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Abstract

We consider endogenous binary treatment with multiple binary instruments. We

propose a novel limited monotonicity (LiM) assumption that is generally weaker

than alternative monotonicity assumptions in the literature. We define and iden-

tify (under LiM) the combined compliers local average treatment effect (CC-LATE),

which is arguably a more policy-relevant parameter than the weighted average of

LATEs identified by two-stage least squares (TSLS), and is valid under more gen-

eral conditions. Estimating the CC-LATE is trivial, equivalent to running TSLS

with one constructed instrument on a subsample. We use our CC-LATE to empir-

ically assess how knowledge of HIV status influences protective behaviors.
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1 Introduction

Instrumental variables are commonly used to address endogeneity issues in the treatment

variable. Endogeneity arises when the treatment is not randomly assigned and individuals

self-select into treatment based on observed and unobserved characteristics. In many

settings, it is more realistic that treatment effects vary across individuals based on both

observed and unobserved factors.

When treatment effects are heterogeneous and multiple valid instruments are avail-

able, each instrument separately identifies the effect for the individuals whose treatment

status changes in response to the instrument: the compliers. The treatment effect in the

subgroup of these compliers is referred to as the local average treatment effect (LATE).

The usual practice for combining instruments is to use the two-stage least squares (TSLS)

estimator. Mogstad et al. (2021) conducted a survey of empirical papers employing in-

strumental variables (IV) published in top-tier journals. Their findings indicate that more

than half of these papers present results derived from TSLS estimation, utilizing a spec-

ification with multiple instrumental variables for a single treatment. This demonstrates

the empirical significance of this framework.

Imbens and Angrist (1994) show that TSLS converges to a weighted average of the

instrument-pair LATEs in the case of multiple valid binary instruments. They impose

a monotonicity assumption which ensures that individuals respond to a change in the

instrument values in a monotone way, meaning that two-way flows in response to a change

in the instrument values are ruled out. We follow Mogstad et al. (2021) in referring to

this monotonicity assumption as Imbens and Angrist monotonicity (IAM).

While treatment effects are commonly allowed to be heterogeneous, choices are not:

assuming IAM is equivalent to assuming choice homogeneity. This asymmetry is pointed

out by Heckman et al. (2006). Mogstad et al. (2021) relax IAM to the weaker partial

monotonicity (PM) assumption that allows for more choice heterogeneity. PM considers

a change in a single component of the instrument while holding the values of the other

instruments fixed. Put another way, PM implies random coefficients with restricted

signs in the selection equation, whereas IAM additionally restricts the magnitude of the

coefficients. Mogstad et al. (2021) further show that the TSLS estimand retains the

interpretation of a weighted average of LATEs in the case of multiple binary instruments,

with the LATEs corresponding to different response groups.
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Despite being common practice for combining multiple instruments, using TSLS has

several shortcomings. First, PM may still be overly restrictive for certain applications,

such as when using twinning and same-sex siblings as exogenous variation for household

size (Angrist and Evans, 1998). PM assumes that parents uniformly respond to their first

two children being of the same sex when fixing the twinning instrument. While it is com-

monly believed that parents prefer having children of both genders, this assumption does

not hold true in all contexts (De Chaisemartin, 2017; Dahl and Moretti, 2008), leading

to a violation of PM. Second, even if PM holds, the weights of the TSLS estimand are

rather counterintuitive. For instance, the weights depend on the instrument distribution

and may well be negative. Notice that these weights are not observable and cannot be

estimated. When PM is violated, the interpretation of the TSLS estimand is further

complicated and the weighted average of LATEs estimated by TSLS includes the LATEs

of defier types.

The purpose of the present paper is to address these shortcomings of using the TSLS

estimator when multiple binary instruments are available. We propose a less restrictive

monotonicity assumption than PM, and we provide an estimand with a more intuitive

interpretation than the weighted average of LATEs identified by TSLS. Our proposed

monotonicity assumption is referred to as limited monotonicity (LiM). This LiM assump-

tion only requires that the treatment status of a unit when all instruments simultaneously

equal one is greater than or equal to the treatment status of that unit when all of the

instruments equal zero. This means that defiers with respect to some instruments are

allowed, as long as these defier types can be pushed towards compliance by other instru-

ments.

In the twinning and same-sex application studied by Angrist and Evans (1998), LiM

always holds since all parents are pushed towards compliance (which in this context means

having an additional child) by the twinning instrument, even if they defy the same-sex

instrument. We discuss this application in more detail in Section 3.

Another example where LiM should be more plausible than PM is our empirical

application. Here, the treatment involves learning HIV status, with the instruments being

randomly assigned cash incentives and distance to the test center. Some individuals might

defy the distance instrument because of social stigma, however, a large cash incentive

can overcome this stigma and push those individuals towards compliance as argued in
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Thornton (2008). See Section 4 for more details.

LiM does not impose any restrictions on choice behavior for units that have some,

but not all, of the instruments equal to one. As a result, LiM allows for rich choice

heterogeneity. Put differently, LiM requires fewer choice restrictions than PM, allowing

for many more response types in the population. Specifically, units can often be defiers

for a subset of instruments.

Under LiM, we show that a parameter called the combined compliers local average

treatment effect (CC-LATE) is identified, and we provide a very simple consistent esti-

mator. The CC-LATE is defined as the average treatment effect (ATE) for all individuals

who are untreated when all instruments equal zero, and who are treated when all instru-

ments equal one. We refer to this set of individuals as “combined compliers”. The set

of combined compliers includes any unit that is a complier with respect to any single

instrument, or any combination of instruments. The CC-LATE thereby equals the ATE

for as large a subset of the population as possible given the provided instruments, and so

in that sense is as representative of population ATE as is possible.

We claim that the CC-LATE is a more interesting and broadly applicable parameter

for a policy-maker than the TSLS estimand for two reasons. Firstly, the CC-LATE is still

identified in the presence of a variety of defier types. This is an attractive property of

the CC-LATE, since the number of potential defier types grows rapidly with the number

of available instruments. Secondly, even if PM is valid, the CC-LATE should be more

interesting than TSLS, since the interpretation of the CC-LATE is straightforward and

intuitive. The CC-LATE can be interpreted as a weighted average over the combined

complier LATEs, with the weights equalling the corresponding complier shares. Thus,

the weights are non-negative by construction and have an intuitive interpretation. In

contrast, when PM holds (a strong restriction that CC-LATE does not need), TSLS

estimates a weighted average of effects for the same compliers as for CC-LATE, but with

less meaningful and sometimes negative weights.

To estimate the CC-LATE, we construct a new instrument that, for each observation,

equals one if all the observed instruments equal one, and equals zero if all the observed

instruments equal zero. The CC-LATE is obtained by running TSLS using this single con-

structed instrument on just the subset of observations where this constructed instrument

is defined. This estimator generally involves discarding a large fraction of the observa-
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tions in the data, however, the loss of efficiency from doing so is much less than one

might expect. This is because the observations that are kept are the most informative,

in the sense that this selection maximizes the size of the complier population. The result

is a generally much larger first stage, which compensates for the loss of precision caused

by the dropped observations. Both our simulation studies and our empirical application

confirm that dropping all these observations does NOT cause a large loss in precision; the

standard errors and t-statistics of our CC-LATE estimator are similar to those obtained

by the standard TSLS LATE estimator. See also the discussion in Section 2.3

Another feature of the CC-LATE is that it simplifies analysis by effectively reducing

to a single instrument context regardless of the number of initial instruments, essentially

providing a dimensionality reduction. This also means that many results for the single in-

strument setting are applicable when estimating the CC-LATE. For example, this feature

of the CC-LATE simplifies the inclusion of covariates, since we can immediately apply

estimators that have been proposed in the literature in the context of a single instrument.

See for example Tan (2006), Frölich (2007), S loczyński et al. (2022), and Ma (2023).

We illustrate our CC-LATE by estimating the effect of learning of one’s HIV status

on protective behavior, such as the purchase of condoms. Thornton (2008) investigates

the effect of knowing one’s HIV status on the purchase of contraceptives in rural Malawi,

countering selection issues by instrumenting with a financial incentive offered in the form

of cash and with the distance to the recommended HIV center. Both instruments were

randly assigned. We argue that LiM is more plausible than PM in this application. We

find that the CC-LATE estimates provide more evidence for protective behavior after

learning of one’s HIV status than the TSLS estimates. Differences between the estimates

might be due to differences in the weighting schemes between the TSLS estimand and

our CC-LATE and/or a violation of PM. We also show that the CC-LATE allows us

to estimate the LATE on a substantially larger complier population than using each in-

strument individually. When using the cash instrument only (the one which generates

the highest compliers’ share among the instruments we consider), the relative compliers

consist of 42.5% of the entire population, whereas using the distance instrument yields

a share of compliers equal to 2.4% of the population. When we use both instruments

and estimate the CC-LATE, the share of combined compliers increases to 44.4% of the

population. Particularly compelling is that, when introducing a third instrument which
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indicates whether an amount above the median cash value was received (30.3% of com-

pliers in isolation), the combined compliers make up 52.9% of the population. This is a

substantial improvement over using any of the instruments alone.

Our work is most closely related to that of Mogstad et al. (2021), Frölich (2007), and

Goff (2020). Mogstad et al. (2021) introduce PM and show that the TSLS estimand

retains the interpretation of a weighted average of LATEs under this assumption. For

the reasons discussed above, LiM is generally less restrictive than PM, and the CC-

LATE is a more intuitive parameter than the weighted average of LATEs that TSLS

identifies. Frölich (2007) considers identification with multiple instrumental variables.

One of his estimands is identical to ours, but it differs in terms of interpretation as he

imposes IAM. Frölich (2007) shows that this estimand gives the effect for the largest

group of (pure) compliers, whereas we show that, under LiM, the CC-LATE refers to the

combined complier population, which also includes types ruled out under IAM. Similarly,

Goff (2020) considers this estimand but under vector monotonicity (VM), which is a

special form of PM and strictly stronger than our LiM. Under this assumption, Goff

(2020) shows that the “all compliers” LATE (ACL) is identified. In the setting with two

binary instruments, the combined complier population of the CC-LATE is equivalent

to Goff’s (2020) all compliers population, and the ACL and the CC-LATE coincide.

Therefore, in the two instruments setting, we show that both parameters are identified

under a strictly weaker assumption. When more than two instruments are available,

the “all compliers” and the “combined compliers” are different, with the latter being at

least as large as the former. Thus, our CC-LATE gives the ATE for a potentially larger

complier population, which is generally more desirable, and it is identified under a weaker

monotonicity assumption.

Other studies have focused on relaxing the monotonicity assumption in the setting

with a binary treatment and a single binary instrument (S loczyński, 2020; Kolesár, 2013;

Small et al., 2017; De Chaisemartin, 2017; Dahl et al., 2023), or on relaxing or omitting

monotonicity in the case of unordered treatments (Kirkeboen et al., 2016; Hull, 2018;

Salanié and Lee, 2018; Heckman and Pinto, 2018). In the multiple instruments setting,

Huntington-Klein (2020) derives identification of the Super-Local Average Treatment

Effect under a condition where monotonicity is imposed on subgroups within the data.

Mogstad et al. (2020) show that each instrument has its own selection equation under
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PM, and they use mutual consistency of these equations to obtain information about

(instrument-invariant) parameters. One strand of the literature focuses on estimating

treatment effects beyond the LATE through extrapolation. For instance, Mogstad and

Torgovitsky (2018) extrapolate the support of a single LATE to include observations

other than compliers and provide bounds. Mogstad et al. (2018) extrapolate the LATE

to a population with lower willingness to pay for treatment.

The remainder of this paper is organized as follows: Section 2 begins by introducing

the LiM assumption and the CC-LATE for the setting with two binary instruments, fol-

lowed by an extension to the setting with more than two binary instruments. Section

3 presents a comparison of LiM to other versions of the monotonicity assumption. Sec-

tion 4 provides an empirical application to the impact of learning one’s HIV status on

contraceptive use as considered by Thornton (2008). Finally, Section 5 concludes. All

the proofs, some additional results, a comparison of the CC-LATE estimand to other

estimands, and some simulation studies are included in the appendix.

2 Limited monotonicity and the combined compliers

LATE

2.1 Definitions and baseline assumptions

Consider the standard Imbens and Angrist (1994) LATE framework, with an outcome Y

and a binary treatment D. Assume we have k binary instruments Z1, Z2, ..., Zk. Denote by

Dz1z2...zk
i ∈ {0, 1} the potential treatment states, and by Y d,z1z2...zk

i the potential outcomes

(see, for instance, Rubin, 1974), assuming that the instruments satisfy the exclusion

restriction, i.e., they do not directly affect Y d
i , and are independent of the potential

treatments and outcomes. This ensures that the instruments are as good as randomly

assigned. Formally, this is given by Assumption 1.1

Assumption 1: Random assignment and exclusion

Zj |= (Dz1z2...zk , Y d) ∀z1z2...zk ∈ {0, 1}k, d ∈ {0, 1}, j ∈ {1, 2, ..., k}.

1Assumption 1 can be replaced by mean independence when mean effects are of interest, as is the

case in our setting. However, in many settings, making the stronger assumption of independence is as

realistic as imposing mean independence.
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We make the following two additional assumptions, which are standard for the LATE

framework: The stable unit treatment value assumption (SUTVA) and the instrument

relevance assumption. SUTVA requires that the observed outcome is equal to the poten-

tial outcome under the received treatment and ensures that the treatment assigned to

any individual does not affect the potential outcomes of any other individual, that the

individuals do not potentially have access to a different version of the treatment, and that

there is no measurement error. The relevance assumption ensures that compliers exist.

