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Abstract

We survey the literature on applications of matching theory under non-

transferable utility. We cover the following six applications in detail: living-donor kid-

ney exchange, living-donor liver exchange, cadet-branch matching in the US Army,
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1 Introduction
In the last 25 years, fundamental theory on matching markets and custom-made

theory respecting subtle institutional details in various settings has led to several suc-

cessful applications, in many cases leading to direct policy impact. In addition, match-

ing theory has been used as an analytical tool in understanding the consequences of

certain market structures and in formally modeling the reasons for their failures and

successes.

How has matching theory become more successful in spearheading direct policy

applications than many other branches of economic theory? We will briefly touch

on the political economy of market design for matching markets, as it is central to

many applications covered in this chapter. We recommend that interested readers

also refer to Sönmez (2023) for further details.1 Here, we highlight two approaches

that contribute to this success.

The first approach is commissioned design. Policymakers reach out to experienced

and well-known scholars when their institutions are in trouble and on the verge of

failure. The scholar, bringing both experience and credibility, is tasked with designing

a new institution or reforming an existing one. This design may draw on successful

ideas from past settings or involve creating innovative solutions from scratch using

various technical tools. Two prominent examples of this approach are the redesign of

the National Residency Matching Program matching mechanism (Roth and Peranson,

1999) and the New York City high school matching mechanism (Abdulkadiroğlu et al.,

2005, Abdulkadiroğlu, Pathak, and Roth, 2009).

The second approach is aspired design. Design economists study the operational

details of an institution and show that either it fails to fulfill some key policy goals or

there are better ways of achieving such goals. Aspiring for reform from outside the

system, they propose to minimally change the current institution in the hopes of per-

suading the stakeholders to achieve their goals. Solid theoretical and other scholarly

evidence may be needed to persuade the stakeholders, as often many have vested in-

terests in maintaining the status quo. Often, custom-made theory that strongly aligns

with the application may be key for policy impact. Some important examples include

the redesign of the Boston school district’s school choice mechanism (Abdulkadiroğlu

and Sönmez, 2003; Abdulkadiroğlu et al., 2005), the foundation of kidney exchange

programs (Roth, Sönmez, and Ünver, 2004, 2005a,b, 2007), the redesign of course al-

location mechanisms (Budish, 2011; Budish, Lee, and Shim, 2019; Budish and Kessler,

2022), designing policies and mechanisms for equitable allocation of scarce medical

1Sönmez (2023) outlines a methodological institution design framework called “minimalist market de-
sign,” which relies on crafting custom-made theory to enhance practical relevance. Many successful policy
impact efforts align with this framework.
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resources during the COVID-19 pandemic (Pathak et al., 2023; Sönmez et al., 2021;

Rubin et al., 2021; White et al., 2022; McCreary et al., 2023), the redesign of the cadet-

branch matching mechanism for the US Army (Sönmez and Switzer, 2013; Sönmez,

2013; Greenberg, Pathak, and Sönmez, 2023), and the design of liver-exchange clear-

inghouses (Ergin, Sönmez, and Ünver, 2020, Yilmaz et al., 2023b).

In this chapter, we cover six notable applications of matching theory in depth.

1. The design and analysis of living-donor kidney exchange clearinghouses are dis-

cussed in Section 2, where the economic models and the evolution of institu-

tions through the intervention of design economists are explored. The models

are based on the private and mixed ownership economy models covered in

Sections 2 and 3 of Chapter 1.

2. The design and analysis of living-donor liver exchange clearinghouses are dis-

cussed in Section 3, focusing on the evolution of the models starting from those

in living-donor kidney exchange (cf. Section 2) and their policy impact. This

serves as an application of exchange under private ownership, as detailed in

Section 2 of Chapter 1.

3. The design of the cadet-branch matching mechanism for the United States Mil-

itary Academy at West Point and Reserve Officer Training Corps is discussed

in Section 4, where the evolution of the market and the theory behind it are

covered. A detailed background is provided in Chapter 9 of this handbook

under matching with contracts models.

4. Constitutional design of affirmative action policies in India is discussed in Section

5, focusing on its legal framework and model. It is based on priority-based

entitlements covered in Section 4 of Chapter 1.

5. Centralization of entry-level physician labor markets occurred due to a costly un-

raveling period in the 1950s, leading to the redesign of its matching algorithm.

The evolution of the market and economic models related to the chaotic be-

havior that resulted in centralization in similar markets is covered in Section 6.

Its centralized matching model is based on the models discussed in Section 2

of Chapter 1 under two-sided matching markets.

6. Course allocation to students at universities is discussed in Section 7, where the

market institutions, models, and designs are explored. This serves as an appli-

cation of common ownership economies covered in Section 3 of Chapter 1.2

In the last section of this chapter, we briefly touch upon several other notable ap-

plications of matching theory. These discussions are briefer for various reasons:

2We are indebted to Eric Budish, who provided his extensive sets of slides to us on his and his coauthors’
papers on this topic, that helped us tremendously in preparing this section.
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(i) They are covered elsewhere in this handbook.

(ii) They have not yet demonstrated significant policy impact or undergone exter-

nal validity testing.

(iii) We couldn’t find a suitable integration of their theoretical foundations with the

fundamental models discussed in Chapter 1.

(iv) There is limited publicly available scholarly work on these applications, which

makes documentation challenging.

The field of market design in matching markets is expansive and constantly evolv-

ing. Given the depth and breadth of applications across various domains, some note-

worthy ones might not have been included despite our best efforts. As the field con-

tinues to grow, new applications, advancements, and policy impacts emerge regularly.

Our coverage may not encompass every notable application, and this is a testament

to the field’s rapid growth and reach.

2 Living-Donor Kidney Exchange
Kidney exchange, as an unexpected application of market design in early 2000s,

has not only enhanced the visibility of this field but also significantly transformed

the institutions governing living-donor kidney donation within a remarkably short

period. In just a few years after its introduction, this approach revolutionized the

practice of living-donor kidney transplantation in many countries, paving the way to

save thousands of lives across the globe each year. This section provides an explo-

ration of the institutional background and the meticulous market design strategies

adopted by economists to establish kidney exchange clearinghouses.3

About 96,000 patients were waiting for a deceased-donor kidney transplant in the

United States as of November 2023, a number which stabilized in recent years.4 In

2022:

• 44,442 new patients joined the deceased-donor queue,

• 19,630 received deceased-donor transplants,

• 5,854 received living-donor transplants,

• 4,673 died while waiting, and

• 15,066 were removed from the queue for other reasons.

3This section aligns with and complements previous surveys and perspectives coauthored by the au-
thors of this chapter (Sönmez and Ünver, 2013, 2017, 2023). Kidney exchange has become an prominent
interdisciplinary research area spanning bioethics, medicine, health policy, economics, operations research,
computer science, and sociology. For example, see Dickerson and Sandholm (2016) and Ashlagi and Roth
(2021) for surveys of the topics covered here from the perspectives of computer science and operations re-
search disciplines, respectively. We will mostly focus on economic models in the literature that can be tied
to the theoretical background explored in Chapter 1 and how they played a role in developing different
exchange paradigms and their resulting policy impact.

4Retrieved through https://optn.transplant.hrsa.gov/, National Data option.
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Figure 1: The number of total and kidney-exchange transplants in the US since 1999 (source:
https://optn.transplant.hrsa.gov/, using the National Data option, retrieved on 11/14/2023.

Of the 5,854 living-donor transplants, 1,110 were through kidney exchanges, signifi-

cantly increasing since the early 2000’s. (See Figure 1). Before 2004, when economists

published their first paper on this subject in 2004, the total number of kidney exchange

transplants conducted in the US in five years was fewer than 50.

2.1 Background
Transplantation is the preferred treatment for the most severe forms of kidney

disease. There is a major shortage of transplantation organs all over the world. As

buying and selling a body part is illegal in many countries in the world, including

the US (National Organ Transplant Act - NOTA 1984/2007), donation is the only legal

source of transplant organs.

2.1.1 Constraints to Donation: Medical Compatibility

A donor must pass two medical compatibility tests, in addition to undergoing a

psycho-sociological screening. If any of these tests fail, the donor is deemed incom-

patible with the patient. The medical compatibility requirements are as follows:

Blood-type Compatibility: Although there are different blood type groupings, the

most commonly used one for kidney compatibility is the ABO blood grouping. There

are four most common human ABO blood types: O, A, B, and AB. While a donor of
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blood-type O can donate to recipients of all blood types, a donor of blood-type A can

donate to patients of blood-types A and AB, a donor of blood-type B can donate to

patients of blood-types B and AB, and a donor of blood-type AB can only donate to

patients of blood type AB (see Figure 2).

Figure 2: Blood-type compatibility.

Tissue-type Compatibility: Tissue type or Human Leukocyte Antigen (HLA) type is

a combination of several pairs of antigens on Chromosome 6. HLA proteins A, B, DR,

and DQ are especially important in determining the tissue type of a donor. Before

transplantation, the potential recipient’s blood plasma is tested for preformed anti-

bodies against donor HLA. If antibody levels are above a threshold, the transplant

cannot be carried out. For a random patient and donor, there is about a 10%-15%

chance of such tissue-type incompatibility (Zenios, Woodle, and Ross, 2001). This

background probability for each patient is known as panel reactive antibody (PRA) level.

