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1 Introduction

Microeconomic theory has informed the design of many markets and other institutions. Many
new mechanisms have been proposed to allocate resources in environments in which transfers are
not used or are prohibited. These environments include the allocation and exchange of transplant
organs, such as kidneys (Roth, Sonmez and Unver, 2004); the allocation of school seats in Boston,
New York City, Chicago, etc. (Abdulkadiroglu and Sénmez, 2003); and the allocation of dormitory
rooms at US colleges (Abdulkadiroglu and Sonmez, 1999). The mechanisms used elicit ordinal
preferences of participants.’

The central concerns in the development of allocation mechanisms are incentives and effi-
ciency.? The literature focused on Pareto efficiency: a social alternative is Pareto efficient if there
exists no other social alternative that makes everybody weakly better off and at least one individ-
ual better off.® Pareto efficiency however is a weak efficiency concept; while interpersonal utility
comparisons are not needed for Pareto efficiency, it only gives a lower bound for what can be
achieved through desirable mechanisms. In consequence, welfare economics—starting with Berg-
son (1938), Samuelson (1947), and Arrow (1963)—have long looked at stronger efficiency concepts
requiring an efficient outcome to be the maximum of a social ranking of outcomes; an idea later
named as resoluteness.* For instance, Arrow (1963), pp. 36-37, discusses the partial ordering of
outcomes given by Pareto dominance, and observes:

But though the study of maximal alternatives is possibly a useful preliminary to the anal-
ysis of particular social welfare functions, it is hard to see how any policy recommendations
can be based merely on a knowledge of maximal alternatives. There is no way of deciding

which maximal alternative to decide on.

Our paper carries out the Bergson-Samuelson-Arrow’s program of analyzing stronger welfare cri-
teria to discrete mechanism design, in which continuous transfers are not allowed and there is a
finite number of alternatives. We study a broad class of discrete environments, merely imposing
a natural richness assumption on preference domains; richness is a substantially weakening of
Arrovian universal domain assumption and it is satisfied in many practically and theoretically

relevant economic domains such as voting for candidates or issues with universal strict prefer-

n the context of deterministic mechanisms without transfers eliciting ordinal information is all we can do. In
addition, eliciting ordinal preferences is considered simpler and more practical (see Bogomolnaia and Moulin, 2001).

2For instance, Bogolomania and Moulin (2004) write that “the central question of that literature is to characterize the
set of efficient and incentive compatible (strategy-proof) assignment mechanisms.”

3Relatedly, constrained Pareto efficiency is also studied, e.g., in the context of allocation of resources, stable (or fair)
matchings that are not Pareto dominated by other stable (or fair) matchings.

4Resoluteness has been a standard property in social choice since its conception and its failure is at the core of the
Condorcet paradox, see e.g. Black (1948) and Campbell and Kelly (2003). See Austen-Smith and Banks (1999) for the
role of resoluteness in political science, and Zwicker (2016) for a recent survey of canonical social choice results such as
Gibbard (1973)-Satterthwaite (1975) Theorem that implicitly or explicitly involve resoluteness.
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ences, matching, and allocation of discrete resources without compensating transfers; for earlier

uses of the richness assumption we study see Pycia and Troyan (2019).

We analyze welfare criteria imposed on social choice functions and social welfare functions.
For every profile of individual preference rankings, a social choice function (SCF) determines what
unique alternative should be implemented, while social welfare function (SWF) determines a soci-
etal ranking of alternatives. Allowing for partial societal rankings, we can treat an SCF as an SWF
in which the outcome of SCF is ranked above all other alternatives.” Following Arrow (1963), we
say that an SWF is Arrovian if, and only if, it satisfies the standard resoluteness, (strong) Pareto,
and independence-of-irrelevant-alternatives postulates. An SWF is resolute if it has a unique so-
cial maximum for every profile of preferences; in particular, every SCF is resolute. An SWF satis-
ties the (strong) Pareto postulate if two socially and Pareto-comparable matchings are ranked so
that the Pareto-dominant matching is ranked above the Pareto-dominated one. An SWF satisfies
the independence of irrelevant alternatives if, given any two profiles of preferences and any two
alternatives that are socially comparable under both profiles, if all individuals rank the two alter-
natives in the same way under both profiles, then the social ranking of the two alternatives is the
same under both profiles. When we want to highlight the positive rather than normative aspects
of an SCF we refer to it as a mechanism; we allow here both Arrovian and not Arrovian SCFs. We
call a mechanism efficient with respect to an SWF if, for every preference profiles, the resulting
outcome is a maximum of the SWE.® We say that a mechanism is Arrovian efficient if it is efficient
with respect to some Arrovian SWF. Finally, we say that a mechanism is strategy-proof if, for any
reports by other individuals, reporting her true ranking leads to the mechanism outcome being
weakly better for an individual than any other report.

We introduce a mild auditability requirement that says that, in order to falsify a proposed
mechanism outcome, it is sufficient to verify pairwise comparison of individuals” preferences of
the outcome with only one challenging alternative (the challenger). This auditability property is
attractive as it allows to falsify the mechanism outcome with a limited amount of information and

thus largely preserves the privacy of participants’ private information.”

In Theorem 1, we show that Arrovian efficiency is equivalent to Pareto efficiency and au-
ditability. In Theorem 2 we show that auditability implies non-bossiness of Satterthwaite and Son-
nenschein (1981) and in general the reverse implication fails via an example. We prove that the
conjunction of individual strategy-proofness and non-bossiness is equivalent to group strategy-
proofness, which is in turn equivalent to monotonicity (Maskin, 1999) (Theorem 3).> We also

5For analysis of welfare with partial orderings, see e.g. see Sen (1970, 1999), Weymark (1984), and Curello and
Sinander (2020).

®There is a rich social choice literature on the correspondence between choice and the maximum of the SWF ranking
in the context of social choice (see below). This literature is interested in rationalizing social choice rather than the
efficiency of mechanisms, and hence it talks about mechanisms “rationalized by an SWF” rather than “efficient with
respect to an SWE.”

"For the literature on privacy in mechanism design see the recent survey Pai and Roth (2018).

8 Analogous two equivalences were established earlier for object allocation, see Péapai (2000) and Takamiya (2001);
our proof approach is different and simpler.



show that for Pareto efficient mechanisms, either of these equivalent conditions implies Arrovian

efficiency.

We illustrate these results by applying them to characterizations in two canonical economic do-
mains. In voting with the universal strict preference domain, our results immediately imply that
Arrovian efficiency and Pareto efficiency are equivalent conditions for an individually strategy-
proof mechanism as all mechanisms in the universal domain are non-bossy. In allocation of objects
for individuals with unit demand who have strict preferences over the objects—often referred to
as house allocation problems—our insights allow us to leverage the results of Pycia and Unver
(2017) to fully characterize the class of auditable and efficient mechanisms as the class of trading
cycles mechanisms. This characterization provides a no-transfer counterpart of Akbarpour and Li

(2020) insight that classical auctions are the “credible” mechanisms in their sense.’”

