empirical investigations with the five age groups suggested that the only one that signals a
clear high prevalence of cases is the 20-39 year age group, which explains its inclusion in the models.



individuals. With regard to the COVID-19 Health Risk index inclusion, descriptive ev-
idence shows that chronic health conditions can exacerbate susceptibility to COVID-
19.10

To illustrate the relationships among the socioecoonmic factors at the county level,
Table 3 presents simple correlations among the factors included in our models.

3.3 Empirical results

In the SAR model presented in the first column of Table 4, where the confirmed case
count in county j is affected by both the confirmed case counts and by the unobserved
factors in county j’s neighbors, the relevance of spatial factors over and above the
autoregressive factors is evident. The model pv refers to the test of the overall model,
whereas the spatial pv refers to a test of the relevance of spatial factors.

The models incorporating socioeconomic factors in Tables 4 and 5 include only
one autoregressive term, C;;_14. That factor is statistically significant at the 99% level
in all estimated models. Its value, in excess of unity, reflects the exponential growth
potential of the pandemic, which even in the presence of preventive public health
measures is an explosive dynamic process in the absence of a reservoir of uninfected
individuals.

In column 2 of Table 4, gender composition for each county is added. Counties
with higher percentages of male residents are predicted to have significantly higher
confirmed cases, ceteris paribus. Column 3 includes the two race and ethnicity mea-
sures, reflecting the minority composition of the county. They each increase predicted
case counts, and are jointly statistically significant. Column 4 illustrates the positive
impact of a larger number of residents aged 20-39. Column 5 combines the gender
and minority status variables, further increasing the log-likelihood statistic. Finally,
column 6 reflects the impact of county median income level on confirmed case counts.
As expected, higher median income is associated with lower confirmed cases, ceteris
paribus. These models thus provide support for the first four stylized facts listed above.
Over and above the SAR effects, which are uniformly significant, these socioeconomic
factors have strong effects on the prevalence of COVID-19 infections.

In column 1 of Table 5, the impact of air pollution levels, proxied by PM2.5, signifi-
cantly increases the confirmed case count. The second column reproduces the effect of
median income for comparison. In column 3, the impact of residents lacking health in-
surance coverage is positive and statistically significant. Column 4 include the Health
Risk Index measure, where higher levels of the index reflect greater prevalence of five
health conditions. The impact on confirmed cases is positive and significant. Col-
umn 4 combines the air pollution measure with the percentage of residents lacking
health insurance, with those factors individually and jointly significant. Finally, col-
umn 6 combines the air pollution measure, which is often higher in minority neigh-
borhoods, with the race and ethnicity factors. Each of these variables has a significant

10See https:/ /www.nytimes.com/interactive /2020/05/18 /us/coronavirus-underlying-conditions.html.
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effect on ()}, individually and in combination. Models incorporating these socioe-
conomic factors have considerably lower log-likelihood values than the pure spatial
autoregressive model presented in Table 4. When added to the SAR framework, the
socioeconomic factors have a clear impact on the prevalence of COVID-19 infections,
supporting stylized facts 5-7 listed above.

The statistics shown under the CDIST heading, Ct and e.Ct, show the impact of
the spatial lag of the dependent variable C';; and the spatial error lag, respectively.
The former lacks statistical significance in some of the models, but it is significantly
different from zero in most SAR models and it has a positive sign across all mod-
els. This indicates that neighboring counties have a significant, positive effect on the
COVID-19 confirmed counts, implying that we cannot ignore the spatial impacts from
neighbors.!! The spatial error lag coefficients are always significantly different from
zero. The spatial pv is the p-value of a x? test for the relevance of spatial factors, which
strongly rejects its null hypothesis for all models considered in this paper.

4 Conclusions and Extensions

This first foray into spatial autoregressive modeling of the COVID-19 pandemic in
the United States reveals the usefulness of this modeling framework, capturing both
geography and socioeconomic factors as important contributors to the severity of the
pandemic. As a proof of concept, it illustrates the potential for geographic modeling
to enhance our understanding of a fast-moving dynamic process. Socioeconomic fac-
tors, including demographics and health risk measures, change at a much slower rate.
Nevertheless, these quasi-fixed factors can add significantly to our understanding of
the spread of COVID-19.

Looking ahead, we plan to extend the current econometric cross-sectional frame-
work to spatial autoregressive panel data models with fixed effects along both spa-
tial and sociodemographic lines to further investigate their potential. We also hope
to complement the econometric analysis with a local spatial autocorrelation analy-
sis based on the Getis & Ord (1992) hot and cold spot approach and on population-
weighted coordinates in addition to the Moran (1950) I global statistic and geographic
coordinates.

1 Although not reported in this paper, we estimated the Moran (1950) I statistic to formally test for global
spatial clustering or geographic connectivity among the counties under study. The resulting p-value of zero
to five decimal places strongly rejected the null hypothesis of spatial randomness.