However, there is a huge variance in PRA levels among patients. For example, dif-

ferent background PRA levels imply that certain patients may reject more than 99%

of the offered kidneys. At the same time, some of them are almost always compatible

with a blood-type compatible donor.5 It is possible to detect to a high precision level

using single HLA level tests whether a patient is tissue-type incompatible with a type

of each single HLA.6

In the last 20 years, desensitization methods have been developed to address both

ABO incompatibility and tissue-type incompatibility, enabling incompatible donors

to donate to their paired patients. These treatments involve filtering the patient’s

plasma periodically to remove HLA or ABO antibodies. The process can take up to

5See OPTN data for such rates at https://optn.transplant.hrsa.gov/.
6This technology enabled the development of kidney exchange programs, without the need of mixing

each donor’s blood with a patient’s blood plasma.
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6 months. However, these procedures are expensive, and there is no conclusive evi-

dence that the transplanted organ’s longevity matches that of compatible transplants.

As a result, neither form of desensitization is typically practiced in the US and much

of the Western world.

2.1.2 Transplantation Policies

Using two well-established technologies, three strategies for transplantation were

developed before the intervention of market design economists:

Deceased Donation: Deceased-donor organs are considered a national treasure and

are usually allocated to patients on an organ-specific deceased-donor waitlist (or sim-

ply waitlist) using a centralized point system in the US and many other countries, akin

to a common-ownership economy covered in Section 3 of Chapter 1. Each deceased

donor can save up to two kidney patients when both of their kidneys are suitable for

transplantation. In the US, the allocation policy evolved over the years.

• Before 2014, it was almost like a first-in–first-out (FIFO) queue in different trans-

plant regions of the country, where waiting time got the highest priority crite-

rion (subject to certain exceptions, such as past living donors receiving priority

if their remaining kidney ever failed). This system resembled a dynamic vari-

ant of the type of priority mechanism covered in Chapter 1.

• In 2014, this policy was amended to create a reserve system where the highest

quality 20% of the kidneys were entirely allocated to the 20% of the patients

with the best chance of long-term survival (e.g., younger or healthier patients)

while everybody was eligible for the remaining 80% of the deceased-donor

kidneys. This system is a dynamic version of a static reserve system covered

in Section 4 of Chapter 1.

• As of 2023, a new methodology that is being developed by the United Network

for Organ Sharing (UNOS) in the US aims to use a more granular point system

that considers many other variables to form the priority mechanism, called the

continuous allocation policy.

Direct Living Donation: Under this technology, loved ones of a patient come for-

ward, and if one is compatible with the patient, one of their kidneys is transplanted

to the patient. A kidney transplanted from a living donor lasts 1.5 to 2 times longer

on average than one from a deceased donor. Thus, a living-donor transplant is pre-

ferred to a deceased-donor transplant. Also, living donation eliminates the need for

a patient to wait on the deceased-donor waitlist – often for many years – while going

through a life-quality decreasing and more expensive treatment option called dialysis

continuously.

Living-donor Kidney Exchange: This is the newest of the three policies and still the
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least resorted option. It was rarely used before market design economists got involved

in designing the clearinghouses that organize kidney exchanges. There were two es-

tablished modalities of this policy before 2004 in the US:

Paired Exchange: If the living donor who came forward for their patient is incom-

patible, the donor is swapped with the donor of a similar patient-donor pair to find a

compatible match for the patient (proposed by Rapaport, 1986, see Figure 3).

p1  x  d1

d2  x  p2

Figure 3: A typical two-way exchange

As a logistical constraint, all transplants in one paired exchange have to be done

simultaneously to prevent the reneging of a donor whose patient has already received

a transplant.

The first kidney exchange was conducted in South Korea in 1991 (Huh et al., 2008).

This was followed by a program in the Netherlands (De Klerk et al., 2005). While the

first kidney exchange in the US was conducted in 1994, the first exchange program

was established in US Transplantation Region 1, consisting of New England, in the

early 2000s. The New England program and other transplant centers in the US con-

ducted paired exchanges infrequently until 2004, as databases regarding patients and

their paired donors were not adequate, and formal exchange mechanisms were yet to

be introduced to find the best combinations of exchanges.

List Exchange: If a living donor who came forward for their patient is not compatible

with them, the patient receives a priority in the deceased-donor list while the donor’s

organ is given to the highest-priority compatible patient on the waitlist (introduced

by Ross and Woodle, 2000).

This was mainly practiced in US Transplantation Region 1, New England, in the

early 2000s, along with paired exchanges (See Figure 4). They were conducted more

frequently than paired exchanges, as they were easier to organize.
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p1  x  d1

Priority 
on Waitlist 

 
Patient 

on Waitlist 

pw

Figure 4: A typical two-way paired exchange

2.1.3 Kidney Exchange as an Application in Market Design
Roth, Sönmez, and Ünver (2004) observed that the two main types of kidney ex-

changes conducted in the US, the paired exchange and the list exchange, correspond

to the most basic forms of the two types of exchanges in the house allocation prob-

lem with existing tenants model (Abdulkadiroğlu and Sönmez, 1999), which we cov-

ered in Chapter 1, Section 3. Building on the existing practices in kidney transplanta-

tion, they introduced efficient and incentive-compatible mechanisms. They illustrated

conceptually and quantified through simulations possible increases in the number

of kidney transplants by using their mechanism. The methodology and techniques

advocated in their following research program (Roth, Sönmez, and Ünver, 2005b,a,

2007; Saidman et al., 2006; Roth et al., 2006) provided the backbone of several kid-

ney exchange programs established in the US, including the New England Program

for Kidney Exchange (NEPKE), Alliance for Paired Donation (APD), National Kidney

Registry (NKR), and The National UNOS Paired Donation Program, and in the rest of

the world.

2.2 A General Kidney Exchange Model
We introduce a general kidney exchange model that encompasses theretical mod-

els in Roth, Sönmez, and Ünver (2004, 2005b, 2007), Sönmez and Ünver (2014) and

conceptual and simulated models in Roth et al. (2006) and Saidman et al. (2006).

A kidney exchange problem is a list
[

P, Ω, A, ≿, ne, nd, na
]

such that

• P is a set of patients.

• Ω =
(
Ωp

)
p∈P is a paired-donor profile. Each patient p ∈ P is paired with a distinct

non-empty set of living donors Ωp such that for each distinct pair of patients

p, r ∈ P,

Ωp ∩ Ωr = ∅.

• A is a set of altruistic donors, who are not paired with any patient so that A ∩(⋃
p∈P Ωp

)
= ∅.
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• ≿= (≿p)p∈P is a preference profile. For each patient p ∈ P, ≿p is a prefer-

ence relation (a binary relation that is complete, reflexive, and transitive) over(⋃
r∈P Ωr

)
∪ A ∪ {∅, w} where

– each d ∈
(⋃

r∈P Ωr
)
∪ A represents receiving a transplant from donor d

such that

donor d is medically incompatible with patient p =⇒ ∅ ≻p d,

– w represents receiving a priority in the deceased-donor waitlist for a

future deceased-donor transplant, and

– ∅ represents remaining unmatched.

• ne ∈ {2, 3, . . . , |P|} is an integer denoting the maximum paired exchange size that

is feasible.

• nd ∈ {0, 1, 2, 3, . . . , |P|} is an integer denoting the maximum deceased-donor
chain size that is feasible.

• na ∈ {0, 1, 2, 3, . . . , |P|} is an integer denoting the maximum altruistic donor
chain size that is feasible.

Medical compatibility is defined in Section 2.1.1. Only medically compatible

donors can be acceptable in a patient’s preference. On the other hand, some medi-

cally compatible donors can be unacceptable for a patient.

We formally explain the implications of maximum paired exchange size ne, maxi-

mum deceased-donor chain size nd, and maximum altruistic donor chain size na after

introducing the concepts of paired exchanges, deceased-donor chains, and altruistic

donor chains.

Matchings. An outcome of a problem is a matching, which is a function µ : P →(⋃
p∈P Ωp

)
∪ A ∪ {∅, w} such that

1. each donor can be matched with at most one patient, i.e.,

∀ d ∈
( ⋃

p∈P

Ωp
)
∪ A,

∣∣∣µ−1(d)
∣∣∣ ≤ 1,

2. at most one paired donor of a patient can be matched, i.e.,

∀ p ∈ P,
∣∣∣µ−1(Ωp)

∣∣∣ ≤ 1,

3. if a paired donor of a patient is matched, then the patient is matched as well,

i.e.,

∀ p ∈ P,
∣∣∣µ−1(Ωp)

∣∣∣ = 1 =⇒ µ(p) ̸= ∅.

Since the number of patients who are eventually matched with w is envisaged to
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be small relative to the number of deceased donors that arrive in a relatively short

period, the priority in waitlist option w can be assigned to multiple patients.

Conditions 2 and 3 imply that at most one paired donor of a patient is matched,

and if one of their donors is matched, they also have to be matched to receive either

a deceased-donor transplant through a priority on the waitlist w or a living-donor

transplant from a donor, who could be their own paired donor. We do not formally

model the patients on the deceased-donor waitlist. As a result, in a matching, it could

be the case that a patient is matched, but none of their donors are matched to any

patient in P. If that is the case, it means that the central authority chooses this patient’s

exactly one donor

• to donate to a patient on the deceased-donor waitlist or

• to be utilized as a new altruistic donor in the future iterations of the kidney

exchange problem when new patients and their donors arrive.

Thus, the opportunity cost of receiving a transplant is exactly giving up one donor

for each patient in P.

We define the following two important properties of matchings.