We further use this last characterization to show that almost sequential dictatorships are the only
mechanisms that are individually strategy-proof and Arrovian efficient with respect to a complete
SWE i.e., one that ranks all alternatives, which are matchings in the discrete allocation domain
(Theorems 4 and 5). An almost sequential dictatorship combines the ideas of sequential dictator-
ship and majority voting between only two possible outcomes. Dictatorships are the benchmark
strategy-proof and efficient mechanisms in many areas of economics. When there are three or
more alternatives, Gibbard (1973) and Satterthwaite (1975) have shown that all strategy-proof and
unanimous voting mechanisms are dictatorial.!” With two alternatives there are other mecha-
nisms that are strategy-proof and unanimous; majority voting being the primary example. Our
class of almost sequential dictatorships combines both of these special mechanisms. Despite these
parallels, we find it surprising that the almost sequential dictatorship theorem is true in our envi-
ronment because—in stark contrast to the environments where this question was previously stud-
ied—ours allows many individually strategy-proof (and even group strategy-proof) and Pareto-
efficient mechanisms that are not dictatorial.

The present paper is the first to connect the literature on allocation and exchange of discrete
resources and the literature on Arrovian preference aggregation. In particular, we seem to be the
first to recognize the equivalence of Theorem 2. At the same time, there is a rich literature extend-
ing Arrow’s program to economic domains, which focuses on determining the class of preference
domains in which Arrow’s result holds, i.e., economic domains in which all complete Arrovian
SWFs are dictatorial; see e.g. Kalai et al. (1979) and Le Breton and Weymark (2011).!! In addition
to us going beyond the dictatorship question, another important difference between this litera-
ture and our work is that the earlier literature relies on the weak Pareto postulate as its efficiency
concept, that is they say that an alternative is Pareto dominated only if all agents strictly prefer

9See also Woodward (2020) for an analysis of a more general concept of auditability in multi-unit auctions.
19Dasgupta, Hammond and Maskin (1979) extended this result to more general social choice models. Satterthwaite
and Sonnenschein (1981) extended it to public goods economies with production. Zhou (1991) extended it to pure
public goods economies. In exchange economies, Barbera and Jackson (1995) showed that strategy-proof mechanisms
are Pareto inefficient.
11See also Bordes et al. (1995); Bordes and Le Breton (1989, 1990b,a).



another alternative. In contrast, we rely on the more commonly used strong Pareto postulate in
economics, in which an alternative is Pareto dominated as soon as all agents weakly prefer another

alternative and at least one agent’s preference ranking is strict.

Our paper also contributes to the literature on characterizations of dominant strategy mecha-
nisms for house allocation. Ehlers (2002) characterizes group-strategy-proof and Pareto-efficient
mechanisms in a maximal domain of weak preferences for which such mechanisms exist and
proves a general impossibility result for the domain of all weak preferences.!? Note that our con-
cept of partial social ranking is different from Ehlers” allowing only certain weak preferences over
assigned houses; Ehlers” work is not concerned with social rankings of outcomes and we have
equivalence classes for indifferences. Pycia and Unver (2017) characterizes group-strategy-proof
and Pareto-efficient mechanisms in the standard domain of strict preferences and Root and Ahn
(2020) characterize properties of these mechanisms allowing for constraints and providing a syn-
thetic treatment of many social choice domains; see also Barbera (1983) and Papai (2000) who laid
the foundations for this line of research. Ma (1994) characterized the class of strategy-proof, indi-
vidually rational, and Pareto-efficient mechanisms, and his characterization has been extended by
Pycia and Unver (2017) and Tang and Zhang (2015) to richer single-unit demand, by Papai (2007)
to multi-unit demand models, and by Pycia (2016) to settings with network constraints.

Sequential dictatorships have not been studied extensively with unit demand for goods, al-
though their special cases have been. In a serial dictatorship (also known as a priority mechanism),
the same individual chooses next regardless of which house the current individual picks. Svens-
son (1994) formally introduced and studied serial dictatorships first; Abdulkadiroglu and Son-
mez (1998) studied a probabilistic version of them where the order of individuals is determined
uniformly randomly; Svensson (1999) and Ergin (2000) characterized them using plausible ax-
ioms. Allowing for outside options, Pycia and Unver (2007) characterized a subclass of sequential
dictatorships different from serial dictatorships. With multiple-house demand under responsive
preferences, Hatfield (2009) showed that sequential dictatorships are the only strategy-proof, non-
bossy, and Pareto-efficient mechanisms, and Papai (2001) characterized the sequential dictator-
ships through the properties of strategy-proofness, non-bossiness, and citizen sovereignty (see
also Klaus and Miyagawa, 2002). In a general model allowing both the cases with and without
transfers, Pycia and Troyan (2019) showed that a broad class closely resembling sequential dic-
tatorships are precisely the mechanisms that are strongly obviously strategy-proof in their sense;
see also Li (2015) and Pycia (2019). For characterizations of random serial dictatorships in terms of
incentives, efficiency, and fairness see Liu and Pycia (2011) and Pycia and Troyan (2019). Root and
Ahn (2020) characterize the constrained social choice domains in which generalized sequential
dictatorships are the only group strategy-proof and Pareto-efficient mechanisms. As an applica-
tion of their general theorem, they characterize sequential dictatorships as the only mechanisms
which are group strategy-proof and Pareto efficient in the roommates problem.

12Most of the literature on house allocation—including our paper—is not affected by Ehlers’ impossibility result
because it analyzes environments in which individuals’ preferences are strict.



2 Model

2.1 Environments

Let I be a set of individuals and A be a set of social alternatives. Each individual  has a preference
relation over A (i.e.,, a complete, reflexive, and transitive binary relation) denoted by =;. We
denote its strict (i.e., anti-symmetric) part by ~; and indifference (i.e., symmetric) part by ~;. Let
P; be the domain of preference relations for individual 7, and let P; denote the Cartesian product
XicjPj forany | C I. Any profile == (%=;);cs from P = P; is called a preference profile. For every
=€ Pand ] C I,let == (’=;)ic; € Py be the restriction of = to . Suppose that for every individual
there is an exogenous equivalence relation =; on alternative set .4. We say that the domain P; is
rich if the following two conditions are satisfied:

1. If for any two alternatives a and b we have a =; b, then for every =;€ P; we have a ~; b.
2. If no alternatives in A’ C A are =;-equivalent, then all strict preferences on A’ belong to P;.

Thus, effectively, P; is the universal strict preference domain respecting =;-equivalence classes.'?

We say that the preference profile domain P is rich if P; is a rich preference domain for every i € I
and for any two alternatives a2 and b such that a2 =; b for every i € I, a = b. The last condition
eliminates redundancies in our description of the preferences over alternatives. For instance, in
house allocation, each social alternative a is a matching between individuals and objects from
some set and a =; b if, and only if, the object matched to i is the same under a and b. In the rest
of the paper, we assume that P is a rich preference profile domain for a fixed equivalence relation
profile (=)ie;-

Throughout the paper, we fix I and A, and thus, a problem is identified with its preference
profile.

A (direct) mechanism or a social choice function (SCF) is a mapping ¢ : P — A that assigns
an alternative for every preference profile (or, equivalently, for every problem). We denote the
outcome of mechanism ¢ for a preference profile = as ¢[=].

We denote by P° the set of strict partial orderings over alternatives, where a strict partial or-
dering is a binary relation that is anti-symmetric and transitive, but not necessarily complete. We
refer to elements of P° as social rankings. A social welfare function (SWF) ® : A — P° maps
individuals” preference profiles to social rankings. If an alternative a is ranked higher than some
other alternative b under @ (=), we denote this as a ®(3>) b. An SWF & is resolute if, for every
preference profile = there exists an alternative a such that a ®(3=) b for every b € A — {a}. We
assume SWFs we consider are resolute. A mechanism can be identified with a special instance of

13This richness concept was introduced by Pycia and Troyan (2019) who studied it for exogenous structural prefer-
ence relations (trumping) that can be but not necessarily are equivalence relations. In their terminology, our setting
corresponds to no-transfer environments.



a resolute SWF in which the mechanism outcome is the unique maximal alternative of the SWF

and no comparisons between non-maximal alternatives are made.