References

Anselin, L. (1988), Spatial Econometrics: Methods and Models, Kluwer Academic Pub-
lishers, Dordrecht.

Bailey, M., Kuchler, T., Russel, D., State, B. & Stroebel, J. (2020), Social Connectedness
in Europe, Working paper, Stern School of Business, New York University.

Coven, J. & Gupta, A. (2020), Disparities in Mobility Responses to COVID-19, Working
paper, Stern School of Business, New York University.

Getis, A. & Ord, J. K. (1992), ‘The analysis of spatial association by use of distance
statistics’, Geographical Analysis 24, 189-206. https://doi.org/10.1111/j.1538-4632.
1992.tb00261.x.

Guliyev, H. (2020), ‘Determining the spatial effects of COVID-19 using the spatial
panel data model’, Spatial Statistics 38, 1-10. https://www.sciencedirect.com/
science/article/pii/S2211675320300373.

Holshue, M., DeBolt, C., Lindquist, S. & et al. (2020), ‘First Case of 2019 Novel
Coronavirus in the United States’, New England Journal of Medicine 382, 929-936.
http:/ /hdl.handle.net/10.1056 /NEJMo0a2001191.

Kang, D., Choi, H., Kim, J.-H. & Choi, ]J. (2020), ‘Spatial epidemic dynamics of the
COVID-19 outbreak in China’, International Journal of Infectious Diseases 94, 96-102.
https:/ /www.sciencedirect.com/science/article/pii/S1201971220302095.

Kelejian, H. & Prucha, I. (1998), ‘A Generalized Spatial Two-Stage Least Squares Pro-
cedure for Estimating a Spatial Autoregressive Model with Autoregressive Distur-
bances’, Journal of Real Estate Finance and Economics 17,99-121. https:/ /link.springer.
com/article/10.1023/A:1007707430416.

Kelejian, H. & Prucha, 1. (1999), ‘A Generalized Moments Estimator for the Autore-
gressive Parameter in a Spatial Model’, International Economic Review 40, 509-533.
https:/ /www.jstor.org/stable/2648817.

Kuchler, T., Russel, D. & Stroebel, J. (2020), The Geographic Spread of COVID-19 Cor-
relates with Structure of Social Networks as Measured by Facebook, Cesifo working
paper no. 8241, CESifo. https:/ /ideas.repec.org/p/ces/ceswps/_8241.html.

Lee, L.-F. (2004), ‘Asymptotic distributions of quasi-maximum likelihood estimators
for spatial autoregressive models’, Econometrica 72, 1899-1925. http://hdl.handle.
net/10.1111/j.1468-0262.2004.00558.x.

LeSage, J. & Pace, R. K. (2009), Introduction to Spatial Econometrics, Boca Raton, FL:
Chapman & Hall/CRC.

Mollalo, A., Vahedi, B. & Rivera, K. (2020), ‘GIS-based spatial modeling of COVID-
19 incidence rate in the continental United States’, Science of the Total Environment
728, 138884. https://doi.org/10.1016/j.scitotenv.2020.138884.

Moran, P. (1950), ‘Notes on Continuous Stochastic Phenomena’, Biometrika 37, 17-23.
https:/ /pdfs.semanticscholar.org/56a3/ebf5aal2dc98f13ae34d25c0ebOed4ae4f32.
pdf.


 https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
 https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
https://www.sciencedirect.com/science/article/pii/S2211675320300373
https://www.sciencedirect.com/science/article/pii/S2211675320300373
http://hdl.handle.net/10.1056/NEJMoa2001191
https://www.sciencedirect.com/science/article/pii/S1201971220302095
https://link.springer.com/article/10.1023/A:1007707430416
https://link.springer.com/article/10.1023/A:1007707430416
https://www.jstor.org/stable/2648817
https://ideas.repec.org/p/ces/ceswps/_8241.html
http://hdl.handle.net/10.1111/j.1468-0262.2004.00558.x
http://hdl.handle.net/10.1111/j.1468-0262.2004.00558.x
https://doi.org/10.1016/j.scitotenv.2020.138884
https://pdfs.semanticscholar.org/56a3/ebf5aa12dc98f13ae34d25c0eb0ed4ae4f32.pdf
https://pdfs.semanticscholar.org/56a3/ebf5aa12dc98f13ae34d25c0eb0ed4ae4f32.pdf

Persico, C. & Johnson, K. (2020), Deregulation in a Time of Pandemic: Does Pollution
Increase Coronavirus Cases or Deaths?, IZA DP No. 13231, IZA. https://ideas.
repec.org/p/iza/izadps/dp13231.html.