A matching µ ∈ M is individually rational if µ(p) ⪰p ∅ and µ(p) ⪰p d for each

d ∈ Ωp.

A matching µ ∈ M is Pareto efficient if there exists no other matching ν ∈ M that

makes each patient weakly better off and at least one patient strictly better off.

The graph representing a matching. It will be helpful to represent a matching

µ ∈ M as a directed graph. Let N = P ∪ A ∪ {w, ∅} be the set of nodes of this graph.

A directed edge (p, x) in the graph is an ordered pair of a patient node p ∈ P and a

node x ∈ P ∪ A ∪ {w, ∅}. In this graph, we refer to the edge (p, x) as p points to x.

We define the graph representing µ as a pair ⟨N, E⟩ where E is the set of directed edges

defined as

E =

(p, x) ∈ P ×
(

P ∪ A ∪ {w, ∅}
)

:
x ∈ P and µ(p) ∈ Ωx,

or

x ∈ A ∪ {w, ∅} and µ(p) = x

 .

The resulting “kidney exchange” graph consists of four types of subgraphs:

1. A cycle (p1, p2, ..., , pk) with k ≥ 1, as illustrated in Figure 5, consists of a list of

patients, such that

µ(pj) ∈ Ωpj+1 ∀ j ∈ {1, 2, . . . , k} (j in modulo k).

14



p1 p2
pk

p1 p2 … pk w

p1 p2 … pk dA

…
Figure 5: A cycle with k patients represented as a subgraph.

2. An unmatched patient chain (p, ∅), as illustrated in Figure 6, is a list that consists

of a single patient and the remaining unmatched option ∅, such that µ(p) = ∅.

p1 p2
pk

p1 p2 … pk w

p1 p2 … pk dA

…

p ∅

Figure 6: An unmatched patient chain represented as a subgraph.

3. A w-chain (p1, p2, ..., pk, w) with k ≥ 1, as illustrated in Figure 7, consists of a

list of patients and the priority in the waitlist option w, such that

µ(pj) ∈ Ωpj+1 ∀ j ∈ {1, 2, . . . , k − 1}, and

µ(pk) = w.
p1 p2

pk

p1 p2 … pk w

p1 p2 … pk dA

…

Figure 7: A w-chain with k patients represented as a subgraph.

We refer to patient p1 as the tail patient of the w-chain and pk as the head patient
of the w-chain.

4. An altruistic donor chain (p1, p2, ..., pk, dA) with k ≥ 1, as illustrated in Figure 8,

is an ordered list of patients and an altruistic donor dA ∈ A, such that

µ(pj) ∈ Ωpj+1 ∀j ∈ {1, 2, . . . , k − 1}, and

µ(pk) = dA.

p1 p2
pk

p1 p2 … pk w

p1 p2 … pk dA

…

Figure 8: An altruistic donor chain with k patients represented as a subgraph.

We refer to patient p1 as the tail patient of the altruistic donor chain and pk as

the head patient of the altruistic donor chain.
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For the graph representing matching µ, we only account for maximal w-chains

and maximal altruistic donor chains. For each x ∈ {w} ∪ A, a chain (p1, . . . , pk, x) is

maximal if there is no patient r ∈ P \ {p1, . . . , pk} such that (r, p1) ∈ E . In a maximal

chain, none of patient p1’s paired donors are matched in µ to any patient in P.

The graph ⟨N, E⟩ representing matching µ is a collection of cycles, unmatched

patient chains, maximal w-chains, and maximal altruistic donor chains such that each

patient appears in exactly one cycle, unmatched patient chain, maximal w-chain, or

maximal altruistic donor chain.

Let E1, E2, . . . , En be the list of cycles, maximal w-chains, and maximal altruistic

chains in ⟨N, E⟩. Besides its functional representation, we also represent matching µ

as the collection of these subgraphs as

µ =
{

E1, E2, . . . , En}.

For brevity, we do not include unmatched patient chains in this representation. Thus,

if a patient p is not in any of the subgraphs E1, E2, . . . , En, then they are unmatched in

µ, i.e., µ(p) = ∅, forming an unmatched patient chain (p, ∅) of ⟨N, E⟩.
The number of patients in each cycle, maximal w-chain, or maximal altruistic

donor chain is referred to as its size.7

A cycle is an elaborate version of a paired exchange defined in Section 2.1.2. When

it has size 2, it is equivalent to the paired exchanges practiced in New England prior

to 2004 (see Figure 3). We refer to a cycle with a size k as a k-way paired exchange.

A maximal w-chain is an elaborate version of a list exchange defined in 2.1.2. When

it has size 1, this is precisely a list exchange, as practiced in New England prior to 2004

(see Figure 4), in which the patient receives a priority on the waitlist and, in return,

one of their donors donates a kidney to a patient on the waitlist. We refer to a maximal

w-chain with a size k as a k-way deceased-donor chain. For reasons explained in Section

2.4, they are conducted less frequently compared to other forms of kidney exchanges.

Altruistic donor chains were not practiced in 2005, and the initial models we report

here do not contain them. In most cases, they can be incorporated into the mecha-

nisms we introduce below — as we explain in Section 2.7. At present, they are among

the most common forms of kidney exchange conducted in the U.S. We refer to a max-

imal altruistic donor chain with a size k as a k-way altruistic donor chain.

7Another way to define the size of a maximal chain with k patients is to set it to k + 1 by including the
patient without a paired donor who receives a kidney on the waitlist if the central authority uses this donor
to donate to the patient on the waitlist immediately. We use the definition in the text that does not account
for the patient on the waitlist. The size of a chain becomes only relevant in open altruistic donor chains that
were initially implemented in the Alliance for Paired Donation and are now being implemented in other
programs. In that case, the tail patient’s donor is utilized in future iterations of the problem in an altruistic
donor chain.
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Maximum exchange and chain sizes and feasible matchings. The maximum

paired exchange size of the problem, denoted by ne, indicates that only paired ex-

changes with a size of ne or less are possible. Similarly, the maximum deceased-donor

chain size, denoted by nd, indicates that only maximal deceased-donor chains with

a size of nd or less are possible. Likewise, the maximum altruistic donor chain size,

denoted by na, indicates that only maximal altruistic donor chains with a size of na or

less are possible. We refer to a cycle or chain of size less than or equal to the maximum

as feasible.

Therefore, a matching µ is considered feasible if each cycle, maximal w-chain, and

altruistic donor chain in the directed graph representing µ is feasible. Let M be the

set of feasible matchings. Henceforth, we will simply refer to each feasible matching

as a matching.

Mechanisms. Typically, patient preferences over medically compatible donors and

their paired donor sets are private information.8 When kidney exchange was first for-

mulated as an application in market design, patient incentives regarding preference

manipulation were analyzed under mechanisms provided in Roth, Sönmez, and Ün-

ver (2004, 2005b). Later research also focused on patient incentives in declaring the

paired-donor set of the patient truthfully, defined as donor monotonicity (Roth, Sön-

mez, and Ünver, 2005b; Sönmez and Ünver, 2014, and also see Biró et al., 2023).9 This

property is important for a mechanism because it incentivizes each patient to recruit

as many paired donors as possible. As a result, other patients may also receive better

transplants through exchange when a patient brings forward their full set of paired

donors more donors. We analyze both types of incentives here.10

8There are various reasons for the existence of private information in this model. The doctor of a patient
may possess private information regarding the medical condition of the patient and other donors in the
system. Also, a patient with a compatible paired donor may or may not have a higher value for the direct
donation from their donor than receiving a marginally better kidney from a stranger. There is also an
additional source of private information. In real practice, when a patient remains unmatched, they typically
remain in the exchange pool. They expect to be matched in a future iteration of the kidney exchange
problem that consists of unmatched patients and their donors in the current matching and new patients
and their donors that arrive in the meantime. Therefore, remaining unmatched ∅ also represents a reserve
value for a patient. In expected terms, receiving a relatively inferior living-donor kidney or being matched
to the generally inferior deceased-donor kidney on the waitlist may be a worse option than remaining
unmatched and waiting for the next kidney exchange run.

9Donor monotonicity is an important property in other related exchange problems. Most recently, Han,
Kesten, and Ünver (2021) formalized donor monotonicity of mechanisms for blood allocation with replace-
ment donors, an environment with multi-unit demand for each patient. In many countries, patients who
need blood transfusion also need to bring forward their relatives who are willing to donate blood in return.

10Later consensus among practitioners and researchers pinpoints that strategy-proofness for individual
patients is not paramount for the success of a kidney exchange mechanism unless it has obvious vulnera-
bilities. Therefore, later research focused on creating correct incentives for transplant centers to participate
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Fix a patient set P, their paired-donor profile Ω, a maximum exchange size ne,

a maximum deceased donor chain size nd, and a maximum altruistic donor chain

size na. For each patient p ∈ P, let Pp be the set of preference relations for patient

p. Let P =×p∈P Pp be the set of preference profiles. For each patient p ∈ P, let

2Ωp be the power set of their paired-donor set Ωp. Let Γ =×p∈P 2Ωp . We refer to[
P, Γ, A, P , ne, nd, ; na

]
as a kidney exchange environment.

Next, fix an environment. Given a donor profile Ω∗ ∈ Γ and preference profile

≿∈ P , the resulting kidney exchange problem is denoted as [Ω∗,≿] and its set of

feasible matchings is denoted as M[Ω∗].