2.2 Efficiency, Auditability, Strategy-Proofness, and Other Properties

An alternative is Pareto efficient for a preference profile = if no other alternative would make
everybody weakly better off and at least one individual better off; that is, an alternative a is Pareto
efficient if there exists no alternative b such that for everyi € I, b >=; i, and for somei € I, b >; i.
In particular, a mechanism is Pareto efficient if it finds a Pareto-efficient alternative for every
problem. Pareto efficiency is a weak efficiency requirement and, as discussed in the Introduction,
Arrow criticized it for its failure to uniquely determine the best outcome; that is, for not being

resolute.'*

An SWF @ satisfies the Pareto postulate (or is unanimous) if: for every preference profile =
and any two alternatives 2 and b that are comparable by ®(:=), if a *=; b for every i € I, with at
least one strict preference, then a @ (=) b.

An SWF & satisfies the independence of irrelevant alternatives (ITA) if: for every =, =€ P
anda,b e A,

1. if all individuals rank a and b in the same way, i.e., foreveryi € [,a = b <= a = b,

1
and

2. both @ (=) and @ (') compare a and b, i.e., (i) a ®(=) bor b (=) a and (ii) a (>=') b or
b®(=)a,

thena ®(=')b < ad(>)b.

We say that an alternative  is efficient with respect to social ranking >° € P if it maximizes
the social welfare, thatisa =° b for every b € A — {a}. A mechanism ¢ is efficient with respect
to an SWF @ if for any profile of individuals” preferences =, the alternative ¢[=] is efficient with
respect to ® (3=). If ¢ is efficient with respect to some SWF that satisfies the Arrovian postulates
of resoluteness, Pareto, and IIA, then we say that ¢ is Arrovian efficient. The next section offers
two examples illustrating the concept of Arrovian efficiency.

A mechanism ¢ is (one-comparison) auditable if, (i) for any preference profile =, (ii) for any
alternative a such that ¢[’=] #; a for some individual j, and (iii) for any other preference profile
=’ such that the comparisons of alternatives a and ¢[’=] are the same under =; and =/ for every
icl,ie, ¢[] = a <= ¢[=] = a, there exists some individual j’ such that ¢[='] #; a.
This concept captures the idea that, in order to falsify a proposed alternative as being the outcome
of the mechanism, it is sufficient to find one challenger alternative and to verify the pairwise
comparisons of the proposed outcome with the challenger. We can thus falsify an outcome with

4Notice also that Pareto dominance is a non-resolute SWE.



a limited amount of information; one of the reasons this is an attractive feature of a mechanism is
that it allows challenges that rely on relatively little information and largely preserve individuals’

privacy.

A mechanism is individually strategy-proof if for every individual, she weakly prefers the
outcome when she is truthful to the outcome under any untruthful revelation of her preferences.
Formally, a mechanism ¢ is individually strategy-proof if for every =c P, there exists noi € I
and »=}€ P; such that

oLzl =il =i ol=]

A mechanism is non-bossy (Satterthwaite and Sonnenschein, 1981) if when the mechanism
chooses two alternatives that are in the same equivalence class of an individual in any two prob-
lems that only differ by this individual’s preferences, these two alternatives should also be in the
same equivalence class of all individuals. Formally, a mechanism is non-bossy if for any individ-
ual i and for every i=;, =/€ P;and »=_;€ P_j,

Ql=i =il =i @l =il = @z =i = =l =i

A mechanism is group strategy-proof if there is no group of individuals that can misstate their
preferences in a way such that each one in the group is weakly better off and at least one individual
in the group is strictly better off, irrespective of the preference ranking of the individuals not in
the group. Formally, a mechanism ¢ is group strategy-proof if for every =c P, there exists no
J C Iand >’]€ P; such that

7l = ¢[=]|foreveryj €],

=
3
<

e

and
!

@[], =] =i ¢[=] for somei € J.
Given a mechanism ¢, a preference profile =’ is a ¢-monotonic transformation of another

preference profile = if
{acA:ia= o=} 2{ac A:a= ¢[=]} foreveryie I

Thus, for every individual, the set of alternatives weakly better than the mechanism’s outcome
under the base profile weakly shrinks when we go from the base profile to its monotonic transfor-
mation. A mechanism ¢ is (Maskin) monotonic (Maskin, 1999) if, for every =€ P, ¢[='] = ¢[=]
for every »='€ P that is a p-monotonic transformation of 3=.



3 Equivalences

In this section, we study individually strategy-proof and Arrovian efficient mechanisms and estab-
lish for them equivalence results involving Pareto efficiency, auditability, group strategy-proofness

and more technical properties of non-bossiness and monotonicity.

First, we characterize Arrovian efficiency with the help of auditability.'

Theorem 1. A mechanism is Arrovian efficient if, and only if, it is Pareto efficient and auditable.

Second, auditability is a strictly stronger condition than non-bossiness, even for a Pareto effi-

cient mechanism.

Theorem 2. Any auditable mechanism is non-bossy. The converse does not hold — even for Pareto-efficient
mechanisms.

Third, the conjunction of the two non-cooperative properties: individual strategy-proofness

and non-bossiness is equivalent to either group strategy-proofness or monotonicity. '°

Theorem 3. The following three conditions are equivalent for a mechanism:

1. group strategy-proofness,
2. the conjunction of individually strategy-proofness and non-bossiness,

3. monotonicity.

This result generalizes similar results due to Pdpai (2000) and Takamiya (2001) for house allo-
cation environments to our more general setting. Its proof is relegated to the appendix.

To illustrate the results and our concepts, let us look at the house allocation setting with three
individuals 1, 2, and 3, three houses A, B, and C, and no outside options. Given an alternative,
which is a matching of houses to individuals, a let a(i) refer to the house assigned to an individual
i under a. Individuals” preferences are denoted by strict preferences over houses, by slight abuse
of notation, instead of alternatives and their equivalence relations are over matchings that match
them with the same house.!” In the Appendix, we give an example of a more elaborate incomplete
Arrovian SWE, here let us consider two examples of mechanisms illustrating the conditions we

study.

151n fact, our proof shows something more: for the mechanisms we study, auditability (or non-bossiness) together
with Pareto efficiency is also equivalent to Arrovian efficiency with respect to an SWF in which if alternative a Pareto
dominates alternative a’ then these two alternatives are comparable.

16Both of these properties are non-cooperative in the sense that they relate mechanism’s outcomes under two scenar-
ios when a single individual makes unilateral preference-revelation deviations.

17We formally define this setting in the next section.



Example 1: With three individuals 1,2,3 and three houses A, B, C (thus, with 6 alternatives)
the serial dictatorship ¢ in which individual 1 chooses first the house she would like to receive
and individual 2 chooses second is well-known to be individually strategy-proof, non-bossy, and
Pareto efficient, as well as group strategy-proof and monotonic.

It is straightforward to see that this serial dictatorship is Arrovian efficient with respect to the
following SWF: a is ranked above b if and only if (a) 1 prefers a to b, or (b) 1 is indifferent and 2
prefers a to b.