Assumption 2: SUTVA

Y = Y d if D = d, and D = Dz1z2...zk if Z1 = z1, Z2 = z2, ..., and Zk = zk.

Assumption 3: Instrument relevance

0 < P (Z1 · Z2 · ... · Zk = 1) < 1 and 0 < P ((1 − Z1) · (1 − Z2) · ... · (1 − Zk) = 1) < 1

and

P (D1...1...1 = 1) ̸= P (D0...0...0 = 1).

These three assumptions alone do not guarantee identification of a meaningful causal

effect. To identify the LATE with only one binary instrument, we need to impose the

standard monotonicity assumption that rules out defiers. With multiple binary instru-

ments, we propose a novel weaker monotonicity assumption which requires only that

individuals are at least as likely to be treated if all the instruments are switched on as

when all the instruments are switched off. In terms of potential treatments, this gives

Assumption 4. We refer to this assumption as limited monotonicity, since it only imposes

a constraint on P (D1...1...1 ≥ D0...0...0). In Section 3, we compare LiM to the monotonicity

assumptions proposed by Imbens and Angrist (1994) and Mogstad et al. (2021), and show

that LiM is strictly weaker than the former and generally weaker than the latter.

Assumption 4: Limited monotonicity (LiM)

P (D1...1...1 ≥ D0...0...0) = 1 or P (D1...1...1 ≤ D0...0...0) = 1.

We assume that the instruments are defined such that positive LiM holds, i.e, P (D1...1...1 ≥

D0...0...0) = 1. This only requires defining all instruments such that they each have a pos-

itive first stage.
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2.2 Two binary instrument setting

First, we demonstrate our results for the two binary instrument setting. These results

are generalizable to an arbitrary number of binary instruments as shown in Section 2.3.

2.2.1 Principal strata and types

With one binary instrument, Imbens and Angrist (1994) (see also Angrist et al., 1996)

define four types of individuals: compliers, always-takers, never-takers, and defiers. These

types are defined by the values of their potential treatments. With two binary instruments

there are sixteen possible types of individuals, as listed in Table 1. Similar to the setting

with one binary instrument, the never-takers (nt) never take up treatment and the always-

takers (at) always take up treatment, independent of the instrument values. We follow

Mogstad et al. (2021) in labeling some of the other response types: The eager compliers

(ec), the reluctant compliers (rc), the first instrument compliers (1c), and the second

instrument compliers (2c). These compliers respond to either one of the instruments or

a combination thereof. We define combined compliers as the set cc ≡ {ec, rc, 1c, 2c}, so

combined compliers are any of these four complier types.

There are different defier types with two binary instruments. Second instrument

defiers (2d) respond more strongly to the first instrument, since D = 1 when Z1 = 1

(D11 = 1 and D10 = 1), but they are defiers with respect to the second instrument

as soon as Z1 = 0 (D01 = 0 and D00 = 1). Similar reasoning can be followed for

the first instrument defiers (1d). Eager defiers (ed) only take up treatment when either

both instruments are switched on (D11 = 1) or when both instruments are switched

off (D00 = 1), but not when a single instrument is switched on (D10 = 0 and D01 = 0).

Reluctant defiers (rd) do not take up treatment when either both instruments are switched

on (D11 = 0) or when both instruments are switched off (D00 = 0), but they do take up

treatment when a single instrument is switched on (D10 = 1 and D01 = 1). Finally, there

are six other defier types (d1, d2, d3, d4, d5, and d6).

Note that, unlike the case with a single binary instrument, monotonicity with multiple

instruments means that there are more defier types than complier types. This is due

to the existence of defiers with respect to either instrument. When only one of the

instruments is observed, individuals may correspond to different types for a given value of

this instrument, depending on the value that the other (possibly unobserved) instrument
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takes (see Table 1). For instance, consider an eager defier (ed). If only instrument Z1

were observed, this individual would be a complier when Z2 = 1. The same individual

would be a defier with respect to Z1 when Z2 = 0.

In the two-instrument setting, LiM reduces to the following assumption:2

Limited monotonicity (LiM) in the two-instrument setting

P (D11 ≥ D00) = 1.

LiM allows for 12 out of the 16 initial response types (see Table 1). It rules out four defier

types, as shown in Table 1 (d3, d4, d5, and d6). These are the defier types that would

take up treatment when all instruments are switched off (D00 = 1), but would not take up

treatment when all instruments are switched on (D11 = 0). These response types never

classify as a complier when only one of the instruments is observed. More specifically,

receiving a second instrument never pushes these individuals towards compliance.

2.2.2 The CC-LATE

Our parameter of interest, denoted by β, is the combined compliers local average treat-

ment effect (CC-LATE), defined as E(Y 1 − Y 0|T ∈ cc), where T denotes type and the

combined compliers are the set cc ≡ {ec, rc, 1c, 2c} for the case of two instruments. In

this case, the CC-LATE corresponds to the ATE for those individuals who are a complier

with respect to at least one of the instruments, whilst not defying the other instrument.

In general, the combined compliers are individuals who become compliers when all the

instruments are switched on. This implies that the CC-LATE is robust to the presence

of defier types, except the ones that are more likely to be treated when all instruments

are turned off than when all instruments are switched on (see Table 1).

2Vytlacil’s equivalence result (Vytlacil, 2002) connects the LATE assumptions to selection models.

Monotonicity assumptions place restrictions on choice behavior. Suppose that we have the following

selection equation:

Di(z1, z2) = 1[β0i + β1iz1 + β2iz2 + β3iz1z2 ≥ 0].

LiM only imposes that either β1i + β2i + β3i ≥ 0 or β1i + β2i + β3i ≤ 0. It neither imposes restrictions

on the signs and magnitudes of the coefficients nor on direct comparisons between the coefficients. β0i,

β1i, β2i, and β3i are allowed to vary with i, allowing for rich choice heterogeneity.
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Table 1: Principal strata and the definition of the response types in case of two binary instruments and a binary treatment.

Type D11 D10 D01 D00 Type w.r.t. Z1 Type w.r.t. Z2 Notion LiM PM IAM

(T ) when Z2 = 0 when Z2 = 1 when Z1 = 0 when Z1 = 1

at 1 1 1 1 Always-taker Always-taker Always-taker Always-taker Always-taker ✓ ✓ ✓

ec 1 1 1 0 Complier Always-taker Complier Always-taker Eager complier ✓ ✓ ✓

rc 1 0 0 0 Never-taker Complier Never-taker Complier Reluctant complier ✓ ✓ ✓

1c 1 1 0 0 Complier Complier Never-taker Always-taker First instrument complier ✓ ✓ ✓

2c 1 0 1 0 Never-taker Always-taker Complier Complier Second instrument complier ✓ ✓

1d 1 0 1 1 Defier Always-taker Always-taker Complier First instrument defier ✓

2d 1 1 0 1 Always-taker Complier Defier Always-taker Second instrument defier ✓

ed 1 0 0 1 Defier Complier Defier Complier Eager defier ✓

rd 0 1 1 0 Complier Defier Complier Defier Reluctant defier ✓

d1 0 1 0 0 Complier Never-taker Never-taker Defier Defier type 1 ✓

d2 0 0 1 0 Never-taker Defier Complier Never-taker Defier type 2 ✓

d3 0 1 1 1 Always-taker Defier Always-taker Defier Defier type 3

d4 0 1 0 1 Always-taker Never-taker Defier Defier Defier type 4

d5 0 0 1 1 Defier Defier Always-taker Never-taker Defier type 5

d6 0 0 0 1 Defier Never-taker Defier Never-taker Defier type 6

nt 0 0 0 0 Never-taker Never-taker Never-taker Never-taker Never-taker ✓ ✓ ✓

✓demonstrates the types allowed for under the respective forms of the monotonicity assumption.

Response types under PM underlie the choice restrictions as defined in Equation (1). These are equivalent to the ones underlying Table 3 of Mogstad et al. (2021).

Response types under IAM are for the setting when all individuals prefer the incentive created by Z1 over the incentive created by Z2.
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Theorem 1 gives our main result for the setting with two binary instruments.

Theorem 1: Let Assumptions 1, 2, 3, and 4 hold with two instruments. Then the

CC-LATE is identified as

β =
E (Y | Z1 = 1, Z2 = 1) − E (Y | Z1 = 0, Z2 = 0)

E (D | Z1 = 1, Z2 = 1) − E (D | Z1 = 0, Z2 = 0)
= E(Y 1 − Y 0|T ∈ cc),

where T denotes type and the combined compliers are the set cc ≡ {ec, rc, 1c, 2c}.

Proof in Appendix A.1.

2.2.3 Estimation and inference

To estimate the CC-LATE with two instruments Z1 and Z2, first drop all observations

that have z1 not equal z2. For the remaining subsample, apply TSLS using Z̃ = Z1 = Z2

as the sole instrument. As noted earlier, the loss from dropping these observations is

much less than one might expect, because the observations that are kept maximize the

size of the complier population, leading to a larger first stage. This is demonstrated in our

simulations and empirical application, where the precision of this CC-LATE estimator is

similar to that of the standard multiple instrument LATE that applies TSLS to all of the

data. We discuss this further in section 2.3.

We can write this CC-LATE estimator as β̂ = (DTPZ̃D)−1DTPZ̃Y with PZ̃ =

Z̃(Z̃T Z̃)−1Z̃T , which reduces to β̂ = (Z̃ ′D)−1Z̃ ′Y in the just-identified case. Denote

the subsample averages of Y and D when z1 = 0 and z2 = 0 by Ȳ00 and D̄00, and as Ȳ11,

and D̄11 when z1 = 1 and z2 = 1. Then the CC-LATE estimator can also be written as

β̂ = Ȳ11−Ȳ00

D̄11−D̄00
, as shown in Appendix A.2. An alternative representation of this estimator

using two ordinary least squares (OLS) regressions as well as method of moments (MM)

estimation are provided in Appendix A.3. Based on this MM representation, standard

MM estimation packages can be used to automatically generate consistent estimates and

standard errors. It is also possible to estimate the CC-LATE by replacing the expecta-

tions that define the CC-LATE estimand with sample averages. If we have covariates,

then after constructing Z̃ we can instead apply the single instrument estimators with co-

variates proposed by Tan (2006), Frölich (2007), S loczyński et al. (2022), and Ma (2023).
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2.3 Extension to more than two instruments

Suppose we have k > 2 binary instruments that all satisfy the LATE assumptions. Then

we show that

E(Y 1 − Y 0|T ∈ cc) =
E (Y |Z1 = 1, . . . , Zk = 1) − E (Y |Z1 = 0, . . . , Zk = 0)

E (D|Z1 = 1, . . . , Zk = 1) − E (D|Z1 = 0, . . . , Zk = 0)
,

where cc is the set of individuals who comply with at least one of the instruments or a

combination thereof, while not defying any of the instruments when the other instrument

values are all equal to zero or all equal to one. A great advantage of this parameter is

that it is robust to the presence of many different defier types. More specifically, it allows

for all defier types for which P (D11...1 = D00...0) = 1.

Proof in Appendix A.4.

The size of the group of combined compliers is given by

E (D|Z1 = 1, . . . , Zk = 1) − E (D|Z1 = 0, . . . , Zk = 0) . (1)

It is easy to see that adding an additional instrument can only increase the size of the

combined complier population, and, in turn, the denominator of our CC-LATE estimand

can potentially become larger. However, increasing the number of instruments reduces

the sample size used for estimation, since only data where all instruments are either all

simultaneously zero or all simultaneously one are used. This yields a trade-off: adding

instruments can reduce precision by reducing the sample size used for CC-LATE esti-

mation, but adding instruments also increases the combined complier population, which

increases precision by increasing the denominator of the estimator. The end result is that,

in practice, we find the precision of our CC-LATE estimator to be roughly comparable

to that of standard LATE TSLS that doesn’t drop observations. This is confirmed both

by our simulation results (see Appendix C), and our empirical application (see Section

4.4).

To show this tradeoff algebraically, consider the variance of the CC-LATE estimator,

obtained by running TSLS using a single constructed instrument in the subsample where,

for each unit, the instruments either all equal one or they all equal zero. Let Nk be

the number of observations in this subsample when using k instruments, Z̃k = Z1 =

Z2 · · · = Zk, πcc,k = E(D = 1|Z̃k) − E(D = 0|Z̃k), β̂k = (Z̃k′D)−1Z̃k′Y and σ2
k =
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V ar(Y − βCC-LATED). Then, under homoskedasticity, we have

V ar(β̂k) = σ2
k

1

Nk

1

π2
cc,k E(Z̃k)(1 − E(Z̃k))

.

Note that for k = 1, this reduces to the standard LATE variance with one instrument.

This variance is not necessarily increasing in k. Clearly, adding an instrument reduces

the sample size, i.e., Nk > Nk+1, but at the same time using an extra instrument gen-

erally increases the share of combined compliers: π2
cc,k ≤ π2

cc,k+1. Notice that one can

estimate πcc,k for different values of k to assess the benefit of adding instruments. For

the other components of the variance, we cannot say a priori whether they are increasing

or decreasing in k. Therefore, adding instruments can either increase or decrease the

variance, despite decreasing the subsample size. A similar argument can be made for the

heteroskedastic case and when comparing ordinary TSLS with our CC-LATE estimator.

Both our estimator and the TSLS are not expected to perform well when the number of

instruments is large. Therefore, comparing them makes sense only for a moderate number

of instruments.

In conclusion, despite the potentially large decrease in sample size from estimating

the CC-LATE, we do not expect much if any loss in efficiency (relative to standard

TSLS) when estimating the CC-LATE, particularly in applications where the instruments

are strong, the number of instruments is relatively small, or the sample size is large.