A kidney exchange mechanism is a function φ : Γ ×P → M that chooses a match-

ing φ[Ω∗,≿] ∈ M[Ω∗] for each problem [Ω∗,≿] ∈ Γ×P . A mechanism is individually
rational if, in every problem in the environment, its outcome is individually rational.

A mechanism is Pareto efficient if its outcome is Pareto efficient in every problem of the

environment.

Formally, patients can potentially manipulate a mechanism in two different ways:

1. Patients, in consultation with their doctors, may manipulate their preferences

over compatible donors.

2. Patient may not reveal their full set of donors to the system.

A mechanism is φ is immune to preference manipulation if, for each preference profile

≿∈ P , patient p ∈ P, and alternative preference relation ≿′
p∈ Pp, we have

φ
[
Ω, (≿p,≿−p)

]
(p) ≿p φ

[
Ω, (≿′

p,≿−p)
]
(p).

A mechanism is φ is donor monotonic if, for each preference profile ≿∈ P , patient

p ∈ P, and subset of their donors Ω′
p ⊊ Ωp, we have

φ
[
(Ωp, Ω−p),≿

]
(p) ≿p φ

[
(Ω′

p, Ω−p),≿
]
(p).

A mechanism φ is strategy-proof if for each preference profile ≿∈ P , patient p ∈ P,

paired-donor set Ω′
p ⊆ Ωp, and alternative preference relation ≿′

p∈ Pp, we have

φ
[
(Ωp, Ω−p), (≿p,≿−p)

]
(p) ≿p φ

[
(Ω′

p, Ω−p), (≿′
p,≿−p)

]
(p).

We are ready to continue with the first kidney exchange model, the model in Roth,

Sönmez, and Ünver (2004).

truthfully in exchange programs and incentivizing patients with compatible donors to participate. We dis-
cuss these scholarly contributions in later subsections.
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2.3 The Initial Model and Top-Trading Cycles and Chains

Mechanism
In the initial kidney exchange model of Roth, Sönmez, and Ünver (2004), there is

no limit on maximum paired exchange and deceased-donor chain size (i.e., ne = |P|
and nd = |P|). There are also no altruistic donors (i.e., A = ∅ and na = 0, and thus, we

drop them from the definition of a problem). Altruistic donor chains were introduced

later as a viable option.

Patients have strict preferences over compatible kidneys, remaining unmatched

∅, and the priority on the waitlist w. We denote the preference relation of a patient

p ∈ P simply as ≻p. This assumption is based on the evidence that emerged in the

1990’s in Europe (for example, see Opelz, 1997) that the younger age of the donor and

the higher number of matches of HLA tissue types between the patient and the donor

(i.e., the number of matches among the two A, two B, and two DR HLAs of the patient

and the donor) have a direct relation with the longevity of a transplanted kidney.

Although priority in the waitlist w could be an acceptable option in patient pref-

erences, only some patients might choose it. This is because deceased-donor kidneys

are generally considered inferior to living donor kidneys, and the reserve value of

remaining unmatched kidneys allows the patient to participate in a future exchange

run

We refer to the problem
[

P, Ω, ≻, ne = |P|, nd = |P|
]

as a baseline kidney exchange
problem with strict preferences.

Let PS be the set of all allowed strict patient preference profiles.

Next, we introduce a class of mechanisms proposed by Roth, Sönmez, and Ün-

ver (2004), which relies on an iterative algorithm that generates a series of directed

graphs to determine its outcome. In the absence of any chains, this algorithm re-

duces to Gale’s top trading cycles algorithm (Shapley and Scarf, 1974), as discussed

in Chapter 1, Section 2. In its full generality, with both cycles and chains, this class of

mechanisms is inspired by and generalizes the “You-Request-My-House I-Get-Your-

Turn” (YRMH-IGYT) mechanism (Abdulkadiroğlu and Sönmez, 1999), as covered in

Chapter 1, Section 3.

Before we formally define the mechanism, we introduce some additional concepts.

In the graphs we generate in the algorithm, we determine the matches using the

concepts we defined in Section 2.2, namely cycles, unmatched patient chains, and w-

chains.11

11However, in the algorithm, these will be tentatively determined at the pointing stage and only be part
of the outcome matching when they are removed or fixed. Unlike in the graphs representing matchings, we
will not necessarily consider maximal w-chains chains. Any size w-chain may be relevant to the functioning
of the algorithm.
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In each step of the algorithm, each remaining patient points to their favorite re-

maining option if that is ∅ or w. If their favorite remaining option is the paired donor

of a remaining patient, they point to this patient. In the resulting directed graph, if

any cycle or any unmatched patient chain does not exist, the concept of w-chains are

utilized to find the patient matches. In such a case, each patient will be a tail patient

of a w-chain. However, such chains can intersect, i.e., a patient may be pointed to by

one or more patients. See Figure 9 for such a scenario.

p3 p1

p4

w

p2

p6

p7

p5

p9

p8p10

p11

p12

p13

p14

Figure 9: Each patient is a tail patient of a w-chain.

In such a case, we need a chain selection rule to choose which patients will receive

their favorite option in this graph.

As an example, in the example in Figure 9, the chain selection rule chooses the

w-chain with tail patient p10, which is (p10, p8, p5, p4, w), as depicted in Figure 10.

p3 p1

p4

w

p2

p6

p7

p5p10

p9

p8

p11

p12

p13

p14

Figure 10: As an example, the w-chain with tail patient p10, (p10, p8, p5, p4, w), is chosen by the
chain selection rule.

After a chain is chosen, the selection rule also indicates whether the chain is re-

moved or fixed:

• If the chain is removed: Each patient in the w-chain and their paired donors are

removed from the problem.

• The chain is fixed: The chain is preserved so that each patient in the w-chain

continues pointing to the option they are currently pointing to in every future

step of the algorithm unless it is removed as part of a larger w-chain.

Each chain selection rule induces a mechanism in this class.

We are now ready to formally introduce the class of mechanisms by Roth, Sönmez,

and Ünver (2004). Fix a chain selection rule.
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Top-Trading Cycles and Chains (TTCC) mechanism induced by a given chain
selection rule.

Step 0. Initially, all patients and their paired donors are available, and no w-chain is

fixed.

Step k. (k ≥ 1) Construct a directed graph with the remaining patients in the problem

and their paired donors, option ∅, and option w as follows:

• The previously fixed w-chains, if there are any, become part of the

graph.

• Each available patient points to their best available option if this option

is w or ∅. Otherwise, they point to the paired-patient of their favorite

available donor.

In this graph, either a cycle exists, or an unmatched patient chain exists, or

each available patient is the tail patient of a w-chain.

Step k.a. If there is a cycle or an unmatched patient chain, then

• each patient in a cycle and their paired donors are removed from the

problem. Each patient is matched with their favorite donor of the pa-

tient they are pointing to, and

• each patient in an unmatched patient chain and their paired donors are

removed from the problem. The patient is left unmatched.

We continue with Step k+1.

Step k.b. If there is no cycle or unmatched patient chain, we select a w-chain using the

given chain selection rule.

• If the chosen w-chain is removed, then each patient in the chain is

matched with their favorite donor of the patient they are pointing to,

except the head patient, who is matched with w.

• If the chosen w-chain is fixed, then each patient in the chain except the

tail patient and their paired donors are deemed unavailable. The tail

patient of this chain and their paired donors remain available.

Terminate the algorithm if no patient is left in the problem or each available

patient is a tail patient of a fixed w-chain. In the latter case, each patient, ex-

cept the head patient of a w-chain, is matched with their favorite donor of the

patient they are pointing to. The head patient of each w-chain is matched with

option w.

Otherwise, continue with Step k+1.

Observe that fixed w-chains can grow in the algorithm as other patients can point

to the tail patient of a previously fixed chain.
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It is easy to see that, regardless of the chain selection rule, TTCC mechanism is

individually rational.

Roth, Sönmez, and Ünver (2004) consider the following chain-selection rules.

1. Choose the shortest w-chain (subject to a tie-breaker) and remove it.

2. Prioritize patients using a priority order. Choose the w-chain starting with the

highest-priority available patient and remove it.

3. Prioritize patients using a priority order. Choose the w-chain starting with the

highest-priority available patient and fix it.

4. Choose the longest w-chain (subject to a tie-breaker) and remove it.

5. Choose the longest w-chain (subject to a tie-breaker) and fix it.

Although the formal results in Roth, Sönmez, and Ünver (2004) pertain to envi-

ronments where each patient has a single paired donor, the following two theorems

are direct extensions of their results, relying on analogous proofs.

Theorem 1 (Roth, Sönmez, and Ünver, 2004) Fix a baseline kidney exchange environ-
ment with strict preferences

[
P, Γ, PS, ne = |P|, nd = |P|

]
. For any chain selection rule

that only fixes w-chains but do not remove them, the resulting TTCC mechanism is Pareto
efficient.

Observe that Pareto efficiency in this model is only a welfare measure regarding

patients in P. When a w-chain is removed, a donor of the tail patient donates to the

waitlist, and a patient on the waitlist benefits from this removal.

Theorem 2 (Roth, Sönmez, and Ünver, 2004) In a baseline kidney exchange environment
with strict preferences

[
P, Γ, PS, ne = |P|, nd = |P|

]
, the TTCC mechanisms with chain

selection rules 1,2,3 are immune to preference manipulation, while those with chain selection
rules 4,5 are not.