As @ treats all objects in a symmetric (neutral) way, to establish the serial dictatorship’s au-
ditability, it is sufficient to look at a preference profile = such that ¢[=] = {(1,A),(2,B),(3,C)},
a different alternative b and any preference profile =’ such that =/ keeps the same ranking as '=;
between ¢[=]| and b for every individual i and to show that @[] # b. To verify this inequality
consider two cases:

e A # b(1). Then A =1 b(1) because 1 being the first dictator chose her top choice under
»=i. Hence, A >/ b(1). 1 is not choosing b (1) when having preference ranking >} and thus

p[='] #b.
e A =10D(1). Then either:

* B % b(2). Then, B >, b(2) by an argument similar to the previous case. If ¢[>='|(1) = B
then ¢[>'] # b, and the auditability inequality obtains. If ¢[*='](1) # B then either
¢[='](1) # A = b(1) and the auditability inequality obtains, or ¢[='](1) = A = b( )
and hence B is available when 2’s assignment is determined, and thus, [>’

b(2), and hence, @[] # b and the auditability inequality obtains.

* B=10(2). Then C = b(3) contrary to b # ¢[=].

Example 2: We now modify the serial dictatorship of the previous example and consider
mechanisms ¢ in which 1 chooses first; then 2 chooses second if 1 prefers B over C, else 3 chooses
second. This mechanism is an example of a ranking-dependent sequential dictatorship, and is
also individually strategy-proof and Pareto efficient. However, mechanism 1 is neither Arrovian
efficient nor non-bossy nor auditable. To see the latter three points, let us look at the following
two preference profiles, which differ only in how individual 1 ranks objects:

S\
Il
O W >~
O =™ > |N
O ™ »|w
A\
Il
SR @ I NS
O W@ >N
0O W™ > |Ww
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and notice that

vl = {(1L,A),(2B),60)},
p[=] = {(1LA4),(2C),(3B)}.

Mechanism i does not satisfy non-bossiness because from 3= to =’ only 1’s preference changes
and her assignment does not change, and yet other individuals” assignments change (leading to

different equivalence classes of alternatives for either individual 2 and 3).

Mechanism 3 does not satisfy Arrovian efficiency. Indeed, by way of contradiction assume
that ¢ is Arrovian efficient with respect to some Arrovian SWF ¥. Then ¥ (=) ranks alternative
P[=] above P[>='], and ¥ (') ranks ¢[='] above ¢ [=]. But, this violates IIA, a contradiction that

shows that ¢ is not Arrovian efficient.

Mechanism @ does not satisfy auditability as we can contest the alternative i[>] with alterna-
tive b = ¢[='].

Mechanism ¢ does not satisfy group strategy-proofness because the group {1,3} can bene-
ficially manipulate by reporting k’{l 3) instead of =1 3, (noticing =>=';), making individual 3
strictly better off while leaving individual 1 indifferent.

Finally, mechanism ¢ does not satisfy monotonicity as =’ is a {-monotonic transformation of
= and yet the mechanism’s respective outcomes are in different equivalence classes for individu-
als 2 and 3. n

We are ready to prove Theorems 1 and 2.

Proof of Theorem 1.

(Arrovian efficiency = Pareto efficiency) Consider an Arrovian efficient mechanism ¢ with
respect to some SWF ®. Suppose that for some =€ P, ¢[>=] is not Pareto efficient. Then there
exists some a € A — {¢[>]|} such thata =; ¢[=] for every i, with a strict preference for at least one
individual. Because ® satisfies the Pareto postulate, we have a ® (=) ¢[>=], which contradicts the

assumption that ¢ is Arrovian efficient with respect to ®.

(Arrovian efficiency = auditability). An inspection of the definitions shows that Arrovian
efficiency directly implies auditability; indeed, auditability is effectively IIA restricted to compar-

isons involving the top equivalence class.

(Pareto efficiency and auditability = Arrovian efficiency). Consider a Pareto-efficient and
auditable mechanism ¢. We define an SWF @ as follows: for any profile of preferences = and any
two alternatives a and a’ # 4, alternative 4 is ranked by @ (=) above 4’ if, and only if, either (i) we
have a = ¢[=] or (ii) for every individual i, we have a ’=; a’ and at least for one individual i the

preference is strict (which we refer to, by sight abuse of terminology, as “individuals unanimously
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rank a over a'” throughout the proof). Note that Pareto efficiency of ¢ implies that conditions (i)
and (ii) are consistent with each other, and hence, that the SWF & is well defined.

By definition, ® satisfies the Pareto postulate. Furthermore, ® is transitive: if ® (3=) ranks a!
above a2 and it ranks a? above a° , then it ranks a! above a°. To see this: if one of these a’ (for
¢ =1,2,3) equals @[], then it must be that a' = ¢[3=], and the claim is proven. If none of the a’
equals @[], then individuals unanimously rank a' above a? and unanimously rank 4> above a>;
we conclude that individuals unanimously rank a! above a3, and thus, ® (=) ranks a! above a° by

construction.

It remains to check that ® satisfies IIA. Take two preference profiles =1 and =2 such that each
individual ranks two alternatives, say 2 and 4’, in the same way under the two preference profiles.
If the two alternatives are comparable under both @ (3=!) and @ (3=2), then one of the following
cases obtains:

Case 1: One of the alternatives is unanimously preferred to the other under 3=!; then the same

unanimous preference obtains under =2 and the claim is true.

Case 2: There is no unanimous preference of the two alternatives under =1 then unanimity
cannot obtain under =2 either. As the alternatives are ranked, it must be that ¢[=!], p[=?] €
{a,a’} by construction of ®. Suppose, without loss of generality ¢[=!] = a. If a =; 4’ for all
i € I then a = a’ by richness assumption. So suppose for some individual i, @’ #; a = ¢[=!].
As all individuals rank ¢[=!'] = a and 4’ the same way under 3! and 32, and ¢ is auditable then
@[=2] # a’. This implies ¢[=2] = a, as well. Since ¢ always picks the unique top alternative of the
SWF @, then a ®(3=!) @’ and a ®(3=2) a’. Thus, ® satisfies IIA. QED

Proof of Theorem 2. To show that auditable ¢ is non-bossy, let =€ P and, for an individual i,
=€ P; be such that

(P[?] =i (P[kil %—i]'

Suppose, by way of contradiction, that there is an individual j for whom ¢[3=/, = _;] #; ¢[*=]. This
contradicts auditability between alternative a = @[>}, =_;] and ¢[’=] because all individuals rank
alternatives a and ¢[=] in the same way under = and (=}, =_;); yet, ¢[=], =_;] = a. Thus, for
every j € I, [, =_i] = ¢[’=], which in turn implies by richness assumption ¢[=/, =_;] = ¢[*=].

To show that non-bossiness does not in general imply auditability even for Pareto-efficient
mechanisms, consider the voting environments with the universal strict preference domain over
alternatives. In this domain, every mechanism is non-bossy by definition. Suppose A = {a;,ay, ..., ax}
for some k > 3. Consider the plurality voting mechanism ¢ which selects as the outcome the alterna-
tive that is ranked as the top choice by most individuals (and if there are multiple such alternatives
then chooses the one with the smallest index'®). This mechanism is clearly Pareto efficient but not

8Formally, let v, (=) = |{i € I : a € max,., A}| be the number of votes an alternative a gets under a preference profile
=; then @[] € argmax,c 4 v4 () with the property that ¢[=] has the smallest index among all alternatives in the set
arg maX;e 4 va (=)
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auditable. To see the last point consider two preference profiles = and =" with three individuals
I = {1,2,3} and three alternatives A = {ay,a,,a3}:

We have ¢[=] = a; as all alternatives receive one vote and a; has the lowest index, while
¢[='] = a3 with the highest votes. On the other hand, = and >’ rank relatively 4; and a3 the same
(individual 1 prefers a; while 2 and 3 prefer a3) yet ¢[='] = a3 #; ¢[>]| forany i € I. Thus, ¢ is
not auditable. QED

The results of the current section have the following immediate corollaries:"”

Corollary 1. A mechanism is Arrovian efficient and individually strategy-proof if, and only if, it is Pareto
efficient and group strategy-proof if, and only if, it is Pareto efficient and monotonic.