In applications in which precision is an issue, one might consider increasing the range

of points included at the outer support of Z to decrease the variance at the cost of

introducing some bias in a similar manner as in Regression Discontinuity Designs. One

might also consider discarding instruments that generate too few additional compliers.

Finally, it is important to emphasize that, in contrast to the TSLS estimand, the CC-

LATE offers a straightforward interpretation. Thus, one might want to trade off some

precision for greater policy relevance.

3 Comparison of monotonicity assumptions

3.1 LiM compared to PM and IAM

This section illustrates why LiM is generally more plausible than alternative monotonicity

assumptions. Our LiM assumption, and the monotonicity assumptions by Imbens and
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Angrist (1994) and Mogstad et al. (2021) can be formulated as follows: 3

Limited monotonicity (LiM)

P (D1...1...1 ≥ D0...0...0) = 1 or P (D1...1...1 ≤ D0...0...0) = 1.

Imbens and Angrist monotonicity (IAM) (Imbens and Angrist, 1994)

P (Di...j...k ≥ Dp...q...r) = 1 or P (Di...j...k ≤ Dp...q...r) = 1

∀ i ∈ {0, 1}, ..., j ∈ {0, 1}, ..., k ∈ {0, 1} and ∀ p ∈ {0, 1}, ..., q ∈ {0, 1}, ..., r ∈ {0, 1}

such that P (Di...j...k) ̸= P (Dp...q...r).

Partial monotonicity (PM) (Mogstad et al., 2021)

P (D1...j...k ≥ D0...j...k) = 1 or P (D1...j...k ≤ D0...j...k) = 1,

P (Di...1...k ≥ Di...0...k) = 1 or P (Di...1...k ≤ Di...0...k) = 1, and

P (Di...j...1 ≥ Di...j...0) = 1 or P (Di...j...1 ≤ Di...j...0) = 1

∀ i ∈ {0, 1}, ..., j ∈ {0, 1}, ..., k ∈ {0, 1}.

Obviously, all three assumptions (IAM, PM, and LiM) are equivalent in the case of

one binary instrument, where they reduce to either P (D1 ≥ D0) = 1 or P (D1 ≤ D0) = 1.

When there are two or more instruments, LiM is strictly weaker than IAM. To see this,

consider the setting with two binary instruments: Z1 ∈ {0, 1} and Z2 ∈ {0, 1} with

support Z = {(0, 0), (0, 1), (1, 0), (1, 1)}. Since there are four different combinations

of the instrument values, there are
(
4
2

)
= 6 comparisons of potential treatments, d ∈

{0, 1}. In other words, there are six selection probabilities P (Dz ≥ Dz′) = d with

z, z′ ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} and z ̸= z′, that can be restricted by imposing some

sort of monotonicity. IAM restricts all six comparisons. LiM always imposes only one

restriction, independent of the number of instruments. To give an example, IAM imposes

either P (D10 ≥ D01) = 1 or P (D10 ≤ D01) = 1. This translates to requiring that

all individuals favor one instrument over the other instrument. Consequently, it is not

possible to have some individuals who have a preference for Z1 and other individuals who

have a preference for Z2. For instance, if all individuals are restricted to favor Z1 over Z2,

then all the response types except the ones indicated in Table 1, are ruled out by IAM.

In contrast, LiM allows for richer choice heterogeneity by allowing the presence of both

3Note that vector monotonicity (VM) as introduced by Goff (2020) is equivalent to PM in some

settings, and stronger than PM otherwise. Therefore, it is not considered here.
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first instrument compliers and second instrument compliers. Following the same line of

reasoning, LiM is also less restrictive than IAM in settings with more than two binary

instruments, as it does not impose any ordering on P (Di...j...k ≥ Di...j...k) ∀i ̸= j ̸= k.

While IAM restricts all six comparisons of potential treatments for different instru-

ment values in the case of two instruments, PM imposes four restrictions. PM requires

each of the probabilities P (D00 ≥ D10), P (D00 ≥ D01), P (D10 ≥ D11), and P (D01 ≥ D11)

to be either zero or one. Notice that only one of all possible PM assumptions can be

consistent with the data. Estimating E(D00), E(D10), E(D01), and E(D11) reveals the

version that is consistent with the considered data. With two instruments, PM allows for

at most seven different response types to co-exist. When increasing the values of the in-

struments makes participation weakly more likely, PM imposes the following restrictions:

P (D10 ≥ D00) = 1, P (D01 ≥ D00) = 1, P (D01 ≥ D11) = 0, P (D10 ≥ D11) = 0. (2)

The six response types consistent with the ordering in Equation (2) are given in Table 1.

These choice restrictions rule out six defier types that LiM allows for. It is worth noting

that the signs on the choice restrictions P (D10 ≥ D00) = 1 and P (D10 ≥ D11) = 0 as

well as P (D01 ≥ D00) = 1 and P (D01 ≥ D11) = 0 are of opposite direction such that

P (D00 ≥ D11) = 0 is imposed. PM and LiM are nested in this case and LiM is strictly

weaker, i.e., LiM is strictly weaker than PM when increasing (decreasing) instrument

values always increases (decreases) treatment uptake.

When the signs of P (D10 ≥ D00) = 1 and P (D10 ≥ D11) = 0 as well as P (D01 ≥

D00) = 1 and P (D01 ≥ D11) = 0 have the same direction, then no restriction on P (D00 ≥

D11) is imposed by PM and the two assumptions are non-nested. With two binary

instruments, there are four possible combinations of choice restrictions in accordance

with PM that are non-nested with either positive LiM, P (D00 ≤ D11) = 1, or negative

LiM, P (D00 ≥ D11) = 1:

P (D10 ≥ D00) = 1, P (D01 ≥ D00) = 1, and P (D01 ≥ D11) = 1, P (D10 ≥ D11) = 1.

(3)

P (D10 ≥ D00) = 1, P (D01 ≥ D00) = 0, and P (D01 ≥ D11) = 0, P (D10 ≥ D11) = 1.

(4)

P (D10 ≥ D00) = 0, P (D01 ≥ D00) = 1, and P (D01 ≥ D11) = 1, P (D10 ≥ D11) = 0.

(5)
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P (D10 ≥ D00) = 0, P (D01 ≥ D00) = 0, and P (D01 ≥ D11) = 0, P (D10 ≥ D11) = 0.

(6)

The response types that are present under these four different versions of the assump-

tions are listed in Table 2, together with the response types under positive and negative

LiM. Clearly, in all four cases, LiM allows for substantially more choice heterogeneity

than PM, allowing for a much larger number of different response types. For each of

these four versions of PM, only one response type included under PM is excluded under

LiM, at the cost of ruling out several other types. It is unlikely that this is a plausible

scenario in empirical applications. As will be outlined below, justifying PM over LiM

becomes even more difficult as the number of instruments increases.

Consider the three binary instrument setting with the three instruments Z1 ∈ {0, 1},

Z2 ∈ {0, 1}, and Z3 ∈ {0, 1}, and with support Z = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0),

(1, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)}. Without imposing any restrictions, there are 28 = 256

different response types, since there are eight different points of support of Z for which

the potential treatment status is compared pairwise. The eight different combinations

of the instrument values result in
(
8
2

)
= 28 comparisons of potential treatments. LiM

includes individuals who are compliers with respect to at least one of the instruments or

a combination of instruments, but defiers for another instrument (or potentially multiple

other instruments), as long as the treatment status when exposed to all instruments is

at least as large as when exposed to none of the instruments. Imposing LiM (P (D111 ≥

D000) = 1 or P (D111 ≤ D000) = 1) rules out 64 of the initial 256 response types, allowing

for a total of 192 possible types.

The maximum number of response types under PM is only 35, since it imposes more

choice restrictions. PM imposes twelve restrictions in total that bring about 212 = 4, 096

different versions of PM.4 PM and LiM are nested in approximately 82% (3, 366/4, 096 ≈

0.82) of these cases. In all those instances, LiM is strictly weaker than PM. PM seems

rather unrealistic when it is non-nested with LiM, which entails the remaining 18% of the

versions of PM. These versions of PM only allow for either one, two or three additional

response types excluded by LiM, at the cost of ruling out many other types that are

included under LiM. In approximately 10% of all cases ((730 − 324 − 12)/4, 096), one

4An R-script for the response types that are allowed for under the different monotonicity assumptions

in case of three binary instruments is available from the authors upon request.
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response type is allowed for under PM that is ruled out under LiM. In approximately 8%

(324/4, 096) of the cases, PM allows for two other response types. The maximum number

of extra response types that PM allows for when non-nested with LiM is three, which

occurs in 0.3% (12/4, 096) of the possible combinations that are consistent with the PM

assumption.

The number of defier types increases rapidly with the number of available binary

instruments. The total possible number of response types is given by 22k . Under LiM,

75% of the response types are allowed for and 25% are ruled out, independently of the

number of instruments, k. The combined compliers always consist of 25% of the total

number of response types, meaning that 0.25 · 22k response types form the combined

compliers. Calculating the number of response types under PM is more complicated,

since the number of response types depends on the signs of the choice restrictions. Every

choice restriction that is imposed eliminates at most 25% of the response types. The

number of choice restrictions imposed by PM when k instruments are available equals

k · 2k−1 =
∑k

i=1

(
k

i−1

)
· (k − i− 1).

A graphic illustration of the restrictiveness of other forms of monotonicity compared to

LiM is given in Figure 1. This figure depicts the maximum number of types under each

monotonicity assumption. It clearly demonstrates the advantage of imposing the LiM

assumption, as the number of allowed response types increases rapidly with the available

instruments. PM forces the researcher to make a choice between types. Another problem

is that, depending on the types and the ordering of the propensity scores, some response

types can lead to negative weights in the weighted average estimated by TSLS. This is

further outlined in Appendix D.
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Figure 1: The maximum number of possible response types when one, two or three

binary instruments are available under different versions of the monotonicity assumption

is depicted. This figure shows that when more than one binary instrument is available,

LiM imposes far fewer choice restrictions on the response types present in the population.
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Table 2: Principal strata and the definition of the response types in case of two binary instruments and a binary treatment when LiM

and PM are non-nested.

Type D11 D10 D01 D00 Notion LiM LiM PM PM PM PM

(T ) (positive) (negative) (Equation 3) (Equation 4) (Equation 5) (Equation 6)

at 1 1 1 1 Always-taker ✓ ✓ ✓ ✓ ✓ ✓

ec 1 1 1 0 Eager complier ✓ [✓]

rc 1 0 0 0 Reluctant complier ✓ [✓]

1c 1 1 0 0 First instrument complier ✓ [✓]

2c 1 0 1 0 Second instrument complier ✓ [✓]

1d 1 0 1 1 First instrument defier ✓ ✓ ✓ ✓

2d 1 1 0 1 Second instrument defier ✓ ✓ ✓ ✓

ed 1 0 0 1 Eager defier ✓ ✓ ✓

rd 0 1 1 0 Reluctant defier ✓ ✓ ✓

d1 0 1 0 0 Defier type 1 ✓ ✓ ✓ ✓

d2 0 0 1 0 Defier type 2 ✓ ✓ ✓ ✓

d3 0 1 1 1 Defier type 3 ✓ (✓)

d4 0 1 0 1 Defier type 4 ✓ (✓)

d5 0 0 1 1 Defier type 5 ✓ (✓)

d6 0 0 0 1 Defier type 6 ✓ (✓)

nt 0 0 0 0 Never-taker ✓ ✓ ✓ ✓ ✓ ✓

✓demonstrates the types allowed for under the respective forms of the monotonicity assumption.

(✓) denotes the one response type that is only allowed for under PM but excluded under positive LiM.

[✓] denotes the one response type that is only allowed for under PM but excluded under negative LiM.
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3.2 Example: Twinning and same-sex instruments

The main advantage of LiM over PM is that it allows for much greater flexibility in the

response types that are allowed to co-exist. As a result, LiM is likely to be more plausible

than PM in at least some applications. Here we discuss the application studied by Angrist

and Evans (1998) as an example.

In many applications, the twinning instrument and the same-sex instrument are used

to generate exogenous variation in household size 5 The twinning instrument equals one

when a family’s second and third childen are twins, and the same-sex instrument equals

one when a family’s first and second children are of the same sex. Angrist and Evans

(1998) introduce the same-sex instrument based on the observation that parents generally

have a preference for a mixed-sex sibling composition, and they compare this instrument

to the twinning instrument. Since the sex of a child is basically randomly assigned, parents

with two firstborn children of the same sex are more likely to increase their household

size with a third child. Moreover, since parents generally do not choose to have twins,

twins at second and third birth can be seen as randomly assigning parents to having a

household with three instead of two children. Thus, both instruments are commonly used

to disentangle the effect of having a third child on outcomes such as female labor supply.

Generally, it is assumed that parents have a preference for siblings of opposite sexes.