Krishna and Wang (2007) showed that, under the chain selection rule 3, the TTCC

mechanism is equivalent to a version of the YRMH-IGYT mechanism (Abdulka-

diroğlu and Sönmez, 1999) in a housing allocation problem with existing tenants with

|P| copies of w option.

The following theorem, which can be proven using a related result in Biró et al.

(2023), considers donor revelation incentives in environments where option w is unac-

ceptable for each patient. Deceased-donor chains are not widely implemented world-

wide; thus, this may represent a viable environment. In this scenario, each TTCC

mechanism is equivalent to Gale’s TTC algorithm (Shapley and Scarf, 1974). Conse-

quently, in the absence of deceased-donor chains, we refer to this mechanism as the

TTC mechanism

Theorem 3 (Biró et al., 2023) In a baseline kidney exchange environment with strict pref-
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erences and no deceased-donor chain possibility
[

P, Γ, PS, ne = |P|, nd = 0
]
, the TTC

mechanism is donor monotonic.

Moreover, Roth, Sönmez, and Ünver (2003) (the working paper version of the ini-

tial kidney exchange paper) extends a result by Ma (1994) for the housing market to

this domain when a patient may have multiple donors.12

Theorem 4 (Ma, 1994; Roth, Sönmez, and Ünver, 2003) In a baseline kidney exchange
environment with strict preferences and no deceased-donor chain possibility

[
P, Γ, PS, ne =

|P|, nd = 0
]
, the TTC mechanism is the only mechanism that is individually rational, Pareto

efficient, and immune to preference manipulation.

Theorems 3 and 4 imply the following corollary:

Corollary 1 In a baseline kidney exchange environment with strict preferences and no
deceased-donor chain possibility

[
P, Γ, PS, ne = |P|, nd = 0

]
, the TTC mechanism is

strategy-proof.

2.4 Forging a Partnership Between Market Designers and

Transplant Surgeons in Creating the New England Kidney Ex-

change Program

Following the circulation of working paper draft of Roth, Sönmez, and Ünver

(2004) in Fall 2003, the authors contacted Dr. Francis Delmonico, the head of New Eng-

land Organ Bank. Finding the formal approach in the paper intriguing, Delmonico

requested the following three modifications from the market designers to their model

and proposed mechanism as a prerequisite for implementation (also see Sönmez and

Ünver, 2023):

Only use two-way paired exchanges. An important ethical and institutional paradigm

that dictates kidney exchange is that all operations in a paired exchange—both for the

patients and their donors—should be carried out simultaneously. This recommenda-

tion is made by the medical consensus statement of Abecassis et al. (2000), which still

regulates kidney exchange globally. If exchange transplants are conducted sequen-

tially, the paired donor of a patient who has already received a transplant may become

ineligible to donate later or may change their mind. Consequently, a patient involved

in the planned paired exchange may not have received a transplant yet, while their

paired donor has already donated. In this scenario, the reneging donor puts this pa-

tient at risk.
12They also employ a different proof technique from Ma, presented by Sönmez (1999b) in a more abstract

setting.
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Thus, Delmonico recommended starting with the easiest form of paired exchanges

to organize: two-way exchanges. This was also the form of paired exchanges imple-

mented in New England prior to 2004.

Deceased-donor chains should be ruled out. Within the medical community, concerns

arose about the potential negative consequences of list exchanges for patients with

blood type O who are awaiting deceased-donor kidneys. In a list exchange, the pa-

tient with a paired donor often has a difficult-to-match blood type, such as blood type

O. Consequently, when they receive priority on the waitlist, they are matched with

an O deceased donor. However, their paired donor, who donates to the waitlist, typi-

cally has a blood type such as A, B, or AB, which is not as highly sought after. Conse-

quently, the waitlist effectively loses an incoming O deceased-donor kidney. Even the

scholars who proposed the idea of list exchange, Ross and Woodle (2000), acknowl-

edged this potential ethical dilemma and recommended utilizing list exchanges only

for patient-donor pairs who are tissue-type incompatible.

An additional ethical concern was that the head patient of a deceased-donor chain

does not receive a kidney comparable in-kind to the donor they provide. Instead, they

are matched with a less desirable deceased donor, typically with, on average, half the

survival duration of a living donor, even though they provide a living donor herself.

Some in the medical community found this ethically questionable, even if the patient

is willing to accept this option.

At the time, list exchange was mainly practiced in New England and only in cases

where a patient could not be matched in a paired exchange. As the simulations us-

ing the TTCC mechanism were already showing substantial gains, it was best not to

bother anymore with this ethically more questionable form of kidney exchange, ac-

cording to Delmonico.

The patients should not be able to rank and choose compatible kidneys. Most evi-

dence in the US pointed out that almost all compatible donor kidneys have similar

longevity (Gjertson and Cecka, 2000; Delmonico, 2004). Moreover, ranking compati-

ble donors to determine a weak or strict preference list was not considered an ethical

practice by Delmonico.

As a negative side effect of Delmonico’s modeling preferences, by only consid-

ering indifferences among compatible kidneys, compatible pairs no longer had any

incentive to participate in the exchange.

In response to these requests by Delmonico as prerequisites for partnering with

their team of market designers, Roth, Sönmez, and Ünver (2005b) formulated a model

with the following features:

• Only two-way paired exchanges are allowed.
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• Patients are indifferent over compatible donors.

• Patients with a compatible donor do not participate in the exchange.

• Deceased-donor chains are not allowed.

Thanks to Roth, Sönmez, and Ünver (2005b), Dr. Francis Delmonico and the New

England Organ Bank agreed to adopt a priority mechanism incorporating only two-

way exchanges without any deceased-donor chains in an agreement reached in 2005

with the market designers Alvin Roth, Tayfun Sönmez, and Utku Ünver. Patients

with compatible pairs did not participate in exchanges from the start. As a result,

the market designers and Francis Delmonico founded the New England Program for

Kidney Exchange (NEPKE) (cf. Roth, Sönmez, and Ünver, 2005a).

2.5 Two-way Kidney Exchange with Compatibility-based

Preferences

In this subsection, we present the model of Roth, Sönmez, and Ünver (2005b),

which paved the way for NEPKE, the world’s first kidney exchange program utiliz-

ing tools from market design and optimization. This model’s game theoretic back-

ground and its relationship to graph theory were covered in Chapter 1, Section 2 as

the bilateral exchange model with compatibility-based preferences. Here, we intro-

duce its more applied version and discuss its relevant features. Roth, Sönmez, and

Ünver (2005b) built this model by generalizing a paper by Bogomolnaia and Moulin

(2004) on two-sided matching and proposing a practical deterministic mechanism that

became the building block of New England’s kidney exchange mechanism.

A two-way (or pairwise) kidney exchange problem with compatibility-based preferences is

a list
[

P, Ω, ≿C, ne = 2
]

such that

• There are no altruistic donors (i.e., A = ∅), and deceased-donor chains are not

allowed. As a result, both parameters na and nd are set to 0 and omitted from

the problem.

• For each patient p ∈ P, the relation ≿C
p represents a compatibility-based (or di-

chotomous) preference relation over paired donors ∪p∈PΩp and remaining un-

matched ∅.13

These preferences lead to three indifference classes

1. C
[
≿C

p
]
=

{
d ∈ ⋃

r∈P Ωr : d ≻p ∅
}

,

2. {∅}, and

3. I
[
≿C

p
]
=

(⋃
r∈P Ωr

)
\ C

[
≿C

p
]
,

13Since deceased-donor chains are not allowed, option w is not feasible. Alternatively, we could define
option w to fit this model exactly into the general model’s framework in Section 2.2 and declare that w is
unacceptable for each patient.
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with the following properties:

1. For each d ∈ C
[
≿C

p
]

and d′ ∈ I
[
≿C

p
]
, d ≻p ∅ ≻p d′.

2. For each d, d′ ∈ C
[
≿C

p
]
, d ∼p d′.

3. For each d, d′ ∈ I
[
≿C

p
]
, d ∼p d′.

Let PC be the set of compatibility-based preference profiles.
[

P, Γ,PC, ne = 2
]

denotes a two-way kidney exchange environment with compatibility-based preferences.

Let M be the set of matchings. Since ne = 2 and deceased-donor chains are not

feasible, each matching has a representative graph consisting only of two-way ex-

changes.

Let π be a priority order over patients. For notational convenience, relabel the

patients such that

π = p1 − p2 − . . . − p|P|.

We next present the mechanism adopted by NEPKE, the priority mechanism (Roth,

Sönmez, and Ünver, 2005b), which is equivalent to the matching matroid greedy al-

gorithm as discussed in Chapter 1, Section 2.

Priority mechanism induced by π.

Step 0. Let M0 ⊆ M be the set of all individually rational matchings.

Step k. (k ≥ 1) If there exists some matching µ ∈ Mk−1 such that µ(pk) ̸= ∅ then let

Mk = {µ ∈ Mk−1 : µ(pk) ̸= ∅},

otherwise, let

Mk = Mk+1.

Terminate the algorithm if k = |P|. Otherwise, continue with Step k+1.

The algorithm’s outcome is a matching in set M|P|. Each matching in this set

matches the same set of patients that we refer to as Iπ ⊆ I.

Roth, Sönmez, and Ünver (2005b) also shows that the set Iπ can be constructed

in polynomial time, without the need of constructing the sequence of matching sets

M0,M1, . . . ,M|P| (also see Chapter 1, Section 2).