Corollary 2. Suppose that a mechanism is individually strategy-proof and Pareto efficient. Then, the
following five conditions are equivalent for this mechanism:

o Arrovian efficiency,

auditability,

group strategy-proofness,

non-bossiness,

monotonicity.

4 Applications

4.1 Auditability, Pareto Efficiency, and Arrovian Efficiency in Voting

The most straightforward application of result is in the universal strict preference domain, which
is also often called the universal voting environment. This environment consists of all strict prefer-

ence relations over alternatives, each of which can be interpreted as a candidate in an election.

1t is worthy to note that Arrovian efficiency does not in general imply individual strategy-proofness: Consider an
environment with at least 3 individuals I D {1,2,3} and 2 alternatives A = {a,b}. Suppose individuals’ preferences
consist of strict preferences over these two alternatives. Consider the following mechanism: If individual 3 ranks a
higher than b then individual 1’s top choice is implemented, and otherwise individual 2’s top choice is implemented.
This mechanism is Arrovian efficient while individual 3 can manipulate it.
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Corollary 3. In the universal strict preference domain, for an individually strategy-proof mechanism the

following two conditions are equivalent:

e Pareto efficiency,

o Arrovian efficiency.

One direction of the corollary follows from Theorem 2 and then Theorem 1 because, in the
universal strict preference domain, every mechanism is non-bossy, and the other direction was

established in Theorem 1.

4.2 Incomplete and Complete SWFs in House Allocation

We now apply our results to house allocation problems. Formally, a house allocation environment
consists of the set of individuals I and a set of houses H. A social alternative for this problem is a
matching. To simplify the definition of a matching, we focus on environments in which |#| > |I|.
To define a matching, let us start with a more general concept that we use frequently below. A
submatching is an allocation of a subset of houses to a subset of individuals, such that no two
different individuals get the same house. Formally, a submatching is a one-to-one function s :
] — H; where for | C I, using the standard function notation, we denote by s(i) the assignment
of individual i € ] under s, and by s~!(H) the individual that got house H € s(J) under s. Let
S be the set of submatchings. For every s € S, let I; denote the set of individuals matched by s
and Hs; C H denote the set of houses matched by s. For every H € H, let S_y C S be the set
of submatchings s € S such that H € ‘H — H;, i.e., the set of submatchings at which house H
is unmatched. By virtue of the set-theoretic interpretation of functions, submatchings are sets of
individual-house pairs and are ordered by inclusion. A matching, which is the social alternative
in this context, is a maximal submatching; that is, 4 € S is a matching if I, = I. As before, let
A C S be the set of matchings. We will write I; for I — I; and H, for H — H, for short. We will
also write A for S — A.

For any individual 7, her equivalence relation =; over matchings is defined over the matching
in which is assigned the same house: Forany a,b € A,a =, b <= a(i) = b(i). Each of her
preference relations =;€ P;, which satisfies the richness assumption, has the following property:
foranya,b € A,a ~; b <= a(i) = b(i). With slight abuse of terminology we also
use this preference relation to denote her preference relation over houses i.e. for any H,H € H,
H = H <= a = da forany two matchings a,a’ such thata(i) = H and a’(i) = H'.

We introduce the full class of individually strategy-proof, non-bossy, and Pareto-efficient mech-
anisms, as characterized by Pycia and Unver (2017), which will be used to obtain the main result
in this section. This is the class of trading-cycles mechanisms. This mechanism class is defined
through an iterative algorithm, which matches some individuals in every round. Depending on

who is matched with which house in preceding rounds, the remaining houses are controlled by
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the remaining individuals in a round of the algorithm. We define a control-rights structure as a

function of the submatching that is fixed: A structure of control rights is a collection of mappings

(x, B) = {(xs, Bs) : Hs — Is x {ownership, brokerage} } .

The functions x; of the control-rights structure tell us which unmatched individual controls any
particular unmatched house at a submatching s, where at s is the terminology we use when some
individuals and houses are already matched with respect to s. Agent i controls house H € H; at
submatching s when «;(H) = i. The type of control is determined by functions ;. We say that the
individual x;(H) owns H at s if B;(H) =ownership, and that the individual «;(H) brokers H at s
if Bs(H) =brokerage. In the former case, we call the individual an owner and the controlled house
an owned house. In the latter case, we use the terms broker and brokered house. Notice that each
controlled (owned or brokered) house is unmatched at s, and any unmatched house is controlled
by some uniquely determined unmatched individual. We need to impose certain conditions on
the control-rights structures to guarantee that the induced mechanisms are individually strategy-
proof, non-bossy, and Pareto efficient.

A structure of control rights (x, B) is consistent if the following within-round and across-round
requirements are satisfied for every s € A :

Within-Round Requirements:

(R1) There is at most one brokered house at s, or |H;| = 3 and all remaining

houses are brokered.

(R2) If i is the only unmatched individual at s, then i owns all unmatched
houses at s.

(R3) If individual i brokers a house at s, then i does not control any other
houses at s.

Across-Round Requirements: Consider submatching s’ such thats C s’ € A, and an
individual i € I that owns a house H € Hy at s. Then:

(R4) Agentiowns H ats'.

(R5) If i’ brokers house H' ats, and i’ € Iy, H € Hgy , then either i’ brokers
H' ats’, ori owns H' ats’. (Notice that the latter case can only happen if i is
the only individual in Iy who owns a house at s.)

(R6) If individual ' € Iy controls H' € Hg ats, theni’ owns HatsU {(i, H')}.

Each consistent control-rights structure (x, ) induces a trading-cycles (TC) mechanism *#, and

given a problem =€ P, the outcome matching ¥*#[3=] is found as follows:

The TC algorithm:
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The algorithm starts with empty submatching s’ = & and in each round r = 1,2, ...

it matches some individuals with houses. By s"1 we denote the submatching of in-

dividuals matched before round r. If s"~! € A, then the algorithm proceeds with the

following three steps of round r:

Step 1

Step 2(a)

Step 2(b)

Step 3

One important feature of the TC mechanisms is that we can, without loss of generality, rule out

the existence of brokers at some submatching s if there is a single owner at s. We formalize this

Pointing. Each house H € Hy 1 points to the individual who controls it at s~ 1.

Each individual i € I;,-1 points to her most preferred outcome in H 1.

Matching Simple Trading Cycles. A cycle
H'—i' - H* - .H"—i" - H',

in which n € {1,2,..} and individuals i’ € I, point to houses H'*' € H 1
and houses H' point to individuals i’ (here ¢ = 1, ..,n and superscripts are added
modulo n), is simple when at least one individual in the cycle is an owner. Each
individual in each simple trading cycle is matched with the house she is pointing
to.