Hence, if the two firstborn siblings are of the same sex, it is assumed that parents are more

likely to have a third child. However, Dahl and Moretti (2008) find that the household

size is larger when the firstborn is a girl and that boys are favored over girls in the United

States. Moreover, De Chaisemartin (2017) mentions that the 2012 Peruvian wave of the

Demographic and Health Surveys shows that, in retrospect, 1.8% of the women with

mixed firstborn composition and three children or more would have preferred either two

boys or two girls. In these settings, LiM is more plausible than PM. To illustrate this,

consider two binary instruments Z1, which is equal to one when the two firstborn are

of the same sex, and Z2, which is equal to one when the second and third children are

twins. Note that it is impossible to defy the twinning instrument, Z2. This implies that

5The validity of the twinning instrument can be compromised if many families with a high socio-

economic background make use of IVF treatment to have children. It is well-documented that using

IVF is strongly correlated with the probability of having twins. Another threat to the validity of this

instrument could be selective miscarriage, as documented in Bhalotra and Clarke (2019).
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Dz1,1 = 1. Therefore, only four types can exist: always takers, eager compliers, second

(twin) instrument compliers and first (same sex) instrument defiers. In this setting, LiM

holds by construction while PM can be violated. If both same-sex instrument defiers and

eager compliers exist PM is violated. For the former type we have that D01 > D00, while

for the latter D01 < D00. However, PM requires that either D01 ≥ D00 or D01 ≤ D00.

Therefore, the coexistence of these two types violates PM.

As argued by Dahl and Moretti (2008), some parents might have a preference for boys

and decide not to have a third child when the two firstborn children are boys, whereas they

might have a third child when the two firstborn children are mixed sex. These parents

defy the same-sex instrument and can be considered first instrument defiers, which are

ruled out under PM, but are allowed under LiM.

4 Empirical application to the impact of learning of

HIV status

In this section, we apply our CC-LATE methodology to estimating the effect of learning

of one’s HIV status on protective behaviors. Learning of a negative HIV test result could

motivate individuals to further protect themselves, while learning about a positive result

could motivate individuals to reduce or abstain from behaviors that could spread the

disease. The effect of learning test results on the spread of HIV is very important from

a policy perspective. Since learning of the test results is an individual choice, selection

bias is a serious problem in this application. Thornton (2008) investigates the effect of

knowing one’s HIV status on the purchase of contraceptives in rural Malawi. To deal

with selection issues, Thornton (2008) instruments the endogenous decision of learning

one’s HIV test results with two instruments: (1) a financial incentive offered in the form

of cash to pick up the test result and (2) the distance to a recommended HIV center.

4.1 Data

For our analyses, we use the same sample as Thornton (2008). The complete-case sample

contains HIV-positive and HIV-negative individuals in Balaka and Rumphi who had sex

and got tested for HIV in 2004 and took part in a follow-up survey in 2005. Similar to
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Thornton (2008), we consider four different outcomes. The outcomes are (1) whether or

not an individual bought condoms at the follow-up survey that took place two months

after testing, (2) how many condoms the individual bought at the follow-up survey, (3) if

the individual reported buying condoms between getting tested and the follow-up survey,

and (4) whether the individual reported having sex between getting tested and the follow-

up survey. The treatment is whether or not the individual obtained the HIV test results

and hence is aware of their HIV status.

We consider three instruments. The first instrument equals one when an individual

received any cash incentive and zero otherwise. The second instrument is a distance

incentive that equals one when distance to an HIV test center is less than 1.5km and

zero otherwise. We further construct a third instrument, above median cash incentive,

that equals one if the individual received an amount of cash incentive above the median

amount, and zero otherwise. The idea is that some individuals may only react to the in-

centive if they receive a larger amount of cash. Therefore, this instrument can potentially

generate more compliers.

4.2 Motivation for LiM and the CC-LATE

We start by checking which version of PM could be consistent with the data. To this

end, define D̄z1,z2 = 1∑
i z1,i·z2,i

∑
i z1,i · z2,i ·Di. When we only consider the any cash and

distance instruments, we have D̄00 = 0.388, D̄10 = 0.805, D̄01 = 0.392, and D̄11 = 0.832.

This implies that the ordering of PM as in Equation (2) in Section 3 is consistent with

the data, leading to the response types as listed in Table 1 in Section 2. When adding

the third instrument, above median cash, the version of PM consistent with the data is

nested with LiM and strictly stronger. It is worth noting that, if the PM condition holds,

the standard TSLS estimates a weighted average of the LATEs on the types in the set of

combined compliers, while our CC-LATE directly gives a single LATE for the combined

complier population, which is arguably a more policy relevant causal parameter.

Moreover, we argue that assuming LiM is more plausible in this application than

assuming PM. First of all, LiM is more plausible regarding the response types potentially

present in the population. Living close to the recommended HIV center might encourage

some individuals to learn of their HIV status due to the small effort of traveling to the

center. On the other hand, it might discourage other individuals who would feel too
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embarrassed to visit an HIV center in their neighborhood out of fear of being recognized.

These individuals are defiers with respect to the instrument for the proximity of an HIV

center and defy learning of their HIV status when living close to the recommended HIV

center. However, they could be willing to learn of their status if they receive a financial

incentive. Thornton (2008, p. 1858–1859) emphasizes the importance of a financial

incentive to push distance defiers towards compliance. She states: “[T]he evidence from

this experiment in Malawi indicates that such psychological barriers, if they exist, can

easily and inexpensively be overcome. Cash incentives may directly compensate for the

real costs (e.g., travel expenses, missed work) or psychological costs of obtaining HIV

results, or they may indirectly reduce the stigma associated with HIV testing by providing

individuals with a public excuse for attending the results center.” PM would be violated

if, in addition to these individuals, there exist individuals who always comply with the

proximity instrument. LiM, however, would still hold since it allows for the co-existence

of proximity instrument compliers and proximity instrument defiers. LiM only requires

that when individuals receive cash and live close to a center, they do not defy learning

of their HIV test results. As pointed out by Thornton (2008), social stigma can prevent

individuals from learning of their HIV status. She finds that social barriers can be lifted

by financial incentives, as the cash provides an excuse for visiting the HIV test center.

Inclusion of our third instrument, above median cash incentive, makes LiM even more

likely to hold, since it allows there to be individuals who remain distance defiers even

with smaller cash incentives.

4.3 Instrument distribution and complier share

To estimate the CC-LATE, we only use the subsample of observations for which all in-

strument values are zero and those for which all instrument values equal one. In the

setting with the two instruments, any cash and distance, 43% of the observations are

used to estimate the CC-LATE (see Table 3). In the setting with all three instruments,

27% of the observations are used to estimate the CC-LATE (see Table 3). Including the

third instrument, above median cash, thus leads to a loss of 16% of the total number of

observations. Adding instruments always leads to the same amount of or fewer obser-

vations used for estimating the CC-LATE. However, as noted earlier in Section 2.3, the

loss in estimation precision from this smaller sample size is partly or completely offset by
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Table 3: Distribution of the instruments in the setting with two instruments and three

instruments in the complete-case data.

Z1 Z2 Z3

Any cash Distance Above median cash No. observations % observations

Two instruments 0 0 134 13%

1 0 497 49%

0 1 79 8%

1 1 298 30%

Total no. of observations 1008 100%

Observations used by CC-LATE 432 43%

Three instruments 0 0 0 134 13%

0 1 0 79 8%

1 0 0 254 25%

0 0 1 0 0%

1 1 0 154 15%

0 1 1 0 0%

1 0 1 243 24%

1 1 1 144 14%

Total no. of observations 1008 100%

Observations used by CC-LATE 278 28%

Figure 2: Shares of complier populations for different instrument configurations.

a corresponding increase in the combined compliers’ share of the total population (and

hence a larger denominator in the LATE formula).

The probability of being a Z1, Z2 or Z3 complier and the probability of being a

combined complier in the two and three instrument settings are summarized in Figure 2.

The share of compliers for the distance instrument is only 2.4%. Since adding instruments

never decreases the set of combined compliers, the largest complier share of 52.9% is

reached reached when all three instruments are used.
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4.4 Results

We estimate the effect of learning of HIV status on the four aforementioned outcomes

with OLS, the CC-LATE estimator, and TSLS. Standard errors are robust and clustered

at the village level. Controls are omitted.6 OLS, which we expect to be downward biased,

gives estimates that are rather small and never statistically significant (see Figure 3a).

Possible endogeneity giving rise to downward bias could be that respondents who do not

practice safe sex are more likely to choose to learn their HIV status, or that individuals

who do practice safe sex are less likely to choose to learn their HIV status.

When comparing the CC-LATE-2 and CC-LATE-3 estimates in Figure 3a, which are

the estimates when using two and three instruments, respectively, we see that adding a

third instrument does not have much effect on the precision of the CC-LATE estimator

in this application, as the confidence intervals are of similar lengths for all outcomes.

The precision loss due to using fewer observations with three instruments is offset by

the extra compliers generated by adding the instrument. The estimate decreases in

magnitude when adding the above median cash instrument, but it should be noted that

the two CC-LATEs refer to different populations. The smaller effects might be due to

the fact that the additional instrument adds compliers that need extra cash to be pushed

towards compliance and are thus probably less motivated to learn of their test results.

Figure 3a also gives estimates obtained when using each instrument separately. Clearly,

for all four outcome variables, the estimate obtained when using the distance instrument

individually is larger in magnitude with much wider confidence intervals. The F-statistic

of this instrument is rather small (approximately 3), making it a potentially “weak” in-

strument. This is reflected in the estimates. Using the any cash or the above median

cash instruments in isolation gives estimates that are always insignificant, and confidence

intervals which are comparable to one or both of our CC-LATE estimators.

We now compare CC-LATE estimates with the estimates obtained when combining

the instruments with TSLS as is typically done in literature. The estimates are depicted

in Figure 3b.7 Reassuringly, the confidence intervals of the CC-LATE estimates and TSLS

estimates are comparable. The first outcome considered is whether an individual bought

6Since the instruments are randomized, omitting controls should not introduce any bias.
7See Figure B.3 in Appendix B.3 for Figure 3a without the distance instrument to allow for easier

comparison of the CC-LATE estimator to the LATEs of each instrument used separately.
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(a) Comparison of CC-LATE estimates to the OLS estimates and the TSLS estimates

resulting from using each instrument separately. The confidence intervals for TSLS distance

for the outcome “number of condoms bought” is [−12.66, 24.48]. Figure 4 in Appendix B.3

excludes the estimate of the distance instrument from this figure for easier comparison.

(b) Comparison of CC-LATE estimates to the TSLS estimates in the case of two or three

instruments.

Figure 3: These figures show the CC-LATE and TSLS estimates for the four outcome

variables. The treatment is whether an individual learned of their HIV status. In the

setting with two instruments (e.g., CC-LATE-2 ), any cash (if any financial incentive

was received) and distance (HIV center within 1.5 km distance was offered) are used as

instruments. In the setting with three instruments (e.g., CC-LATE-3 ), above median

cash (one if total incentive above median, zero otherwise) is added as an instrument.

Standard errors are clustered at the village level. We report 95% confidence intervals in

red. The estimates can also be found in Tables 5 and 6 in Appendix B.2.
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condoms at the follow-up survey. Individuals who received their test results were 23

percentage points more likely to buy condoms according to the CC-LATE estimate with

three instruments (any cash, distance, above median cash). This is 12 percentage points

for TSLS with three instruments, although it is not statistically significant at the 5%

level. When using two instruments, we find a higher effect of 29 percentage points with

our CC-LATE estimator compared to the 17 percentage points found using TSLS. For the

second outcome, neither the CC-LATE nor the TSLS estimates are statistically significant

at the 5% level when using three instruments. For the setting with two instruments, the

CC-LATE estimate is not only larger in magnitude, but also significant and indicates

that, among the combined compliers, individuals who learned of their HIV status bought

on average 0.94 condoms more.

Interestingly, adding compliers who respond to the above median cash instrument

leads to an increase in the CC-LATE estimate for the “reported buying condoms“ out-

come while, as we saw above, it leads to a decrease for the “bought condoms” outcome.

While the former outcome captures whether the respondents bought condoms between

getting tested and the follow-up survey, the latter outcome captures whether the 30 cents

they received at the end of the follow-up survey were subsequently used to buy subsi-

dized condoms. The difference in estimates for two and three instruments between these

two outcomes may be explained by the fact that the individuals who had to be pushed

to compliance by a stronger financial incentive might be lying when responding to the

question of whether they bought condoms before the follow-up survey. These individuals

subsequently do not buy condoms since they would rather keep the money. The estimates

for the outcome, “reported having sex“, are insignificant regardless of the estimator used.

Overall, the CC-LATE estimates provide more evidence for protective behavior after

learning of one’s HIV status compared to the TSLS estimates.8 Differences in estimates

can be attributed to either differences in the estimand or to a violation of the PM assump-

tion. The weighted average estimated by TSLS might contain either negative weights or

weights that are substantially different from the relative share of the type that contributes

to the weighted average. Moreover, if distance instrument defiers are present, then PM is

8Note that the treatment concerns choosing to know one’s HIV status without differentiating between

positive or negative test results. We find similar effects in the subsample with individuals who test

negative. The subsample with individuals who test positive is too small to draw meaningful conclusions.
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violated, and the weighted average contains the LATE of this defier type. The CC-LATE

is robust to the presence of this defier type, whereas TSLS is not. Furthermore, when

we use three instruments there are 64 types in the set of combined compliers under LiM.

Under PM, at most 35 response types are allowed.

5 Conclusion

TSLS is often used in empirical applications to combine multiple instruments. We have

noted some problems with this approach, particularly the restrictiveness of commonly

invoked monotonicity assumptions like PM. We introduce a more plausible monotonicity

assumption, which we refer to as LiM, and we introduce the CC-LATE, an arguably more

policy-relevant causal parameter. The CC-LATE applies to a large complier population

and is robust to the presence of a variety of defier types that may often exist in practice.