The following result shows a close connection between the maximum number of

transplants achievable and Pareto efficiency:

Proposition 1 (Roth, Sönmez, and Ünver, 2005b) In a two-way exchange problem with
compatibility-based preferences, the same number of patients receive a transplant in every
Pareto-efficient and individually rational matching.

One way to maximize the number of transplants with only two way exchanges is
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through priority mechanisms.

Theorem 5 (Roth, Sönmez, and Ünver, 2005b) In a two-way exchange problem with
compatibility-based preferences, any priority mechanism is Pareto efficient and individually
rational.

Moreover, incentives are aligned well in the priority mechanisms for patients to

reveal both their preferences and paired-donor sets truthfully:

Theorem 6 (Roth, Sönmez, and Ünver, 2005b) In a two-way exchange environment
with compatibility-based preferences, any priority mechanism is strategy-proof.

Importantly, however, Proposition 1 no longer holds when three-way exchanges

are also allowed, as the following example demonstrates:

Example 1 Consider a scenario where the maximum exchange size is ne = 3. Let’s examine
a problem with 4 patients, denoted as p1, p2, p3, p4. Each patient pk is paired with a single
donor dk. Patient p1 has blood type A, and donor d1 has blood type O, but they are medically
incompatible due to tissue-type incompatibility. Patient p1 is tissue-type incompatible with
all other donors, and no other patient has tissue-type incompatibility with any of the donors.
All other patients, however, are blood type incompatible with their paired donors. Specifically,
patient p2 has blood type O with a blood-type A paired donor d2, patient p3 has blood type
B with a blood-type A paired donor d3, and patient p4 has blood type O with a blood-type B
paired donor d4.

For this problem, the set of compatible donors for each patient is given as follows:

C
[
≿C

p1

]
= {d2, d3}, C

[
≿C

p2

]
= {d1},

C
[
≿C

p3

]
= {d4}, C

[
≿C

p4

]
= {d1}.

There are two Pareto-efficient and individually rational matchings, given as

µ1 =
{
(p1, p2)

}
and µ2 =

{
(p1, p3, p4)

}
.

Here, µ1 consists of a two-way exchange, (p1, p2), such that each patient is matched with
the paired donor of the other, and µ2 consists of a three-way exchange, (p1, p3, p4) in which
patient p1 is matched with donor d3, patient p3 is matched with donor d4, and patient p4 is
matched with donor of d1. Thus, µ1 matches 2 patients, and µ2 matches 3 patients.

Example 1 underscores that, there may be value for kidney exchange programs to

develop the logistical capacity to perform three-way or larger exchanges.

2.6 The Significance of Three-way Kidney Exchange
While optimizing the number of transplants through two-way kidney exchanges

represents a significant milestone in the development of kidney exchange clearing-

27



houses, the discovery of scenarios akin to Example 1 during a NEPKE match run

revealed that, even in problems with a large number of patients, there might be sub-

stantial marginal gains from the availability of three-way exchanges (Roth, Sönmez,

and Ünver, 2007). We next discuss this model.

Assuming there are no altruistic donors (i.e., A = ∅), we consider a kidney ex-

change problem
[

P, Ω1, ≿C, ne
]

for some maximum exchange size ne ≥ 2, such

that:

• The preference profile ≿C∈ PC is compatibility-based, and deceased-donor

chains and altruistic donor chains are not feasible (i.e., nd = na = 0).

• Each patient p ∈ P is paired with a single donor, so that
∣∣∣Ω1

p

∣∣∣ = 1.

• There are no patients with compatible paired donors.

In this model, assuming away tissue-type incompatibility, we rely solely on blood-

type compatibility for kidney transplants to set an upper bound on the number of

exchanges that can be employed for different ne.

When describing a patient p and their paired donor dp, we represent them by their

blood types as X − Y, where:

• X denotes the blood type of patient p,

• Y denotes the blood type of donor dp.

We denote the number of type X − Y patient-donor pairs in the problem as #(X − Y).
To establish the desired upper bounds, we make four assumptions. The first as-

sumption enables us to focus on only the blood types of patients and their donors.

Assumption 1 (Upper bound assumption) No patient is tissue-type incompatible with
another patient’s donor.

Recall that there are four blood types: type O, which can donate to all types; types

A and B, which can donate to their own type and type AB; and type AB, which

can only donate to type AB. Thus, a patient with a blood-type compatible donor

participates in the exchange only when their donor is tissue-type incompatible with

them. On average, this occurs with a frequency of 10 − 15% given a random patient

and a random donor. On the other hand, a patient with a blood-type incompatible

donor always needs to participate in an exchange to receive a transplant. Therefore,

the following assumption typically holds in a relatively large patient set P:

Assumption 2 (Large Population of Incompatible Patient-Donor Pairs) Regardless
of the maximum number of pairs allowed in each exchange, pairs of types O − A, O − B,
O − AB, A − AB, and B − AB are on the long side of the exchange in the sense that at least
one pair of each type remains unmatched in each individually rational matching.

Based on this assumption of a large population, we refer to pair types O − A,
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O − B, O − AB, A − AB, and B − AB as underdemanded types. Conversely, we refer

to their reciprocal types A − O, B − O, AB − O, AB − A, and AB − B as overdemanded
types.

An Upper-bound to the Number of Patients Matched under Two-way Ex-
changes. We first establish an upper bound to the number of patients who can ben-

efit from two-way exchanges under Assumptions 1 and 2.

Proposition 2 (Roth, Sönmez, and Ünver, 2007) Consider a kidney exchange problem[
P, Ω1, ≿C, ne

]
with compatibility-based preferences obeying Assumptions 1 and 2. Sup-

pose the maximum paired exchange size is ne = 2. Then, the maximum number of patients
who can be matched under a feasible matching is:

2
(

#(A-O) + #(B − O) + #(AB − O) + #(AB − A) + #(AB − B)
)

+
(

#(A − B) + #(B − A)−
∣∣∣#(A − B)− #(B − A)

∣∣∣)
+2

(⌊
#(A − A)

2

⌋
+

⌊
#(B − B)

2

⌋
+

⌊
#(O − O)

2

⌋
+

⌊
#(AB − AB)

2

⌋)
.

This result is easy to see, as the highest benefit from two-way exchanges can be

obtained by matching X −Y type pairs with their opposite Y − X pairs. Thus, patients

with the same blood type as their donors—tissue-type incompatible with their own

donors but not with any other donor according to Assumption 1—can all be matched

if their number is even; otherwise, one patient remains unmatched (hence, we use the

integer floor operator ⌊·⌋ in the expression).

Gains from Three-way Exchanges. As illustrated earlier by Example 1, match-

ing X − Y type pairs with their opposite Y − X pairs may not maximize the number

of matched patients when three-way exchanges are allowed in addition to two-way

exchanges (i.e., ne = 3). We reinforce this observation with a more elaborate example:

Example 2 Consider a population of 17 incompatible patient-donor pairs. There are 11 pairs
of patients who are blood-type incompatible with their donors, with types

O− A, O− A, O− B, A− B, A− B, A− B, A− B, B− A, A− AB, B− AB, and B− AB,

and, 6 pairs who are tissue-type incompatible with their donors, with types

A − A, A − A, A − A, B − O, AB − O, and AB − A.

If only two-way exchanges are possible, i.e., ne = 2, at most 10 patients could be matched in
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three two-way paired exchanges written in terms of the blood types of pairs as

µ ne=2 =
{
(A− B, B− A), (A− A, A− A), (B−O, O− B), (AB− A, A− AB), (AB−O, O− A)

}
.

If three-way exchanges are also feasible (i.e., ne = 3), 14 out of 17 patients could be matched
in 3 paired exchanges as:14

µ ne=3 =

{
(A − B, B − A), (A − A, A − A, A − A), (B − O, O − A, A − B),

(AB − A, A − B, B − AB), (AB − O, O − B, B − AB)

}
.

Observe that three-way exchanges allow:

1. an odd number of A − A pairs to be transplanted (instead of only an even number
with two-way exchanges),

2. a B −O and an AB − A pair each to facilitate three transplants rather than only two,
given that there are more A − B pairs than B − A,

3. an AB − O pair to facilitate three transplants rather than only two.

This helps an additional 4 patients receive a transplant.

The insight of the example can be generalized to establish the marginal impact of

overdemanded type pairs when three-way exchanges are also feasible (see Figure 11).

We make two additional assumptions to present the next result. Assumption 3

is not necessary for any result; it is assumed simply for notational convenience. As-

sumption 4 assumes away some very rare situations, also simplifying the expressions

for upper bounds.

Assumption 3 #(A − B) ≥ #(B − A).

Assumption 4 There is either no type A − A pair or there are at least two of them. The same
is also true for each of the types B − B, AB − AB, and O − O.

Proposition 3 (Roth, Sönmez, and Ünver, 2007) Consider a kidney exchange problem[
P, Ω1, ≿C, ne

]
with compatibility-based preferences obeying Assumptions 1-4. Suppose

the maximum paired exchange size is ne = 3. Then, the maximum number of patients who

14Here donation direction is rightward for notational convenience, as opposed to leftward in our algo-
rithmic graphs consisting of only patients.
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can be matched under a feasible matching is:

2
(

#(A − O) + #(B − O) + #(AB − O) + #(AB − A) + #(AB − B)
)

+
(

#(A − B) + #(B − A)−
∣∣∣#(A − B)− #(B − A)

∣∣∣)
+
(

#(A − A) + #(B − B) + #(O − O) + #(AB − AB)
)

+#(AB − O)

+min
{(

#(A − B)− #(B − A)
)

,
(

#(B − O) + #(AB − A)
)}

.