Forcing Brokers to Downgrade Their Pointing. If there are no simple trading cycles
in the preceding Step 2(a), and only then we proceed as follows (otherwise we
proceed to step 3).

* If there is a cycle in which a broker i points to a brokered house, and there is
another broker or owner that points to this house, then we force broker i to
point to her next choice and we return to Step 2(a).?’

* Otherwise, we clear all trading cycles by matching each individual in each
cycle with the house she is pointing to.

Submatching s” is defined as the union of s"~! and the set of newly matched
individual-house pairs. When all individuals or all houses are matched under

s”, then the algorithm terminates and gives matching s” as its outcome.

property as a remark:

Remark 1. Pycia and Unver (2017) For every TC mechanism such that for some s there is only one owner
and one broker, there is an equivalent TC mechanism such that at s there are no brokers and the same owner

owns all houses.

20Impor’canﬂy, broker i is unique by R1.
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Using Theorem 2 and Pycia and Unver (2017)’s characterization we obtain the following corol-
lary:

Corollary 4. A mechanism is individually strategy-proof and Arrovian efficient if, and only if it is a TC

mechanism.

So far, we allowed welfare functions to incompletely rank social outcomes. We now show
that a class that we refer to as almost sequential dictatorships is exactly the mechanisms that are
strategy-proof and Arrovian efficient with respect to complete SWF, that is SWF that always rank
all outcomes.

First we define the following class: a top-trading-cycles (TTC) (or hierarchical exchange)
mechanism is a TC mechanism with a control-rights structure in which no house is ever brokered
at any submatching (Papai, 2000). A TTC mechanism y*# will be denoted by dropping B from its
notation as ¢".

TTC mechanisms form a strict subclass of TC mechanisms. Let us start with a lemma showing

that not every TTC is Arrovian efficient with respect to a complete SWE.

Lemma 1. Suppose that |H| > |I| = 2 and a TTC mechanism is Arrovian efficient with respect to a
complete SWF. Then in this mechanism no individual can own two houses while a second individual owns
a house.

Proof. Consider allocating three or more houses to two individuals. Let ¢ be a TTC mechanism in
which individual 1 owns house A and individual 2 owns houses B and C. To see that there is no
complete SWEF such that ¢ is efficient, consider the preference profile

5
Il

A > W=
(@~ NI )

and the following four auxiliary preference profiles

5
I
5
I
v’
I
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Denote

a' = ¢[='1={(1,B),(2,C)},
a* = ¢[=*] = {(1,0),(2,B)},
@ =[] ={(1,0),(24)},
at = ¢l = {(1,4),(2.0)}.

Now, if there is a complete SWF @ such that ¢ is Arrovian efficient, then ® (>;1) ranks a! above a*,

and by IIA, this implies that ® (=) ranks al above a*. Similarly, ® (%2) ranks a2 above a!, and by
IIA, this implies that ® (=) ranks a® above a'. Further, and again similarly, ® (3=°) ranks a® above
a?, and by IIA, this implies that ® (=) ranks a3 above a2. Finally, ® (&4) ranks a* above 4%, and by
ITA, this implies that @ (3=) ranks a* above a°. But then @ (3=) fails transitivity, showing that there
does not exist a complete SWF with respect to which ¢ is efficient. QED

We will use this lemma to characterize individually strategy-proof and Arrovian efficient mech-
anisms for |#| > |I|; we will characterize this class of mechanisms for |H| = |I| later. The
resulting class consists of sequential dictatorships. Formally, a sequential dictatorship is a TTC
mechanism y* such that for every s € A and H, H' € H;, ky(s) = xy(s), i.e., an unmatched indi-
vidual owns all unmatched houses at s. For notational convenience, we will represent each xp(+)
as «(-). Sequential dictatorships turn out to be the class of Arrovian-efficient and individually

strategy-proof mechanisms for this case:

Theorem 4. Suppose |H| > |I|. A mechanism is individually strategy-proof and Arrovian efficient with
respect to a complete social welfare function if, and only if, it is a sequential dictatorship.

Proof of Theorem 4. If |I| = 1, the theorem is trivially true. Suppose |I| > 2.

( = ) Consider a mechanism ¢ that is individually strategy-proof and efficient with respect
to a complete Arrovian welfare function. By Theorem 2 and Corollary 4, ¢ is a TC mechanism
yrep.

Fix an arbitrary preference profile ;=€ P. We claim that at any round r of the algorithm ¢*#,
there is exactly one individual who controls all houses. We prove it in two steps. First, let us show
that there cannot be two (or more) individuals who each own a house. By way of contradiction,
suppose that some individual 1 controls house A and some other individual 2 controls house B in

round 7.

Suppose s is the submatching created by the TC algorithm for ¢*f before round r at 3. Fix
house C € {A,B} as an unmatched house at s. Consider four auxiliary preference profiles ="
that all share the following properties: (i) each individual matched under s ranks houses under
=0, ¢ =1,..,4, in the same way they rank them under =, (ii) each individual i unmatched at s
and different from individuals 1 and 2 ranks a unique s-unmatched house H; ¢ {A,B,C} U H, as
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her first choice (such a unique house exists as |H| > |I|), and (iii) individuals 1 and 2 each rank
all houses other than A, B, C lower than A, B, C. In particular, the four profiles differ only in how
individuals 1 and 2 rank houses A, B, C: the ranking of A, B, C is the same as in the four preference
profiles from the proof of Lemma 1 above. Notice that

PP = sUa' U{( H) Y2y

where a’

s are defined as in the proof of Lemma 1 above. Furthermore, the same argument we
used in the proof of the lemma shows that there can be no SWF that ranks all four a's, is transitive,
and satisfies IIA. Hence, there is no complete SWF that makes l/)K"B efficient, a contradiction that

implies that there cannot be two individuals who own houses in a round of the algorithm.

As P never allows two owners in a round of the algorithm, by Corollary 4 and Remark 1,
without loss of generality we can assume that there are no brokers in any round, either. Hence, in
each round of the algorithm there is a single individual who controls (and owns) all houses. That
means that ("F is a sequential dictatorship.

(<=) Consider a sequential dictatorship *. We construct a complete SWF ® such that ¢* is
efficient with respect to ®. Under ® any two matchings are ranked according to the preference
relation of the first-round dictator; if she is indifferent , then the matchings are ranked according
to the preference relation of the second-round dictator, etc. Formally, for any =€ P and any two
distincta, b € A,leta® (=) Bif and only if there exists k € {1,...,|I|} such thata (i1) = b (i1), ... and
a (ix_1) = b (ix_1), and individual iy prefers a (i) over b (i), where individuals iy, ..., iy are defined
recursively: iy = x (@), and in general iy = « ({(i1,a (i1)), ..., (ip—1,a (i;—1))}) for £ =1,.., k. Itis
straightforward to verify that @ is a complete Arrovian SWF and that ¢* is efficient with respect
to P. QED

While the above argument relies on there being more houses than agents, we can modify the
argument to characterize the case || = |I|. The class of individually strategy-proof and Arrovian
efficient mechanisms consists then sequential dictatorships and some additional new mechanisms.
An almost sequential dictatorship is a TTC mechanism ¥ such that for every s € A such that
|Hs| # 2 we have xp(s) = kg (s) for every H, H' € Hs. Note that the only mechanisms that are
not sequential dictatorships in this class are mechanisms that assign to different owners each of

the houses when only two houses are left, but otherwise a single individual owns all houses.