We apply our CC-LATE to estimate the effect of learning one’s HIV status on protec-

tive behavior. In comparison to TSLS, the CC-LATE estimates provide more evidence of

protective behavior. We and others have noted that the PM assumption usually invoked

to justify standard TSLS LATE estimation may be violated, by the presence of distance

instrument defiers. Our CC-LATE remains valid in the presence of these defiers, as long

as they can be induced to comply by a high cash incentive. We find that programs encour-

aging learning of one’s HIV status using cash and distance incentives can help prevent

the spread of the disease. The statistically significant magnitudes we find for these effects

are modest, but are larger than those indicated by standard TSLS LATE estimates.
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Appendices

A Proofs

A.1 Proof of Theorem 1

Assume our data consists of independent, identically distributed observations of the vector

(Yi, Di, Z1i, Z2i) for individuals i = 1, ..., n. Define the following four variables:

R1i = (1 − Z1i)(1 − Z2i), R2i = Z1iZ2i, R3i = (1 − Z1i)Z2i, R4i = Z1i(1 − Z2i).

Under SUTVA, the observed treatment Di assigned to an individual i can be written as

Di = (1 − Z1i)(1 − Z2i)D
00
i + Z1iZ2iD

11
i + (1 − Z1i)Z2iD

01
i + Z1i(1 − Z2i)D

10
i

= D00
i R1i + D11

i R2i + D01
i R3i + D10

i R4i.

Consider the denominator of the CC-LATE estimand:

E (D|Z1 = 1, Z2 = 1) − E (D|Z1 = 0, Z2 = 0) = E(D|R2 = 1) − E(D|R1 = 1)

= E(D11
i |R2 = 1) − E(D00

i |R1 = 1)

= E(D11
i ) − E(D00

i ).

Let πt = Pr(T ∈ t), t = at, rc, ec, 1c, 2c, 1d, 2d, ed, rd, d1, d2, nt (see Table 1). We have

E(D00
i ) =

∑
t

E(D00
i |T = t)πt

=πat · 1 + πrc · 0 + πec · 0 + π1c · 0 + π2c · 0 + π1d · 1 + π2d · 1 + πed · 1 + πrd · 0 + πd1 · 0

+ πd2 · 0 + πnt · 0

=πat + π1d + π2d + πed

and

E(D11
i ) =

∑
t

E(D11
i |T = t)πt

=πat · 1 + πrc · 1 + πec · 1 + π1c · 1 + π2c · 1 + πnt · 0 + π1d · 1 + π2d · 1 + πed · 1 + πrd · 0

+ πd1 · 0 + πd2 · 0

=πat + πrc + πec + π1c + π2c︸ ︷︷ ︸
πcc

+π1d + π2d + πed

=πat + πcc + π1d + π2d + πed.
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It therefore follows that

E(D|Z1 = 1, Z2 = 1) − E(D|Z1 = 0, Z2 = 0) = E(D11
i ) − E(D00

i ) = πcc,

which is the probability of being any type of complier.

Let βi = Y 1
i − Y 0

i . Note that unlike the CC-LATE β, the term βi is random. Under

SUTVA, the observed outcome Y can be written as

Yi = Y 1
i Di + Y 0

i (1 −Di) = βiDi + Y 0
i

= βi

[
D00

i R1i + D11
i R2i + D01

i R3i + D10
i R4i

]
+ Y 0

i

= βiD
00
i R1i + βiD

11
i R2i + βiD

01
i R3i + βiD

10
i R4i + Y 0

i .

Now, consider the numerator of the CC-LATE estimand,

E (Y |Z1 = 1, Z2 = 1) − E (Y |Z1 = 0, Z2 = 0) =E(Y |R2 = 1) − E(Y |R1 = 1)

=E(βiD
11
i + Y 0

i |R2 = 1) − E(βiD
00
i + Y 0

i |R1 = 1)

=E(βiD
11
i ) − E(βiD

00
i ).

We have that

E(βiD
00
i ) =

∑
t

E(βiD
00
i |T = t) · πt

=E(Y 1
i − Y 0

i |T = at) · πat + E(Y 1
i − Y 0

i |T = 1d) · π1d + E(Y 1
i − Y 0

i |T = 2d) · π2d

+ E(Y 1
i − Y 0

i |T = ed) · πed

and

E(βiD
11
i ) =

∑
t

E(βiD
11
i |T = t) · πt

=E(Y 1
i − Y 0

i |T = at) · πat + E(Y 1
i − Y 0

i |T ∈ cc) · πcc + E(Y 1
i − Y 0

i |T = 1d) · π1d

+ E(Y 1
i − Y 0

i |T = 2d) · π2d + E(Y 1
i − Y 0

i |T = ed) · πed.

Therefore,

E(Y |Z1 = 1, Z2 = 1)−E(Y |Z1 = 0, Z2 = 0) = E(βiD
11
i )−E(βiD

00
i ) = E(Y 1−Y 0|T ∈ cc)·πcc,

and hence

β =
E (Y | Z1 = 1, Z2 = 1) − E (Y | Z1 = 0, Z2 = 0)

E (D | Z1 = 1, Z2 = 1) − E (D | Z1 = 0, Z2 = 0)

=
E (Y | R2 = 1) − E (Y | R1 = 1)

E (D | R2 = 1) − E (D | R1 = 1)

=E(Y 1 − Y 0|T ∈ cc).
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A.2 TSLS with one instrument in the subsample

Denote the subsample averages of Y and D when (z1 = 0, z2 = 0) by Ȳ00 and D̄00,

respectively, and as Ȳ11, and D̄11 when (z1 = 1, z2 = 1). Denote the total number of

observations in the subsample by Ñ , the number of observations for which (z1 = 0, z2 =

0) as N00, and the number of observations for which (z1 = 1, z2 = 1) as N11. Then,

N11 =
∑Ñ

i=1 Z̃ and N00 =
∑Ñ

i=1(1 − Z̃).

Z̃ ′Y =
Ñ∑
i=1

(Z̃i −
¯̃
Z)(yi − Ȳ )

=
Ñ∑
i=1

Z̃i(yi − Ȳ ) − ¯̃
Z

Ñ∑
i=1

(yi − Ȳ )

=
Ñ∑
i=1

Z̃i(yi − Ȳ )

= N11
1

N11

Ñ∑
i=1

Z̃i(yi − Ȳ )

= N11(ȳ1 − Ȳ )

= N11

(
ȳ1 −

N00

Ñ
ȳ0 −

N11

Ñ
ȳ1

)
= N11

(
N00Ȳ11 + N11Ȳ11

Ñ
− N00Ȳ00 + N11Ȳ11

Ñ

)
=

N11N00(Ȳ11 − Ȳ00)

Ñ

In a similar fashion, one can show that Z̃ ′D = N11N00(D̄11−D̄00)

Ñ
. Then:

β̂ = (Z̃ ′D)−1Z̃ ′Y =
N11N00(Ȳ11 − Ȳ00)/Ñ

N11N00(D̄11 − D̄00)/Ñ
=

Ȳ11 − Ȳ00

D̄11 − D̄00

.

A.3 Alternative estimation approaches

Define the following four variables:

R1i = (1 − Z1i)(1 − Z2i), R2i = Z1iZ2i, R3i = (1 − Z1i)Z2i, R4i = Z1i(1 − Z2i).

A simple consistent estimator of the CC-LATE then consists of the following steps:9

9As they are unconditionally uncorrelated with R1 and R4 by construction, one could drop R2 and

R3 from these regressions without changing the estimates. However, including them is necessary if one

34



1. Use OLS to estimate the coefficients α1 and α2 in

Di = α1R1i + α2R2i + α3R2i + α4R2i + ei,

where ei is the regression error. Denote the estimates α̂j.

2. Use OLS to estimate the coefficients γ1 and γ2 in

Yi = γ1R1i + γ2R2i + γ3R3i + γ4R4i + εi,

where εi is the regression error. Denote the estimates γ̂j.

3. The CC-LATE estimator is then

β̂ =
γ̂2 − γ̂1
α̂2 − α̂1

.

The asymptotic distributions of β̂ and δ̂ can be obtained by the delta method. We can

rewrite the above steps as a method of moments (MM) estimator and use a standard MM

estimation package to automatically generate consistent estimates and standard errors.

To do so, observe that the above regressions can be expressed as the following set of

moments:

E ((Di − α1R1i − (δ + α1)R2i − α3R3i − α4R4i)Rji) = 0 for j = 1, 2, 3, 4, and

E ((Yi − γ1R1i − (βδ + γ1)R2i − γ3R3i − γ4R4i)Rji) = 0 for j = 1, 2, 3, 4.
(7)

Let the vector θ = (β, δ, α1, α3, α4, γ1, γ3, γ4). Then, the above eight moments can be

replaced with corresponding sample moments, and the parameters θ can be directly

estimated using MM estimation. The corresponding δ̂ will equal α̂2 − α̂1, the estimated

probability of an individual i being a combined complier, and β̂ will equal the CC-LATE

estimate γ̂2−γ̂1
α̂2−α̂1

.

Alternatively, simplifications in getting the limiting distribution of β̂ with the delta

method can be obtained as follows: Let δ = α2−α1, let ζ = γ1+γ2, and let R̃i = R1i+R2i.

Then

Di = α1R̃i + δR2i + α3R3i + α4R4i + ei,

Yi = γ1R̃i + ζR2i + γ3R3i + γ4R4i + εi.

Thus, one can simply estimate the OLS regressions of Di and Yi on R̃i, R2i, R3i, and R4i,

and the coefficients of R2i will be consistent estimates of ζ and δ, and β = ζ/δ. Note

that we can also set up the MM estimator this way.

wants to include covariates.
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A.4 Proof for the extension to multiple instruments

Suppose we have k > 2 binary instruments that all satisfy the LATE assumptions. Define

Dz1z2...zk the potential treatment state, R1 = (1 − Z1)(1 − Z2) . . . (1 − Zk), and R2 =

Z1Z2 . . . Zk. Under SUTVA, the observed treatment Di can be written as

Di = D00...0
i R1i + D11...1

i R2i + D̃i,

where D̃i includes all possible combinations of instrument values and the respective po-

tential treatment states. Thus,

E (D|Z1 = 1, . . . , Zk = 1) − E (D|Z1 = 0, . . . , Zk = 0) = E(D|R2 = 1) − E(D|R1 = 1)

= D11...1
i −D00...0

i .

Let cc be the set of all complier types, then

E (D|Z1 = 1, . . . , Zk = 1) − E (D|Z1 = 0, . . . , Zk = 0) = πcc.

Similarly, it is easy to show that

E (Y |Z1 = 1, . . . , Zk = 1) − E (Y |Z1 = 0, . . . , Zk = 0) = E(Y 1 − Y 0|T ∈ cc)πcc.

Thus,

E (Y |Z1 = 1, . . . , Zk = 1) − E (Y |Z1 = 0, . . . , Zk = 0)

E (D|Z1 = 1, . . . , Zk = 1) − E (D|Z1 = 0, . . . , Zk = 0)
= E(Y 1 − Y 0|T ∈ cc).
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An alternative way to obtain this result is as follows:

E (Yi|Z1i = 1, . . . , Zki = 1) − E (Y |Z1i = 0, . . . , Zki = 0)

= E (Yi|R2i = 1) − E (Yi|R1i = 1)

= E(D111...1
i · Y 1

i + (1 −D111...1
i ) · Y 0

i |R2i = 1) − E(D000...0
i · Y 1

i + (1 −D000...0
i ) · Y 0

i |R1i = 1)

= E(D111...1
i · Y 1

i + (1 −D111...1
i ) · Y 0

i ) − E(D000...0
i · Y 1

i + (1 −D000...0
i ) · Y 0

i )

= E(D111...1
i · Y 1

i + (1 −D111...1
i ) · Y 0

i −D000...0
i · Y 1

i − (1 −D000...0
i ) · Y 0

i )

= E(D111...1
i · Y 1

i + Y 0
i −D111...1

i · Y 0
i −D000...0

i · Y 1
i − Y 0

i + D000...0
i · Y 0

i )

= E(D111...1
i · Y 1

i −D111...1
i · Y 0

i −D000...0
i · Y 1

i + D000...0
i · Y 0

i )

= E((D111...1
i −D000...0

i )(Y 1
i − Y 0

i ))

= E
(
E((D111...1

i −D000...0
i )(Y 1

i − Y 0
i )|(D111...1

i −D000...0
i ))

)
= 1 · P (D111...1

i −D000...0
i = 1) · E

(
Y 1
i − Y 0

i

∣∣D111...1
i −D000...0

i = 1)

−1 · P (D111...1
i −D000...0

i = −1) · E
(
Y 1
i − Y 0

i

∣∣D111...1
i −D000...0

i = −1)

+0 · P (D111...1
i −D000...0

i = 0) · E
(
Y 1
i − Y 0

i |D111...1
i −D000...0

i = 0
)

= E(Y 1
i − Y 0

i |D111...1
i > D000...0

i ) · P (D111...1
i > D000...0

i )

− E(Y 1
i − Y 0

i |D111...1
i < D000...0

i ) · P (D111...1
i < D000...0

i ).