Under Assumptions 1 and 4 only, compared to using only two-way exchanges, the

marginal impact of utilizing three-way exchanges is as follows:

I. An AB − O pair helps us to match one extra underdemanded type pair in one

of two alternative ways (see Column I of Figure 11).

IIa. For each A − B pair in excess of B − A pairs, a B − O or AB − A pair helps us

match this pair additionally (see Column II of Figure 11).

IIb. For each B − A pair in excess of A − B pairs, on the other hand, an A − O and

AB− B pair helps us match this pair additionally (see Column III of Figure 11).

Even though AB−O type pairs are rarely seen in real-life applications, this impact

would rarely diminish even in a large market, as there is often an empirical difference

between numbers of A − B and B − A pairs.15

15The reasons for this asymmetry include differences in the prevalence of these two blood types among
different races, variations in exposure to kidney disease across racial groups, and the fact that patients often
have multiple donors. For the case of US, some relatively large hospital samples show that A − B pairs are
observed more frequently than B − A pairs.
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Figure 11: Possible gains from utilizing three-way paired exchanges.

To summarize, the marginal number of transplants that the availability of three-

way kidney exchanges brings over two-way exchanges is given as:

#(A − A) + #(B − B) + #(O − O) + #(AB − AB)

−2
(⌊

#(A − A)

2

⌋
+

⌊
#(B − B)

2

⌋
+

⌊
#(O − O)

2

⌋
+

⌊
#(AB − AB)

2

⌋)
+#(AB − O)

+min
{(

#(A − B)− #(B − A)
)

,
(

#(B − O) + #(AB − A)
)}

.

Gains from Four-way Exchanges. The benefits from larger exchanges largely

diminish after three-way exchanges. Allowing for four-way exchanges only helps

us through AB − O pairs (see Figure 12). As seen in Column I, when not all A − B
pairs can be matched through two-way and three-way exchanges, the AB − O pair

can help match an additional A − B pair, in addition to the two underdemanded type

pairs that can be matched in a three-way exchange. Alternatively, an AB − O pair

can also facilitate an additional transplant through a four-way exchange when B − A
pairs are in excess (see Column II).

AB − O pairs are usually rare. Not only is AB the rarest blood type (accounting

for only around 4% of the population in the US), but AB − O pairs are also blood-
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type compatible. Therefore, unless they participate in an exchange due to altruistic

reasons, their participation is tied to tissue-type incompatibility, which occurs only

10 − 15% of the time. Hence, the predicted gain from four-way exchanges is marginal

in a large exchange pool.
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Figure 12: Possible gains from utilizing four-way exchanges.

Proposition 4 (Roth, Sönmez, and Ünver, 2007) Consider a kidney exchange problem[
P, Ω1, ≿C, ne

]
with compatibility-based preferences obeying Assumptions 1-4. Suppose

the maximum paired exchange size is ne = 4. Then, the maximum number of patients who
can be matched under a feasible matching is:

2
(

#(A − O) + #(B − O) + #(AB − O) + #(AB − A) + #(AB − B)
)

+
(

#(A − B) + #(B − A)−
∣∣∣#(A − B)− #(B − A)

∣∣∣)
+
(

#(A − A) + #(B − B) + #(O − O) + #(AB − AB)
)

+#(AB − O)

+min
{(

#(A − B)− #(B − A)
)

,(
#(B − O) + #(AB − A) + #(AB − O)

)}
.

Therefore, in the absence of tissue-type incompatibilities between patients and other patients’
donors, the marginal effect of four-way kidney exchanges is bounded above by the rate of the
very rare AB-O type.

We extend Example 2 to include gains from four-way exchanges
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Example 3 Consider the problem in Example 2. When ne = 4, we can create the following
matching that maximizes the number of patients matched.

µ ne=4 =

{
(A − B, B − A), (A − A, A − A, A − A), (B − O, O − A, A − B),
(AB − A, A − B, B − AB), (AB − O, O − A, A − B, B − AB)

}
.

matching 15 patients instead of the 14 matched when ne = 3.

Finally, under Assumptions 1, 2, and 4, the following theorem shows that there are

no further gains from conducting exchanges larger than four-way.

Theorem 7 (Roth, Sönmez, and Ünver, 2007) Consider a kidney exchange problem[
P, Ω1, ≿C, ne

]
with compatibility-based preferences obeying Assumptions 1, 2, and 4. Sup-

pose the maximum paired exchange size is unrestricted, i.e., ne = |P|. Let µ be any Pareto-
efficient matching. Then there exists a Pareto-efficient matching ν, which consists only of
two-way, three-way, and four-way exchanges and matches the same patients as matching µ

does.

As an implication, since any matching that maximizes the number of transplants is

Pareto efficient, it is possible to construct another matching that maximizes the num-

ber of transplants by matching the same set of patients and utilizing only two-way,

three-way, and four-way exchanges.

Subsequent simulations in Roth, Sönmez, and Ünver (2007) and Saidman et al.

(2006) showed that in a random population with 100 incompatible patient-donor pairs

from the US, assuming each paired donor is blood-type independent from their pa-

tient, approximately 49.7% of them could be matched using only two-way exchanges

(when ne = 2), while about 59.7% of them can be matched with two- and three-way

exchanges (when ne = 3), and 60.35% of them can be matched with two-, three-, and

four-way exchanges (when ne = 4). On the other hand, when ne = |P|, so that ex-

change sizes are not restricted, approximately 60.4% of them can be matched. Hence,

three-way exchanges increase the scope of kidney exchange by 20%, while the utiliza-

tion of larger-size exchanges leads to marginal increases as predicted by the formulas

provided in Propositions 2-4 and Theorem 7. Also, the upper-bound formulas pro-

vided in the propositions yield close numbers to the simulation averages, especially

when ne ≥ 3.

2.6.1 The Integration of Larger-Size Exchanges to Kidney Exchange

Following Roth, Sönmez, and Ünver (2007) and Saidman et al. (2006) underscor-

ing the importance of 3-way exchanges, NEPKE incorporated three-way paired ex-

changes in addition to two-way paired exchanges in its mechanism.

Concurrently, an Ohio-based consortium, which had been utilizing an algorithm
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for organizing kidney exchanges, albeit suboptimal, joined forces with Roth, Sönmez,

and Ünver, leading to the establishment of the Alliance for Paired Donation (APD)

under the leadership of Dr. Michael Rees (Anderson et al., 2015). From the outset,

they implemented three-way exchanges in addition to two-way exchanges, and occa-

sionally pursued four-way exchanges.

The mechanisms designed for NEPKE and APD by the market designers and

mechanisms used by numerous other exchange programs can be represented as so-

lutions of an integer program (Roth, Sönmez, and Ünver, 2007; Sönmez and Ünver,

2013; Anderson et al., 2015).

Consider a kidney exchange problem
[

P, Ω, ≿C, ne
]

where each patient can have

multiple paired donors, and the preference profile ≿C∈ PC is compatibility-based.

Let Ene denote the set of all individually rational paired exchanges with a size of ne or

less. Define PE ⊆ P as the set of patients matched in any exchange E ∈ Ene . We assign

a positive weight WE > 0 to each individually rational paired exchange E ∈ Ene . The

integer programming problem is formulated as:

max
X∈{0,1}|Ene |

∑
E∈Ene

WEXE subject to ∑
E∈Ene : p∈E

XE ≤ 1 ∀ p ∈ PE (1)

A solution vector X∗ = (X∗
E)E∈Ene is associated with an outcome matching µ ∈ M

such that

µ =
{

E ∈ Ene : X∗
E = 1

}
.

Exogenous or random tie-breakers can also be employed to choose a unique matching

outcome among multiple solutions that may solve this problem.16

The NEPKE and APD mechanisms differ in how they set the weight profile

(WE)E∈Ene . Let E ∈ Ene have size k for some k ≤ ne. The exchange weight WE was

determined as follows in NEPKE and APD, respectively:

NEPKE. Each patient p ∈ P is assigned to a priority tier t(p) ∈ {1, 2, . . . T} for some

positive integer T upper bound. For example, children and patients who had donated

one of their kidneys in the past are given a higher priority than the rest. Each priority

16This optimization can be solved in polynomial time in the number of variables when ne = 2 by the
blossom algorithm of Edmonds (1965) and when ne = |P| using the maximum flow–minimum cut algo-
rithm of Edmonds and Karp (1972). Otherwise, it is NP-complete (Abraham, Blum, and Sandholm, 2007),
i.e., its worst-case solution time is an exponential function of the number of the variables if P ̸= NP (using
the computer science jargon on algorithmic complexity). In this case, reasonable problem sizes can readily
be solved by commercially available or public-domain integer programming software. Abraham, Blum,
and Sandholm (2007) and Biró, Manlove, and Rizzi (2009) introduce fast tailored algorithms for the integer
programming problem. Anderson et al. (2015) also presents a heuristically fast method that enables solving
this problem without constructing set Ene in many practical instances.
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tier t is associated with a positive weight Wt such that

Wt

Wt+1
> |P| ∀ t < T.

The weight of exchange E is set to

WE = ∑
p∈PE

Wt(p).

When each patient has a distinct priority tier, any solution matches the same set of pa-

tients, and the integer program finds an outcome of a priority mechanism for maximum

exchange size ne. It is induced by priority order π = p1 − p2 − . . . − p|P| where for

each j, patient pj is patient in the priority-tier j. This mechanism is the generalization

of the priority mechanism described in Section 2.4 for maximum paired exchange size

2.