Our final result is as follows:

Theorem 5. A mechanism is individually strategy-proof and Arrovian efficient with respect to a complete
SWE if, and only if, it is an almost sequential dictatorship.

In the proof we use Lemma 1 and two further lemmas showing that three individuals each
cannot simultaneously control a house under a TC mechanism that is efficient with respect to a
complete SWE.
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Lemma 2. Suppose that |H| = |I| > 3 and a TC mechanism is Arrovian efficient with respect to a
complete SWEF. Then in this mechanism one individual cannot control a house while two others each own a
house.

Proof. Consider a TC mechanism ¢ in which individual 1 owns house A, individual 2 owns house
B, and individual 3 controls house C. We will show that there is no complete SWF such that ¢ is

Arrovian efficient. Consider the preference profile

Y
I

X0 W

W o O

(@ e~ I R ON)

and the following three additional preference profiles

1123 1123 1123
B B c|C B A
A B C

Regardless of whether individual 3 owns or brokers house C, we have

a' = ¢['] = {(1,A),(2,C),(3,B)};
@ = o2 = {(1,C), (2 B), (3, A)};
a3:§0[?3]:{(1/B)1 4 /(3/C)}

If there is a complete SWF @ such that ¢ is Arrovian efficient, then ® (&1) ranks a' above a3, and
by IIA, this implies that ® (3=) ranks a! above a°. Similarly, ® (3=2) ranks a? above a', and by IIA,
this implies that ® (=) ranks a? above a'. Further, and again similarly, ® ( ;3) ranks a3 above a2,
and by IIA, this implies that @ (3=) ranks 4> above a?. Then ® (:=) fails transitivity, showing that

there does not exist a complete SWF with respect to which ¢ is efficient. QED

Lemma 3. Suppose that |H| = |I| > 3 and a TC mechanism is Arrovian efficient with respect to a
complete SWE. Then, in any round of the TC algorithm, there is at most one broker.

Proof. By way of contradiction, suppose that in some round of the TC mechanism there are more
than one broker and let ¢ be the continuation TC mechanism from this round onwards. Without
loss of generality, in ¢ individual 1 brokers house A, individual 2 brokers house B, and individual
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3 brokers house C. We will show that there is no complete SWF such that ¢ is Arrovian efficient.
Consider the following preference profiles

1123
B|B|C
==|A|A|B
CIClA

and

Denote
a' =gl = {(1LA),(2,B),(3,0)};
2 = ¢[=% = {(1,B),(2,0),(3,A)};
@ = ¢[=°] ={(1,C),(2,4),(3,B)}

If there is a complete SWF @ such that ¢ is Arrovian efficient, then ® (&1) ranks a' above a3, and
by IIA, this implies that ® (3=) ranks a! above a°. Similarly, ® (3=2) ranks a? above a', and by IIA,
this implies that ® (=) ranks a? above a'. Further, again similarly, ® (;3 ) ranks a° above a2, and
by IIA, this implies that ® (3=) ranks a® above a®. Then @ (3=) fails transitivity, showing that there
does not exist a complete SWF with respect to which ¢ is efficient. QED

Proof of Theorem 5. If |#H| > |I|, it follows from Theorem 4 and if |H| = |I| = 1, the theorem is
trivially true. Hence, suppose |H| = |I| > 1.

( = ) Consider a mechanism ¢ that is individually strategy-proof and efficient with respect

to a complete Arrovian welfare function. By Theorem 2 and Corollary 4, ¢ is a TC mechanism
yr.
Fix =€ P. We claim that at any round r of the algorithm for y*#, there is exactly one individual

who controls all houses whenever |I;| > 2. We prove it in three steps (in accordance with Lemmas
1-3). Let s be the submatching created by the algorithm ¢*f before round r for :=.

e First, we show that an individual cannot own two houses while another individual owns
a third house: By way of contradiction, suppose that some individual 1 owns house A and
individual 2 owns houses B and C in round r. Then there exists an individual 3 who does not

control any house at round r as |#| = |I|. Consider four auxiliary preference profiles :=* that
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all share the following properties: (i) each individual matched under s ranks houses under
={ 0 =1,..,4,1in the same way they rank them under =, (ii) each individual i unmatched at s
and different from individuals 1, 2, 3 ranks a unique s-unmatched house H; & {A, B, C} U H,
as her first choice (such a unique house exists as || = |I|), (iii) individuals 1 and 2 each rank
all houses other than A, B, C lower than A, B,C, and (iv) individual 3’s preference relation
is the same as =3 under all four profiles. In particular, the four profiles differ only in how
individuals 1 and 2 rank houses A, B, C: the ranking of A, B,C is the same as in the four

preference profiles of the proof of Lemma 1 above. Notice that

PP =sUa UL H) Y13y

where a’s are defined as in the proof of Lemma 1 above. Furthermore, the same argument
we used in the proof of Lemma 1 shows that there can be no SWF that ranks all four a’s,
is transitive, and satisfies IIA. Hence, there is no complete SWF that makes 1/)"'/8 efficient, a

contradiction.

Next, we show that one individual cannot control a house while at least two others each own
a house in round r: Suppose, to the contrary, individual 1 owns house A, individual 2 owns
house B, and individual 3 controls house C in round r. Consider three auxiliary preference
profiles =" that all share the following properties: (i) each individual matched under s ranks
houses under =/, ¢ = 1,2,3, in the same way they rank them under =, (ii) each individual
i unmatched at s and different from individuals 1,2,3 ranks a unique s-unmatched house
H; ¢ {A,B,C} U H,; as her first choice (such a unique house exists as |H| = |I|), and (iii)
individuals 1,2, 3 each rank all houses other than A, B, C lower than A, B, C, and the ranking
of A, B,C is the same as in the three preference profiles of the proof of Lemma 2 above.
Observe that
PP =sua’ U{(i H) Y ier 123y

14

where a°s are defined as in the proof of Lemma 2 above. Furthermore, the same argument

we used in the proof of Lemma 2 shows that there can be no SWF that ranks all three a's,
is transitive, and satisfies IIA. Hence, there is no complete SWF that makes l/)"'/g efficient, a

contradiction.

Finally, using a variant of Lemma 3, we show that there cannot be multiple brokers at round
r (as multiple brokers can only occur with 3 individuals and 3 houses, where each individual
brokers a distinct house): Suppose not. Then consider three auxiliary preference profiles 3=
that all share the following properties: (i) each individual matched under s ranks houses
under =%, ¢ = 1,2,3, in the same way they rank them under =, (ii) individuals 1,2, 3, who
are the only remaining unmatched individuals, each rank all houses other than A, B, C lower
than A, B, C, and (iii) the ranking of A, B, C is the same as in the three preference profiles of
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the proof of Lemma 3 above. Notice that
PPl =sua,

where af

s are defined as in the proof of Lemma 3 above. Furthermore, the same argument
we used in the proof of Lemma 3 shows that there can be no SWF that ranks all three als,
is transitive, and satisfies IIA. Hence, there is no complete SWF that makes lp"'ﬁ efficient, a

contradiction.

Thus, a single individual owns all houses at round r when s is fixed for |I;| > 2 (by Corollary 4
and Remark 1).

This means that ¥*# is an almost sequential dictatorship, as all TC mechanisms restricted to
only two individuals are almost sequential dictatorships.