LiM rules out the second part (if LiM is violated then, similar to setting with one binary

instrument, treatment effects might be positive for all individuals, but the effect of the

defiers cancels out the effect of the compliers). Rewriting leads to the CC-LATE:

E (Yi|Z1i = 1, . . . , Zki = 1)− E (Y |Z1i = 0, . . . , Zki = 0)

= E(Y 1
i − Y 0

i |D111...1
i > D000...0

i ) · P (D111...1
i > D000...0

i )

E(Y 1
i − Y 0

i |D111...1
i > D000...0

i ) =
E (Yi|Z1i = 1, . . . , Zki = 1)− E (Y |Z1i = 0, . . . , Zki = 0)

P (D111...1
i > D000...0

i )

E(Y 1 − Y 0|T ∈ cc) =
E (Yi|Z1i = 1, . . . , Zki = 1)− E (Y |Z1i = 0, . . . , Zki = 0)

P (D111...1
i −D000...0

i = 1)

E(Y 1 − Y 0|T ∈ cc) =
E (Yi|Z1i = 1, . . . , Zki = 1)− E (Y |Z1i = 0, . . . , Zki = 0)

P (D111...1
i |Z1i = 1, . . . , Zki = 1)− P (D000...0

i = 1|Z1i = 0, . . . , Zki = 0)

E(Y 1 − Y 0|T ∈ cc) =
E (Yi|Z1i = 1, . . . , Zki = 1)− E (Y |Z1i = 0, . . . , Zki = 0)

E (D|Z1 = 1, . . . , Zk = 1)− E (D|Z1 = 0, . . . , Zk = 0)
.

0 ·P (D111...1
i −D000...0

i = 0) ·E (Y 1
i − Y 0

i |D111...1
i −D000...0

i = 0) demonstrates the fact that

the CC-LATE does not capture the effect for those individuals for whom a change from

being exposed to none of the instruments to being exposed to all instruments simultane-

ously does not change the treatment status, meaning that this change is not informative

for these individuals. The always-takers and never-takers belong to this group.
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A.5 CC-LATE under IAM

In their appendix, Imbens and Angrist (1994) state that, under IAM,

E(Y |Z = zK) = E(Y |Z = z0) + αzK ,z0 · (P (zK) − P (z0)).

We can rewrite this as follows:

E(Y |Z = zK) − E(Y |Z = z0)

P (zK) − P (z0)
= αzK ,z0

⇓
E(Y |Z = zK) − E(Y |Z = z0)

E(D|Z = zK) − E(D|Z = z0)
= E(Y (1) − Y (0)|D(zK) ̸= D(z0))

⇓

E(Y |Z = zK) − E(Y |Z = z0)

E(D|Z = zK) − E(D|Z = z0)
=

∑K
l=1 αzl,zl−1

· (P (zl) − P (zl−1))

P (zK) − P (z0)

⇓

E(Y |Z = zK) − E(Y |Z = z0)

E(D|Z = zK) − E(D|Z = z0)
=

K∑
l=1

P (zl) − P (zl−1)

P (zK) − P (z0)
· αzl,zl−1

.

E(Y |Z=zK)−E(Y |Z=z0)
E(D|Z=zK)−E(D|Z=z0)

= E(Y (1)−Y (0)|D(zK) ̸= D(z0)) shows that this can be interpreted

as the effect in the largest group of compliers. This is the same interpretation as the

estimand for multiple binary instruments as proposed by Frölich (2007).

Suppose we have two binary instruments and the support z0 = (0, 0), z1 = (0, 1), z2 =

(1, 0), z3 = (1, 1), ordered such that l < m implies Pl < Pm. Then the final line in the

last expression can be re-written as:

α30 =
(Pz1 − Pz0) · αz1z0 + (Pz2 − Pz1) · αz2z1 + (Pz3 − Pz2) · αz3z2

Pz3 − Pz0

=
(Pz1 − Pz0)

Pz3 − Pz0

· E(Y |Z = z1) − E(Y |Z = z0)

Pz1 − Pz0

+
(Pz2 − Pz1)

Pz3 − Pz0

· E(Y |Z = z2) − E(Y |Z = z1)

Pz2 − Pz1

+
(Pz3 − Pz2)

Pz3 − Pz0

· E(Y |Z = z3) − E(Y |Z = z2)

Pz3 − Pz2

=
E(Y |Z = z1) − E(Y |Z = z0) + E(Y |Z = z2) − E(Y |Z = z1) + E(Y |Z = z3) − E(Y |Z = z2)

Pz3 − Pz0

=
E(Y |Z = z3) − E(Y |Z = z0)

E(D|Z = z3) − E(D|Z = z0)
.
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B Supplementary results for HIV application

B.1 Testing for negative weights

We use Mogstad et al.’s (2021) approach to check whether the weights remain positive

under PM when IAM is violated through the presence of both Z1 and Z2 compliers. They

are positive under a violation of this assumption if the correlation between the treatment

and the instruments is positive and significant, and the partial correlation between the

instruments is significant. We follow their approach and regress the treatment on each

instrument separately. We also regress Z1 on Z2 and Z3 separately, and Z2 on Z3. The

results are presented in Table 4. The correlation between the distance instrument and the

treatment is not significant (see Column (2) of Table 4). The partial correlation between

the above median cash and distance instruments is also not positive (see Column (6)

of Table 4). This indicates that TSLS might contain negative weights when the IAM

assumption is replaced by the weaker PM assumption.

We perform two tests on the TSLS weights. We cannot reject the hypothesis that

all weights are positive when performing TSLS with the two instruments, any cash in-

strument and distance instrument.10 At the same time, we do not reject the hypothesis

that one of the weights in the weighted average generated by TSLS is negative, finding

a p-value of 0.207. This is concerning, since one or more of the weights being negative

would complicate the interpretation of the TSLS estimates.

10Using the mivcausal package (Lau and Torgovitsky, 2020), we obtain a p-value of 0.855 using 1000

repetitions in the bootstrap.
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Table 4: Testing for negative TSLS weights when both Z1 and Z2 compliers exist and

IAM is relaxed to PM. Each column shows the coefficient from a regression of the column

on the variable in the row including a constant. Significance levels: * p < 0.1 ** p < 0.05

*** p < 0.01.

(1) (2) (3) (4) (5) (6)

Got results Got results Got results Any cash Any cash Distance

Any cash 0.425***

(Std. err.) (0.032)

Distance 0.024 0.003

(Std. err.) (0.029) (0.027)

Median cash 0.303*** 0.343*** -0.003

(Std. err.) (0.027) (0.024) (0.031)

B.2 Tables with the estimates of the HIV application
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Table 5: Estimates corresponding to Figure 3a.

(1) (2) (3) (4) (5) (6)

Panel A: Bought condoms

Estimates 0.024 0.288 0.228 1.854 0.170 0.011

(Std. err.) (0.033) (0.157) (0.139) (6.424) (0.116) (0.093)

Nr. obs. 1008 432 278 1008 1008 1008

Panel B: Number of condoms bought

Estimates -0.035 0.940 0.799 5.906 0.521 -0.199

(Std. err.) (0.139) (0.489) (0.662) (144.096) (0.404) (0.4)

Nr. obs. 1008 432 278 1008 1008 1008

Panel C: Reported buying condoms

Estimates -0.009 0.096 0.161 2.070 -0.022 0.051

(Std. err.) (0.025) (0.087) (0.069) (2.965) (0.06) (0.046)

Nr. obs. 1008 432 278 1008 1008 1008

Panel D: Reported having sex

Estimates 0.032 0.023 0.022 0.22 0.019 0.054

(Std. err.) (0.033) (0.146) (0.114) (20.002) (0.063) (0.116)

Nr. obs. 1008 432 278 1008 1008 1008

The columns give the estimates for the different methods: (1) β̂OLS , (2) β̂CC−LATE−2, (3) β̂CC−LATE−3,

(4) β̂TSLS−above−1.5km−distance, (5) β̂TSLS−any−cash, and (6) β̂TSLS−above−median−cash.

The standard errors are clustered at the village level.
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Table 6: Estimates corresponding to Figure 3b.

β̂CC−LATE−2 β̂CC−LATE−3 β̂TSLS−2 β̂TSLS−3

Panel A: Bought condoms

Estimates 0.288 0.228 0.177 0.118

(Std. err.) (0.157) (0.139) (0.135) (0.106)

Nr. obs. 432 278 1008 1008

Panel B: Number of condoms bought

Estimates 0.94 0.799 0.543 0.278

(Std. err.) (0.489) (0.662) (0.478) (0.337)

Nr. obs. 432 278 1008 1008

Panel C: Reported buying condoms

Estimates 0.096 0.161 -0.013 0.012

(Std. err.) (0.087) (0.069) (0.044) (0.052)

Nr. obs. 432 278 1008 1008

Panel D: Reported having sex

Estimates 0.023 0.022 0.02 0.032

(Std. err.) (0.146) (0.114) (0.095) (0.058)

Nr. obs. 432 278 1008 1008

The standard errors are clustered at the village level.

B.3 Figure 3a without the distance instrument
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Figure 4: Figure 3a without the distance instrument to allow for easier comparison of the

CC-LATE estimator with the LATEs using each instrument used separately.
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C Simulation study

In this section, we perform two different simulation studies to judge the finite sample

performance of our CC-LATE estimator. First, we compare the CC-LATE estimator

to the TSLS estimator in DGPs where PM is valid and others where PM is violated.

Second, we compare the performance of the CC-LATE estimator when adding a weak

versus strong third instrument.

C.1 Comparison of the CC-LATE and TSLS estimators when

PM is violated

C.1.1 Setup

Following the idea of an empirical Monte Carlo study as in Huber et al. (2013), the DGP

of the simulation largely depends on the real data of the HIV application studied in

Section 4. We investigate the performance of the CC-LATE and TSLS estimator in two

different settings. In the first setting, PM is valid. In the second setting, PM is violated

due to the presence of defier types. Potential threats in the HIV application are the

existence of second instrument defiers or defiers of type 1. This could lead to a violation

of PM, while LiM would still hold.

Figure 5 depicts the true probabilities and the average effects per response type used

in the simulation.11 In Section 4, the estimated CC-LATE for the number of condoms

bought when using two instruments is 0.8, and we use similar values for choosing the

group-specific LATEs, βti , of each response type. The probabilities of belonging to a

certain response type are chosen based on the information that can be obtained from

the HIV application. Under LiM, the response group proportions πrd + πd1 + πd2 + πnt

and πat + π1d + π2d + πed can be estimated. Under PM, the defier types are ruled out

such that πnt and πat can also be estimated. We estimate these probabilities for the HIV

application. We further use the estimated shares of the complier population from Figure

11Figure 5 also contains the estimated TSLS weights using equations (20) and (21) from the proof

of Proposition 7 in Mogstad et al. (2021). To calculate the weights, propensity scores are predicted

nonparametrically. The weights do not exactly add up to one, since they are estimated. The weights are

non-negative, since our simulation study considers the setting where the instruments are monotonic in

the propensity score, which is the most realistic scenario considering the HIV application.
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(a) True LATEs, true weights and estimated TSLS weights when PM is not violated.

(b) True LATEs, true weights and estimated TSLS weights when PM is violated.

Figure 5: This figure contains the true LATEs and true weights used in the simulation

study. It further shows the estimated TSLS weights when PM holds compared to when

it is violated.

2 in Section 4. With these group-specific LATEs and pre-defined probabilities, the true

value of the LATE for the combined compliers equals 1.

The sample size is n = 1000, which is similar to the 1, 008 observations of the HIV

application. The instruments, Z1 and Z2, are drawn from a Bernouilli distribution with

the probability set to the mean of the two binary instruments from the application, any

cash and distance. Similar to the application where the instruments are randomized, the

instruments are independent. The response types, ti, are sampled with the pre-defined

probabilities. The value of Di is then set based on the sampled response type and the

instrument values. In the sample of untreated individuals, we calculate the mean, my,

and the variance, vy, of the outcome on the number of condoms bought. Then, Yi(0) = my
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and Yi = my + βtiDi + νi, where νi ∼ N(0, vy). We perform 1000 simulation repetitions.

C.1.2 Results

We compare the performance of the CC-LATE estimator and the TSLS estimator when

PM is violated due to the presence of defier types. The estimates are compared to

the true value of the LATE for the combined compliers, assuming that the objective of

both methods is to give an estimate of the ATE for this subpopulation. Note that this

objective is true for TSLS if PM is imposed such that increasing the instrument values

weakly increases treatment uptake, as in Section 4.

The distributions of the estimates are depicted in Figure 6, and Table 7 gives the

bias, median bias, mean absolute error (MAE), and mean squared error (MSE). The

MSE and MAE of the CC-LATE and TSLS estimator are comparable, since the CC-

LATE estimates lie closer to the true value, but are more spread out than the TSLS

estimates. When PM holds, both the CC-LATE estimator and the TSLS estimator lie

close to the true LATE for the combined compliers. Even though the CC-LATE estimator

uses fewer observations, the standard deviation of the estimates of the two methods is

comparable. Violation of PM clearly introduces downward bias in the TSLS estimates,

since it now includes the LATEs of the second instrument defiers and the defiers of type 1.

Interestingly, this might also explain the smaller coefficients found with TSLS in Section

4, which provides some informal evidence in favor of the existence of defier types in the

HIV application. As LiM still holds in the presence of the introduced defier types, the

bias of the CC-LATE estimator remains small when PM is violated.

C.2 Comparing CC-LATE estimators when adding a third (weak)

instrument

C.2.1 Setup

In this section, we study the performance of the CC-LATE estimator in two different set-

tings where a third instrument is available. The DGPs are similar to the DGPs in Section

C.1. In the first setting, the third instrument is extremely weak in that it pushes none

of the individuals to compliance. The third instrument, Z3, is drawn from a Bernouilli

distribution with the probability equal to the mean of the above median cash instrument
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(a) Distribution of CC-LATE estimates when PM is valid.

(b) Distribution of TSLS estimates when PM is valid.

(c) Distribution of CC-LATE estimates when PM is violated.

(d) Distribution of TSLS estimates when PM is violated.

Figure 6: This figure compares the distributions of CC-LATE and TSLS estimates when

PM is valid versus when PM is violated. 95% confidence intervals are indicated by dashed

lines.
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Table 7: This table contains the estimates and measures compared to the true LATE for

the combined complier population when PM is valid and when PM is violated.