PolicyMap and CDC BRFSS (2020), COVID Risk Index, Technical report, PolicyMap.
https:/ /PolicyMap.com.


https://ideas.repec.org/p/iza/izadps/dp13231.html
https://ideas.repec.org/p/iza/izadps/dp13231.html
https://PolicyMap.com

Table 1: Confirmed COVID-19 Counts for Lag Variables (N = 3,107)

Variable Name Min 0.25

Median 0.75 0.99 Max Date

Cit
Cii-14
Cj1—28

0
0
0

33 157 8,316 197,266 May 23
23 107 6,887 183,289 May9
14 68 4,916 155,113 April25

Table 2: Descriptive Statistics (N = 3,107)

Variable Name Mean Min  Max Description

pct_male 50.08 43.13 73.16 Percentage of Males

pct_black 10.30 0.097 86.61 Percentage of Blacks

pct_hisp 9.69 0.61 96.36 Percentage of Hispanics

pct_20_30 2401 11.30 53.06 Percentage in the 20-39 year age group
pm25 8.95 42 154 PM2.5 (in pg per cubic meter)

medinc 49.39 22.05 134.61 Median Income (000 US dollars)
unins 1195 213 33.27 Percentage of Uninsured Individuals
index_zscore 0.08 -3.65 3.56 z-score of Health Risk Index value

Notes: The sample size N denotes the number of U.S. counties (FIPS) under study.

Table 3: Correlations of regressors

pctmale pctblack pcthisp pct2030 pm25 medinc unins index zscore

pct male 1.000
pct black -0.145
pct hisp 0.160
pct 20 30 0.213
pm25 -0.253
medinc -0.036
unins 0.065

index zscore  -0.129

1.000
-0.093
0.278
0.247
-0.237
0.191
0.352

1.000
0.233
-0.265
0.040
0.451
-0.291

1.000

0.195 1.000

0.116 0.070  1.000

0.006  -0.275 -0.395 1.000

-0.330 025 -0.595 0.191 1.000




Table 4: Spatial models of COVID-19 Cases: I

(1) (2)

)

(4)

()

(6)

Ct
Ct14 1.182**  1.137***  1.129** 1.136™* 1.125"**  1.141***
(124.33)  (179.38) (177.77) (177.89) (177.07)  (180.39)
Ct28 -0.102***
(-6.01)
pct_male 5.982*** 6.275%**
(4.75) (5.00)
pct_black 1.926*** 2.040**
(8.07) (8.51)
pct_hisp 1.385*** 1.258***
(5.82) (5.25)
pct_20_30 3.303***
(4.84)
medinc -0.900***
(-3.67)
CDIST
Ct 0.0483***  0.0305***  0.00480 0.0237** 0.00938 0.0318***
(4.06) (2.58) (0.40) (2.02) (0.78) (2.70)
e.Ct 0.213**  0.275*** 0287 0.270"* 0.293***  0.262***
(6.34) (8.30) (8.63) (8.13) (8.85) (7.88)
N 3107 3107 3107 3107 3107 3107
LogLikelihood -19999.7  -20005.4 -19971.2 -20005.0 -19958.8 -20009.9
PseudoR2 0.924 0.923 0.925 0.923 0.926 0.923
model pv 0 0 0 0 0 0
spatial pv 420e-18 7.03e-22 4.54e-19 8.73e-20 1.30e-20 2.55e-20

t statistics in parentheses
*p<0.1," p<0.05 " p<0.01

10



Table 5: Spatial models of COVID-19 Cases: II

) (2) 3) 4) ©) (6)
Ct
Ct14 1.139**  1.141**  1.139** 1.141"** 1.137** 1.128***
(179.83) (180.39) (180.36) (179.93) (180.16) (177.48)
pm25 5.448** 8.649***  5.493**
(2.46) (3.75) (2.37)
medinc -0.900***
(-3.67)
unins 2.935%** 3.618***
(4.45) (5.29)
index_zscore 8.449***
(2.69)
pct_black 1.831%**
(7.56)
pct_hisp 1.511**
(6.20)
CDIST
Ct 0.0204* 0.0318** 0.0267** 0.0255**  0.0195  0.00132
(1.71) (2.70) (2.27) (2.19) (1.63) (0.11)
e.Ct 0.269***  0.262**  0.273*** 0.257*** 0.279***  0.290***
(8.09) (7.88) (8.23) (7.73) (8.39) (8.71)
N 3107 3107 3107 3107 3107 3107
LogLikelihood -20013.6 -20009.9 -20006.8 -20013.0 -19999.7 -19968.4
PseudoR2 0.923 0.923 0.923 0.923 0.924 0.925
model pv 0 0 0 0 0 0
spatial pv 3.47e-19 2.55e-20 8.90e-21 1.60e-18 2.57e-20 4.32e-19

t statistics in parentheses
*p<0.1," p<0.05 " p<0.01
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Appendix

Confirmed Cases of COVID-19 in the United States
(cases per 100,000 population as of 3/1/2020)
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Confirmed Cases of COVID-19 in the United States
(cases per 100,000 population as of 4/30/2020)
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