(<=) Consider an almost sequential dictatorship ¢*. If ¢* is a sequential dictatorship, then
the proof of Theorem 4 works. So suppose it is not a sequential dictatorship. Hence, |H| = |I|. We
construct a complete SWF @ such that 1p* is efficient with respect to ®. Under ® any two matchings
are ranked according to the preference relation of the first-round dictator; if she is indifferent , then
the matchings are ranked according to the preference relation of the second-round dictator, etc.,
until only two individuals remain unmatched. At this round let 1 and 2 be the two individuals
and A and B be the two houses remaining unmatched. Observe that there are only two matchings,
a and b, in which all individuals” assignments are the same but the last two: in one 1 gets A and
2 gets B, and in the other vice versa. Then one of these two matchings is equal to ¢*[>'], where
%' ranks the assignment of any individual other than 1 and 2 in a (or equivalently b) as her first
choice, and for 1 and 2, the new preferences are the same as the original ones under ’=. We rank
P*[:='] € {a, b} before the other one under ®(=).

Formally, for every a € A, let sequential dictators iy, ....,i;_, be defined as iy = xy (D)
for every H € H, and in general, i; = xy ({(i1,a (i1)),..., (i;—1,a (iy—1))}) for every H € H —
{a(i1),..a(iy_1)} and ¢ =1, ..., k; then for every b € A — {a}, we say a ® (=) b if one of the follow-
ing two conditions holds:

1. there exists k € {1,...,|I| —2} such thata (i1) = b (i1), ..., a (ix—1) = b (ix_1), and a(ix) =i
b(ik);

or

k

2. forevery ¢ € {1,...,|I| —2},a (i) = b (iy), and for >='€ P where each i, ranks a(iy) first while
the remaining two individuals have the same preferences as in = , we have ¢*[='] = a.

By construction, ® is complete, antisymmetric, and transitive. Moreover, it satisfies the Pareto
postulate. To see that it also satisfies IIA, consider two distinct matchings, a,b € A, and =€ P

such that a ®(3=) b. Also consider another profile = € P such that each individual i’s preference
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over the two matching assignments is the same in =;asin =;. Ifa ®(3=) b because of condition 1
above, then condition 1 continues to hold for = and thus a ®(3=) b. On the other hand, if a (=) b
because of condition 2 above, then a and b only differ in how the last two individuals are assigned
the remaining two houses. Hence, the profile constructed to check condition 2 for a ®(3=) b, which
we refer to as = , would lead to lp"[%l] = g because:

1. the first |I| — 2 dictators would still get their a assignments in the first |I - 2 rounds of the
TC algorithm for ¢*[2], and

2. thus, the assignment of remaining two individuals under lp"[%/] would be identical with
that under a as the relative ranking of their assignments under 4 and b are identical both in
= and =, and the ranking of the other houses do not matter for finding the outcome of the
almost serial dictatorship.

Thus, a ®(=) b, showing @ satisfies ITA. QED
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A Omitted Proof

Proof of Theorem 3. (Group strategy-proofness = individual strategy-proofness and non-
bossiness) By definition, any group strategy-proof mechanism is immune to all single-person
group deviations, and hence, it is also individually strategy-proof. To the contrary to the claim,
suppose a group strategy-proof mechanism ¢ is not non-bossy. Then there exists some individual
i, preference profile =, and i’s preference relation =/ such that a = ¢[=] =; ¢[=,>_;] = 4’ and
yet there exists some individual j # i such that a #; a’. Consider the group | = {i,j}. By richness
assumption, we have eithera ~; a’ ora’ ~; a. If the former is the case, then consider the group
deviation (%=, ’=;) from the profile (=}, =_i): individual i is indifferent while individual j is better
off contradicting group strategy-proofness of ¢. If the latter is the case, then consider the group
deviation (=}, = j) from the profile (3= ;, >=_;). Individual i is indifferent while individual j is better
off, again contradicting group strategy-proofness of ¢. Thus, we showed that ¢ is also non-bossy.

(Individual strategy-proofness and non-bossiness = monotonicity) Let ¢ be an individual
strategy-proof and non-bossy mechanism. Consider a preference profile =. Let '€ P be one
of its ¢-monotonic transformations. We prove this part by induction. Suppose as the inductive
assumption, we proved that for a given | C I (for the base case | = @ trivially holds), we showed
that ¢[3=},=_j] =; ¢[=—] for every j € I. Consider an individual i € [ —J. Let J = {i}U]J. First
we establish that @[> s il =i ¢[’=]: Suppose not, to the contrary of the claim. Leta’ = go[#}, F_T
| #i ¢l=),7—j] =a =i ¢[>=].1fa’ =] a, thena =] a’ by construction of >~/ and this contradicts
individual strategy-proofness of ¢ for i, as she can report = and be better off while her preference
relation is =; and others have preferences (k’], k_f) . Ifa >/ 4, this contradicts individual
strategy-proofness of ¢ for i, as she can report = ; and be better off while her preference relation
is =] and others have preferences (k’], = f) . Thus, a ~; a’. Since a #; a’ , this last statement
contradicts part 2 of the richness assumption. Thus a =; a’. Then non-bossiness of ¢ implies that
a =; a’ for every j € I. Inductive assumption implies that ¢[>= o 7l =j ¢l=_] foreveryj € I.
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(Monotonicity = group-strategy-proofness). Let ¢ be a monotonic mechanism. Consider
a preference profile 3=, a group | C I, and a possible deviation >;§. Suppose a’' = (p[>,—’], =7
¢[=] = a for every j € | and for some individual i € ] the preference relation is strict. Consider
the preference profile of ], =} such that a’ is ranked higher than a and every other equivalence
class of alternatives are ranked below these two alternatives’ equivalence classes. (3=}, =) isa ¢-
monotonic transformation of =, and hence, (p[&}*, =gl = j aforalj € I by monotonicity of ¢. Since
a’ is the top alternative in =7 for every j € [ and @[>}, =—j] = 4, (7], =) is also g-monotonic
transformation of (k/], =_7), and hence, (p[%}‘, %=_7] =j a’ for every j € I by monotonicity of ¢.
Since a #; a’, we obtain a contradiction. Thus, ¢ is group strategy-proof. QED

B An Incomplete Arrovian Social Welfare Function
The following example illustrates an incomplete Arrovian SWFE.

Example 3: Consider a society (or an employer) assigning one task to each of three employees.
All the tasks need to be completed, and the society would like to respect the preferences of the
employees in assigning the tasks as much as possible. As a second order concern, the society
would like to avoid assigning Task A to employee 1 (e.g. because of a belief that employee 1
is not very good in doing this job). The society thus has an SWF that has the maximum at a
Pareto-efficient matching that does not assign Task A to employee 1 if there exists at least one
Pareto-efficient matching that does not assign Task A to employee 1.

The society’s SWF can be equivalently described in terms of a Trading Cycles mechanism ¢ in
which employee 1 brokers A, employee 2 has ownership of B and employee 3 has ownership of
C: for any preference profile ’=(; , 31, the SWF ¥ (=) ranks any two distinct matchings @ and b if
and only if a = ¥ [=] or a Pareto dominates b; the social ranking is then a ¥ (=) b.

For instance, for the preference profile

O @™ >N
D0 | w

the outcome of Trading Cycles ¢ is ¢[=] = {(1,B),(2,A), (3,C)}, and the ranking of the match-
ings with respect to ¥ (=) is given in Figure 1.
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{(1,B),(2,A4),(3,C)}
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Figure 1: ¥ (3=) in Example 3. For matching a,b, we have a ¥ (%=) b if and only if there is a directed path
from a to b in this graph.
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