(1) (2)

PM valid PM violated

CC-LATE estimator TSLS estimator CC-LATE estimator TSLS estimator

Mean of estimates 0.985 0.936 1.024 0.363

Std. dev. of estimates 0.492 0.467 0.521 0.392

Bias -0.015 -0.064 0.024 -0.637

Median bias -0.021 -0.068 0.001 -0.624

MSE 0.242 0.222 0.272 0.560

MAE 0.395 0.376 0.409 0.656

from the HIV application. The types considered in this simulation study are given in

Table 8. The response types are chosen such that there are only compliers with respect

to Z1 and Z2. Using similar notions as in the setting with two instruments, these are the

eager compliers, reluctant compliers, first instrument compliers, and second instrument

compliers with respect to Z1 and Z2. In the second setting, the third instrument is strong

and adds compliers that only respond to this instrument. The third instrument complier

type always takes up treatment when exposed to the third instrument, but does not in-

fluence the complier population when exposed to Z1 or Z2, since these response types are

either always-takers or never-takers when Z3 is fixed. Table 9 presents all probabilities

and group-specific LATEs used in the simulation. For the second setting, the probability

of being a third instrument complier equals 20%. Therefore, in this setting, the third

instrument pushes many individuals towards compliance.

Table 8: Table with types considered in the simulation study.

D111 D110 D101 D011 D100 D010 D001 D000 Type when Z3 = 1 Type when Z3 = 0 Notion

1 1 1 1 1 1 1 1 Always-taker Always-taker Always-taker

1 1 1 1 1 1 0 0 Eager complier Eager complier Eager complier

1 1 0 0 0 0 0 0 Reluctant complier Reluctant complier Reluctant complier

1 1 1 0 1 0 0 0 First instrument complier First instrument complier First instrument complier

1 1 0 1 0 1 0 0 Second instrument complier Second instrument complier Second instrument complier

1 0 1 1 0 0 1 0 Always-taker Never-taker Third instrument complier

0 0 0 0 0 0 0 0 Never-taker Never-taker Never-taker
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(a) Distribution of the CC-LATE estimates when using two instruments.

(b) Distribution of the CC-LATE estimates when using three instruments where the third

instrument does not add any compliers.

(c) Distribution of the CC-LATE estimates when using two instruments and leaving out the

third instrument when there are third instrument compliers present in the population.

(d) Distribution of the CC-LATE estimates when using three instruments where the third

instrument adds third instrument compliers to the complier population.

Figure 7: This figure compares the distributions of the CC-LATE estimates for settings

where two or three instruments are used and where the third instrument either adds to

the complier population or does not add any compliers at all. 95% confidence intervals

are indicated by dashed lines.
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Table 9: Table with true average treatment effects and probabilities per response type.

We compare the setting where the third instrument does not add compliers to the setting

where it adds compliers.

(1) (2)

Third instrument does not add compliers Third instrument adds compliers

Response type Probability True LATE Probability True LATE

Always-taker 0.4 0 0.3 0

Eager complier 0.2 1.25 0.2 1.25

Reluctant complier 0.05 0.5 0.05 0.5

First instrument complier 0.15 1 0.15 1

Second instrument complier 0.05 0.5 0.05 0.5

Third instrument complier 0.2 1.5

Never-taker 0.15 0 0.05 0

True CC-LATE two inst. 1 1

True CC-LATE three inst. 1 1.154

C.2.2 Results

We estimate the CC-LATE using either two or three instruments where the third in-

strument is either weak or strong. Figure 7 depicts the estimate distributions. Table

10 contains the estimate means and the standard deviations corresponding to Figure 7.

When including a third instrument that does not add any compliers, the estimated CC-

LATE lies close to the true LATE of the combined compliers, which consist of the eager

compliers, reluctant compliers, first instrument compliers, and second instrument com-

pliers in this case (see Figure 7a). Since adding a third instrument reduces the number

of observations used for estimation, the confidence intervals are wider (see Figure 7b).

When third instrument compliers are present in the population, the mean of the CC-

LATE estimates using only two instruments, Z1 and Z2, lies close to the true CC-LATE

for the combined complier population with respect to these two instruments (see Figure

7c). Including a strong third instrument that adds third instrument compliers leads

to an increase in the complier population considered. The resulting estimate gives the

LATE for the eager compliers, reluctant compliers, first instrument compliers, and second

instrument compliers as well as the third instrument compliers (see Figure 7d).

In conclusion, when an extremely weak instrument is added, the CC-LATE remains

unbiased but is less precise. When incorporating the additional instrument, the compliers

that respond to this instrument are added to the complier population. While the precision
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Table 10: Table with CC-LATE estimates in case of two or three binary instruments

for the setting where the third instrument does add third instrument compliers and the

setting where it does not add compliers, corresponding to Figure 7.

(1) (2)

Third instrument does not add compliers Third instrument adds compliers

two instruments three instruments two instruments three instruments

Mean of estimates 0.975 0.949 1.003 1.175

Std. dev. of estimates 0.565 0.842 0.551 0.532

Bias -0.025 -0.051 0.003 0.021

Median bias -0.021 -0.085 0.005 0.016

MSE 0.319 0.710 0.303 0.284

MAE 0.442 0.671 0.432 0.417

Table 11: Table with TSLS estimates in case of two or three binary instruments for the

settings where the third instrument does add third instrument compliers and where it

does not add compliers.

(1) (2)

Third instrument does not add compliers Third instrument adds compliers

two instruments three instruments two instruments three instruments

Mean of estimates 0.957 0.933 0.971 1.128

Std. dev. of estimates 0.541 0.528 0.524 0.422

remains approximately the same, the estimated LATE considers a larger subpopulation

and hence might lie closer to the true ATE.
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D Comparison of the CC-LATE to other estimands

The CC-LATE estimand is given by

β =
E (Y |Z1 = 1, . . . Zk = 1) − E (Y |Z1 = 0, . . . Zk = 0)

E (D|Z1 = 1, . . . Zk = 1) − E (D|Z1 = 0, . . . Zk = 0)

when multiple binary instruments are available, and it is given by

β =
E (Y | Z1 = 1, Z2 = 1) − E (Y | Z1 = 0, Z2 = 0)

E (D | Z1 = 1, Z2 = 1) − E (D | Z1 = 0, Z2 = 0)

in the case of two binary instruments.

When two binary instruments, Z1 and Z2, satisfy the standard assumptions includ-

ing the IAM assumption, the Imbens and Angrist (1994) LATE estimands using each

instrument separately are

β1 =
E (Y | Z1 = 1) − E (Y | Z1 = 0)

E (D | Z1 = 1) − E (D | Z1 = 0)
and β2 =

E (Y | Z2 = 1) − E (Y | Z2 = 0)

E (D | Z2 = 1) − E (D | Z2 = 0)
,

and the corresponding estimators β̂1 and β̂2 simply replace the above expectations with

sample averages. Let β̂1 and β̂2 be the estimated LATEs using Z1 and Z2 as instruments,

respectively. Under standard assumptions, β̂1 consistently estimates β1, the average treat-

ment effect among all first instrument compliers, and similarly β̂2 consistently estimates

β2, the average treatment effect among all second instrument compliers. The denomina-

tors of these expressions equal the probability of first instrument and second instrument

compliers, respectively. The denominator of the CC-LATE estimand is always greater

than or equal to the denominators of either β1 or β2, since it additionally includes eager

compliers and reluctant compliers.

Imbens and Angrist (1994) show that when combining multiple instruments with

TSLS under the IAM assumption, imposing choice homogeneity and using g(Z) as an

instrument, then TSLS gives a weighted average of the pairwise LATEs:

αIV
g =

K∑
k=1

λk · E[Yi(1) − Yi(0)|Di(zk) = 1, Di(zk−1) = 0],

with weights

λk =
(P (zk) − P (zk−1)) ·

∑K
l=k πl · (g(zl) − E[g(Z)])∑K

m=1(P (zm) − P (zm−1)) ·
∑K

l=m πl · (g(zl) − E[g(Z)])
,

where, using Imbens and Angrist’s (1994) notation, πk = Pr(Z = zk), P (zk) = E[Di|Zi =

zk], and the support of Z is ordered such that if l < m, then P (zl) ≤ P (zm). The weights
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sum to one. To guarantee positive weights, Imbens and Angrist (1994) additionally

assume that J(Z), the scalar instrument constructed from Z, depends on the propensity

score P (Z) in a monotone way.12

Mogstad et al. (2021) show that under PM, TSLS gives a weighted average of the

LATEs for the response types, g, in the population other than the always-takers and

never-takers:

βTSLS =
∑

g∈G:Cg ̸=∅

ωg · E[Yi(1) − Yi(0)|Gi = g], (8)

with weights

ωg = P (Gi = g)
K∑
k=2

(1[k ∈ Cg] − 1[k ∈ Dg])

(
Cov(Di,1[p(Zi) ≥ p(zk)])

Var(p(Zi))

)
,

where they denote Cg and Dg to be the sets of integers k for which a certain group type

responds to the change from zk−1 to zk as a complier or defier, with {z1, ..., zk} the points

of the instrument support ordered by the propensity scores, p(z1), ..., p(zk). The weights

sum to one. A drawback of this estimand is that its interpretation is not straightforward

for two reasons: The weights are counterintuitive, and the LATEs of defier types might

enter the weighted average. As is evident from the expression, negative weights can

occur either if Cov(Di,1[p(Zi) < p(zk)]) ≤ 0 or if 1[k ∈ Cg] − 1[k ∈ Dg] = −1. The

latter expression can lead to negative weights if Dg ̸= ∅. When PM allows for both first

instrument compliers and second instrument compliers, Dg ̸= ∅ always occurs for either

one of these two types. Thus, a negative weight on the LATE for one of these complier

groups is generally a cause for concern when performing TSLS under PM. Even if the

resulting weight is non-negative, the magnitude of the weight will be distorted if Dg ̸= ∅.

Interpreting the TSLS estimand becomes even more challenging when more than two

instruments are available. The instruments generate a variety of different complier and

defier types in this case. Consequently, there are many potential two-way flows for some

change in the instrument values. Next, consider the LATEs in the weighted average. The

interpretation of the TSLS estimand depends on the LATEs of the response types present

in the population, which is not straightforward in the case of multiple instruments. A

cause for concern is that Dg ̸= ∅ generally holds for defier types, causing these types to

12Heckman et al. (2006) show that the weights are always positive when P (Z) is the instrument.

Thus, the weights are always positive when the first stage of TSLS is fully saturated, since in this case

J(Z) = P (Z).
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enter the weighted average in Equation (8).

An attractive property of the CC-LATE is that it always gives the effect in the popula-

tion of combined compliers. The CC-LATE is robust to the many defier types that might

exist under LiM. Moreover, it is not concerned with negative weights. The CC-LATE

estimand can be interpreted as

βCC-LATE =
∑
g∈cc

ωg · E[Yi(1) − Yi(0)|Gi = g],

with weights corresponding to the relative sizes of the complier groups:

ωg = P (Gi = g).

If PM and LiM are non-nested, as discussed in Section 3, then it might not be pos-

sible to obtain an unbiased estimate of the CC-LATE if PM is true. Nevertheless, the

CC-LATE parameter can still be more interesting to estimate than the TSLS parame-

ter, because it might be close to the true LATE for the combined complier population

(see Appendix E for a more detailed examination of the estimand under a violation of

LiM). Particularly since the number of response types that are allowed for under PM

but violating LiM are very few, as discussed previously in Section 3. However, when

PM is violated, one should be careful when interpreting the TSLS parameter, due to

defier types entering the equation. This means that the weight can be negative, even if

Cov(Di,1[p(Zi) < p(zk)]) > 0, which might even lead to the TSLS estimate having an

opposite sign than the true ATE.

Frölich (2007) considers multiple instrumental variables with covariates included non-

parametrically. If Di follows an index structure and under standard assumptions including

the IAM assumption, which heavily restricts choice heterogeneity, Frölich (2007) derives

the following LATE:

E[Y 1 − Y 0|τ = c] =

∫
(E[Y |X = x, p(Z,X) = p̄x] − E[Y |X = x, p(Z,X) = px])fx(x)dx∫
(E[D|X = x, p(Z,X) = p̄x] − E[D|X = x, p(Z,X) = px])fx(x)dx

,

where p̄x = maxzp(z, x) and px = minzp(z, x). Similar to the CC-LATE, the estimation

is based on the two subgroups of observations where Z = (0.., 0..., 0) and Z = (1.., 1..., 1).

The interpretation of this estimand differs in that it considers the largest complier group,

whereas the CC-LATE considers all individuals that respond to any instrument or com-

bination thereof. From the results of Imbens and Angrist (1994), one can show that
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E[Y |Z=zK ]−E[Y |Z=z0]
E[D|Z=zK ]−E[D|Z=z0]

= E[Y (1) − Y (0)|D(zK) ̸= D(z0)] (see Appendix A.5) which equally

can be interpreted as the effect in the largest group of compliers, having the same inter-

pretation as the estimand for multiple binary instruments as proposed by Frölich (2007).

Goff (2020) derives the “all compliers LATE” (ACL) under a special form of PM,

which he refers to as vector monotonicity (VM). Goff (2020) shows that the ACL can

be re-written to a weighted average over the treatment effects of the specific combined

complier groups, g ∈ G:

E[Yi(1) − Yi(0)|Ci = 1] =
∑
g∈G

P (Gi = g)E[c(g, Zi)]

E[c(Gi, Zi)]
· E[Yi(1) − Yi(0)|Gi = g], (9)

where Ci = c(Gi, Zi) = 1 if a unit i belongs to a group of the all compliers. Identification

of the ACL is then possible for specific choices of the function c(g, z). Only in rare cases

does the TSLS estimator recover the ACL, and Goff (2020) proposes a different estimator

that is similar in construction to the TSLS estimator. He further shows that Equation

(9) can be re-written to a single Wald estimand:

E[Yi(1) − Yi(0)|Ci = 1] =
E[Yi|Zi = Z̄] − E[Yi|Zi = Z]

E[Di|Zi = Z̄] − E[Di|Zi = Z]
,

where Z̄ = (1, 1, ..., 1)′ and Z = (0, 0, ..., 0)′. Obviously, the denominator should be

nonzero, and it should hold that P (Zi = Z̄) > 0 and P (Zi = Z) > 0.

As the name suggests, the “all compliers” LATE concerns individuals who are com-

pliers in the sense that they respond to the instruments in some way. Under VM, the

ACL gives the effect for those individuals who are neither always-takers nor never-takers.

In the setting with two binary instruments, the interpretation of the CC-LATE coincides

with the interpretation of the ACL in that it estimates the effect for those individuals

who are a complier with respect to one of the instruments without defying any of the

other instruments. In this case, the combined complier population coincides with the

all complier population. However, the CC-LATE is derived under a much weaker mono-

tonicity assumption that allows for more choice heterogeneity and a rich co-existence

of response types. In the setting with three or more binary instruments, the combined

complier population considered by the CC-LATE contains complier types that are ruled

out under the VM assumption. Consequently, the CC-LATE gives the LATE for a larger

complier population. The ACL is not necessarily identified in cases where VM is violated

but LiM still holds.
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E Extensions

E.1 Violation of LiM

In this section, we consider identification when LiM is violated. Violation of this as-

sumption not only introduces identification issues, but also reduces the power of the

instruments, which exacerbates the problem (Dahl et al., 2023). If LiM is violated, it can

be shown for the setting with two binary instruments that

β =
πcc

πcc − πdd

E(Y 1 − Y 0|T ∈ cc) − πdd

πcc − πdd

E(Y 1 − Y 0|T ∈ dd)

with cc the set of combined compliers, cc ≡ {ec, rc, 1c, 2c}, and dd the set of defiers that

can never be pushed towards compliance and do not cancel out, dd ≡ {d3, d4, d5, d6}.

Proof in Appendix E.1.1.

This result can easily be extended to the setting with multiple binary instruments. In

the setting with three or more instruments, the set dd contains those individuals who are

a defier with respect to one of the instruments when the values of the other instruments

are either all equal to zero or when they are all equal to one.

If the probability of being this type of defier is small, that is, πdd is small, then more

weight is given to E(Y 1 − Y 0|T ∈ cc) such that the impact of these defiers will be small.

The same holds when the average treatment effect for these defiers is negligible, that

is, E(Y 1 − Y 0|T ∈ dd) is very small compared to the effect in the combined compliers

group, E(Y 1 − Y 0|T ∈ cc). The presence of these defiers is problematic when they are

many and/or their treatment effect is relatively large in magnitude. In this case, they

will introduce a substantial bias. There are not many settings where it is likely that these

types of defiers introduce a large amount of bias, especially since LiM already allows for

the existence of a rich set of defiers. The CC-LATE is identified if E(Y 1 − Y 0|T ∈ cc) =

E(Y 1 − Y 0|T ∈ dd).

The CC-LATE under a violation of LiM is a weighted average of the ATE for the

combined compliers and the ATE for the defier types that would have been ruled out

under LiM with negative weight. This is comparable to the TSLS estimand, which is a

weighted average that potentially contains defier types and/or negative weights.
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E.1.1 Proof of violation of LiM

Consider the setting where limited monotonicity is violated. Let πt = Pr(T ∈ t),

t = at, rc, ec, 1c, 2c, 1d, 2d, ed, rd, d1, d2, d3, d4, d5, d6, nt. We have

E(D00
i ) =

∑
t

E(D00
i |T = t)πt

=πat · 1 + πrc · 0 + πec · 0 + π1c · 0 + π2c · 0 + πnt · 0 + π1d · 1 + π2d · 1 + πed · 1 + πd3 · 1

+ πd1 · 0 + +πd4 · 1 + πd2 · 0 + πd5 · 1 + πrd · 0 + πd6 · 1

=πat + π1d + π2d + πed + πd3 + πd4 + πd5 + πd6

and

E(D11
i ) =

∑
t

E(D11
i |T = t)πt

=πat · 1 + πrc · 1 + πec · 1 + π1c · 1 + π2c · 1 + πnt · 0 + π1d · 1 + π2d · 1 + πed · 1 + πd1 · 0

+ πd2 · 0 + πrd · 0 + πd3 · 0 + πd4 · 0 + πd5 · 0 + πd6 · 0

=πat + πrc + πec + π1c + π2c︸ ︷︷ ︸
πcc

+π1d + π2d + πed

=πat + πcc + π1d + π2d + πed.

It therefore follows that

E(D|Z1 = 1, Z2 = 1)−E(D|Z1 = 0, Z2 = 0) = E(D11
i )−E(D00

i ) = πcc−(πd3+πd4+πd5+πd6).

Let βi = Y 1
i − Y 0

i . Under SUTVA the observed outcome Y can be written as

Yi = Y 1
i Di + Y 0

i (1 −Di) = βiDi + Y 0
i

= βi

[
D00

i R1i + D11
i R2i + D01

i R3i + D10
i R4i

]
+ Y 0

i

= βiD
00
i R1i + βiD

11
i R2i + βiD

01
i R3i + βiD

10
i R4i + Y 0

i .

Now, consider the numerator of the CC-LATE estimand,

E (Y |Z1 = 1, Z2 = 1) − E (Y |Z1 = 0, Z2 = 0) = E(Y |R2 = 1) − E(Y |R1 = 1)

= E(βiD
11
i + Y 0

i |R2 = 1) − E(βiD
00
i + Y 0

i |R1 = 1)

= E(βiD
11
i ) − E(βiD

00
i ).
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We have that

E(βiD
00
i ) =

∑
t

E(βiD
00
i |T = t) · πt

=E(Y 1
i − Y 0

i |T = at) · πat + E(Y 1
i − Y 0

i |T = 1d) · π1d + E(Y 1
i − Y 0

i |T = 2d) · π2d

+ E(Y 1
i − Y 0

i |T = ed) · πed + E(Y 1
i − Y 0

i |T = d3) · πd3 + E(Y 1
i − Y 0

i |T = d4) · πd4

+ E(Y 1
i − Y 0

i |T = d5) · πd5 + E(Y 1
i − Y 0

i |T = d6) · πd6

and

E(βiD
11
i ) =

∑
t

E(βiD
11
i |T = t) · πt

=E(Y 1
i − Y 0

i |T = at) · πat + E(Y 1
i − Y 0

i |T ∈ cc) · πcc + E(Y 1
i − Y 0

i |T = 1d) · π1d

+ E(Y 1
i − Y 0

i |T = 2d) · π2d + E(Y 1
i − Y 0

i |T = ed) · πed.

Therefore,

E(Y |Z1 = 1, Z2 = 1) − E(Y |Z1 = 0, Z2 = 0)

= E(βiD
11
i ) − E(βiD

00
i )

= E(Y 1 − Y 0|T ∈ cc) · πcc − E(Y 1
i − Y 0

i |T = d3) · πd3

− E(Y 1
i − Y 0

i |T = d4) · πd4 − E(Y 1
i − Y 0

i |T = d5) · πd5

− E(Y 1
i − Y 0

i |T = d6) · πd6

=E(Y 1 − Y 0|T ∈ cc) · πcc − E(Y 1 − Y 0|T ∈ dd) · πdd

with dd the set of defiers that can never be pushed towards compliance and do not cancel

out, dd ≡ {d3, d4, d5, d6} and so

β =
E (Y | Z1 = 1, Z2 = 1) − E (Y | Z1 = 0, Z2 = 0)

E (D | Z1 = 1, Z2 = 1) − E (D | Z1 = 0, Z2 = 0)

=
E(Y 1 − Y 0|T ∈ cc) · πcc − E(Y 1 − Y 0|T ∈ dd) · πdd

πcc − πdd

=
πcc

πcc − πdd

E(Y 1 − Y 0|T ∈ cc) − πdd

πcc − πdd

E(Y 1 − Y 0|T ∈ dd).

E.2 Bloom result

In a randomized trial with one-sided noncompliance there are no never-takers. For the

setting with one binary instrument, Bloom (1984) shows that IV estimates the treatment
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effect on the treated in randomized trials with one-sided noncompliance,

E(Yi|zi = 1) − E(Yi|zi = 0)

P (Di = 1|zi = 1)
= E(Y1i − Y0i|Di = 1).

When there are two binary instruments, one-sided compliance means that

E(Di|Z1 = 0, Z2 = 0) = P (Di = 1|Z1i = 0, Z2i = 0) = πat + π1d + π2d + πed = 0.

If compliance is only possible when both instruments are offered such that Z1i = 1, Z2i =

1, then the average treatment effect on the treated (ATT) is

E(Y 1
i − Y 0

i |Di = 1) =
E(Yi|Z1i = 1, Z2i = 1) − E(Yi|Z1i = 0, Z2i = 0)

P (Di = 1|Z1i = 1, Z2i = 1)
.

Proof in Appendix E.2.1.

This result can easily be extended to the setting with more than two binary instru-

ments if it holds that compliance is only possible when an individual is exposed to all

instruments.

If one-sided compliance only holds for one of the instruments, Z2, and compliance is

only possible when both instruments are offered, then

E(Y 1
i − Y 0

i |Di = 1) =
E(Yi|Z1i = 1, Z2i = 1) − E(Yi|Z2i = 0)

P (Di = 1|Z1i = 1, Z2i = 1)
.

E.2.1 Proof of Bloom result

When there are two binary instruments, one-sided compliance means that

E(Di|Z1 = 0, Z2 = 0) = P (Di = 1|Z1i = 0, Z2i = 0) = 0.

We can re-write E(Yi|Z1i = 1, Z2i = 1) and E(Yi|Z1i = 0, Z2i = 0) as

E(Yi|Z1i = 1, Z2i = 1) = E(Y 0
i |Z1i = 1, Z2i = 1)+E((Y 1

i −Y 0
i )Di|Z1i = 1, Z2i = 1) (10)

and

E(Yi|Z1i = 0, Z2i = 0) = E(Y 0
i |Z1i = 0, Z2i = 0)+E((Y 1

i −Y 0
i )Di|Z1i = 0, Z2i = 0), (11)

where E((Y 1
i − Y 0

i )Di|Z1i = 0, Z2i = 0) = 0 because Di = 0 if Z1i = 0, Z2i = 0.

Subtracting equation (11) from equation (10) gives

E(Yi|Z1i = 1, Z2i = 1) − E(Yi|Z1i = 0, Z2i = 0)

= E((Y 1
i − Y 0

i )Di|Z1i = 1, Z2i = 1)

= E(Y 1
i − Y 0

i |Di = 1, Z1i = 1, Z2i = 1)P (Di = 1|Z1i = 1, Z2i = 1)
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where the first equality follows because E(Y 0
i |Z1i = 1, Z2i = 1) = E(Y 0

i |Z1i = 0, Z2i = 0)

by the independence assumption.

Note that unlike in the setting with one binary instrument where Di = 1 implies

Zi = 1, in the setting with two binary instruments Di = 1 does not imply Z1i = 1, Z2i = 1.

So E(Y 1
i − Y 0

i |Di = 1, Z1i = 1, Z2i = 1) ̸= E(Y 1
i − Y 0

i |Di = 1). However, if compliance

is only possible when both instruments are offered such that Z1i = 1, Z2i = 1, then

E(Y 1
i − Y 0

i |Di = 1, Z1i = 1, Z2i = 1) = E(Y 1
i − Y 0

i |Di = 1), the treatment effect on the

treated is

E(Y 1
i − Y 0

i |Di = 1) =
E(Yi|Z1i = 1, Z2i = 1) − E(Yi|Z1i = 0, Z2i = 0)

P (Di = 1|Z1i = 1, Z2i = 1)
.

This result can easily be extended to the setting with more than two binary instruments if

it holds that compliance is only possible when an individual is exposed to all instruments.

E.3 Characteristics of the complier groups

When multiple instrumental variables are available, each instrument identifies the LATE

for those individuals who change their treatment status in response to a change in that

specific instrument. As pointed out in Angrist and Pischke (2009), when treatment effects

are heterogeneous, the LATEs might differ due to differences in complier populations.

Characteristics of the different complier populations might explain some of the differences

in the estimated effects. Furthermore, LATEs are criticized for their lack of external

validity. Knowledge about the characteristics of the population for which the average

treatment effect was estimated might be valuable when extending to other populations.

Suppose there is a binary variable, X, that equals one when an individual is male,

and zero when an individual is female.

P (x1i = 1|D11...1
i > D00...0

i )

P (x1i = 1)

=
P (D11...1

i > D00...0
i |x1i = 1)

P (D11...1
i > D00...0

i )

=
E(Di|Z1i = 1, Z2i = 1, ..., Zki = 1, x1i = 1) − E(Di|Z1i = 0, Z2i = 0, ..., Zki = 0, x1i = 1)

E(Di|Z1i = 1, Z2i = 1, ..., Zki = 1) − E(Di|Z1i = 0, Z2i = 0, ..., Zki = 0)
.

Thus, we can obtain the relative likelihood of a combined complier being male through

the first stage and the first stage for male individuals only.
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