APD. The weight of the k-way paired exchange E is determined as

WE = k,

which is the number of patients in E. In this case, any solution of the integer pro-

gram (1) corresponds to a matching that maximizes the number of transplants. A

tie-breaker was used to choose among multiple matchings that may maximize the

number of transplants: a maximum matching that maximizes the sum of a secondary

set of patient-specific exogenously given weights was chosen.

We provide additional insights into the solutions of this integer program.

Theorem 8 Consider a kidney exchange problem
[

P, Ω, ≿C, ne
]

with compatibility-based
preferences. Suppose that the maximum paired exchange size is ne ≤ |P|. A solution matching
of the integer program (1) is Pareto efficient for a given profile of positive exchange weights
(WE)E∈Ene if there exists a positive patient-specific weight profile (Wp)p∈P such that for each
E ∈ Ene ,

WE = ∑
p∈PE

Wp.

Conversely, for any Pareto efficient matching µ, there exists a profile of exchange weights
(WE)E∈Ene satisfying the above additivity condition such that all solutions of the integer pro-
gram (1) matches exactly all patients matched in µ.

The first statement follows because if an outcome matching µ of the integer pro-

gram were Pareto dominated by another matching ν, as the set of the patients matched
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under µ is a proper subset of patients matched under ν,

∑
E∈µ

WE = ∑
p∈P : µ(p) ̸=∅

Wp < ∑
p∈P : ν(p) ̸=∅

Wp = ∑
E∈ν

WE,

contradicting µ is an outcome matching of the integer program (1). The second state-

ment can be proven by constructing patient-specific weights as follows for a given

Pareto-efficient matching µ: For each p ∈ P, let

Wp =

{
1 if µ(p) ̸= ∅

ε if µ(p) = ∅

such that 0 < ε < 1
|P| . Then µ is a solution matching of the integer program (1), as

otherwise, any matching ν that achieves a higher total weight would have to match

all patients matched in µ and at least one additional patient. Matching ν Pareto domi-

nates µ, leading to a contradiction. Thus, all solutions of the integer program (1) have

the same total weight that is achieved by µ. By construction of the weights, then the

same patients matched under µ are matched in all solution matchings.

Therefore, the initially adopted NEPKE and APD mechanisms are both Pareto ef-

ficient as NEPKE uses a positive priority-tier-based weight for each patient, APD uses

weight 1 for each patient, and the resulting exchange weights are additive of these

weights.

As a notable contribution to the kidney exchange model with compatibility-based

preferences, Hatfield (2005) finds necessary and sufficient conditions for strategy-

proofness of a mechanism in the compatibility-based preference environment when

the maximum paired exchange size can be arbitrary. This paper also proves the fol-

lowing result:

Theorem 9 (Hatfield, 2005) Consider a kidney exchange environment
[

P, Ω, PC, ne
]

with compatibility-based preferences. Suppose that the maximum paired exchange size is
ne ≤ |P|. Then, any priority mechanism is strategy-proof.

2.7 Altruistic Donor and Deceased-Donor Chains
Besides adopting a structured, optimization-based matching approach, utiliz-

ing three-way exchanges in addition to two-way exchanges has been instrumental

in expanding the scope of kidney exchange. Partnerships between market design

economists and members of the transplantation community have also paved the way

for more elaborate strategies in kidney exchange.

One significant advancement proposed by Roth et al. (2006) introduced the con-

cept of altruistic donor chains, where transplants could be organized sequentially:

The head patient of the chain would first receive a transplant from an altruistic donor.
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Then, a paired donor of this patient would donate to the second patient in the chain.

Subsequently, a paired donor of the second patient would donate to the third, and

so on. In this chain, no patient and their paired donor would be harmed in case

some other donor reneges, as their paired donor would not donate before the patient

receives a transplant. Even if a donor reneges and opts out of the transplant, the re-

maining patients in the chain would retain their paired donors for a future exchange.

One might question the scope of this innovation, given that altruistic donors are

perceived to be rare due to the costly nature of kidney donation. However, as the

prevalence of kidney exchanges increased worldwide, more individuals in the US

started stepping forward as altruistic donors, providing an opportunity to combine

altruistic donations with kidney exchanges.

Traditionally, though not required by legislation, the gift of a kidney from altruistic

donors would be treated similarly to deceased donors: their donated kidney would go

to a patient on the deceased-donor waitlist determined by the point system utilized for

the waitlist. However, there is ample reason to consider establishing altruistic donor

chains akin to those proposed for deceased-donor chains by Roth, Sönmez, and Ünver

(2004). Moreover, these chains could be perceived as ethically more acceptable, pri-

marily because altruistic donors aren’t subject to the same legislative allocation rules

governing deceased-donor kidneys. Additionally, all patients within the chain, in-

cluding the initial recipient, would receive a comparable living donor—an advantage

not present in a deceased-donor chain. Notably, case studies and simulation work ex-

ploring simultaneous altruistic donor chains were documented by Montgomery et al.

(2006), termed “domino paired donation”. In this model, the donor of the last recipi-

ent contributes back to the waitlist.

The altruistic donor chain expands if the tail donor’s kidney does not immediately

return to the waitlist and the tail donor waits to initiate a new chain in a future itera-

tion of the problem. Such a tail donor is called a “bridge donor”. Yet, the risk lies in

any donor in a chain reneging on their promise. Dr. Mike Rees and APD implemented

this concept (Anderson et al., 2015).

There is another upside to utilizing altruistic donors to initiate chains. The idea

of helping several patients may also increase the value of the gift for the donor and

potentially increase the number of altruistic donors.

All mechanisms we introduced so far and the integer program in (1), can incorpo-

rate altruistic donors. Also, all corresponding results except Theorems 3 and 4 and

Corollary 1 hold in the specified environments below. Let A ̸= ∅ and na > 0.

1. The TTCC mechanism for an environment with strict preferences and unre-

stricted cycle and chain sizes
[

P, Ω, A, PS,w, ne = |P|, nd = |P|, na = |P|
]
:
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The TTCC mechanism’s definition is amended as follows:

• Every “w-chain” is replaced by “w-chain or altruistic donor chain” in

the definition.

• When an altruistic donor chain is removed, its altruistic donor is re-

moved from the problem and assigned to the head patient.

• When an altruistic donor chain is fixed, the altruistic donor in the chain

is deemed unavailable, and upon the termination of the algorithm, they

are assigned to the head patient of the altruistic donor chain.

2. The priority mechanism for environment
[

P, Ω, A, PC, ne = 2, na = 1
]
:

This environment is the simplest exchange environment with the shortest al-

truistic donor chains in addition to the smallest paired exchanges. To define

the priority mechanism, each problem is associated with a problem in an aux-

iliary environment without altruistic donors as follows: Let preference profile

≿C∈ PC be fixed:

• Every patient p ∈ P, their donor set Ωp, and preference relation ≿p are

included to the auxiliary problem.

• Each altruistic donor a ∈ A is paired with an auxiliary patient pa with

donor set Ωpa = {a}. The auxiliary patient is endowed with a prefer-

ence relation ≿C
pa

such that

C
[
≿C

pa

]
=

⋃
p∈P

Ωp.

That is, each auxiliary patient finds all donors acceptable, with the ex-

ception of altruistic donors of the original problem.

Let P∗ = P ∪ {pa : a ∈ A} be the patient set and [P∗, (Ωp)p∈P∗ , (≿C
p )p∈P∗ , ne =

2]. We define a priority mechanism induced by a priority order π over P as fol-

lows: Construct the auxiliary problem and find a matching using the priority

mechanism of the auxiliary environment induced by a priority order π∗ such

that

(a) patients in P are ordered using π at the beginning,

(b) auxiliary patients are ordered at the end in an arbitrary order.

Moreover, it is possible to minimize the use of altruistic donors subject to gen-

erating a priority matching (see Sönmez and Ünver, 2014 how this can be done

in a related environment.)

3. The integer programming solution for an environment with arbitrary maxi-

mum paired exchange and altruistic donor chain sizes,
[

P, Ω, A, PC, ne, na
]
:

Let Ene,na be the set of all feasible cycles and altruistic donor chains given a pref-

erence profile ≿C∈ PC. In the formulation of integer program (1), we replace
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Ene by Ene,na .

At present, a significant fraction of kidney exchange transplants in the US are con-

ducted through altruistic donor chains (Agarwal et al., 2019), as they are easier to

organize than paired exchanges. Additionally, occurrences of donors reneging or fail-

ing to donate for other reasons are exceedingly rare. According to Cowan et al. (2017),

out of 344 chains they reported, only 20 were broken, with only 6 due to reneging and

the rest due to other reasons.

Although not as prevalent as altruistic donor chains, the concept of non-

simultaneous deceased-donor chains is also feasible, as discussed by Roth et al. (2006).

Despite ethical concerns hindering their wide-spread adoption in the US, these chains

found viability in countries where altruistic donors were scarce, such as in Italy (Fu-

rian et al., 2020).17

2.8 Worldwide Market Design Initiatives for Kidney Ex-

change
The launch of the UNOS National Kidney Paired Donation Program in 2010

marked the integration of NEPKE into this program, effectively transitioning NEPKE

into the US National Program. Concurrently, the National Kidney Registry (NKR), an

independent non-profit based in New York, solidified its position as the largest kid-

ney exchange program in both the US and the world. As of November 2023, NKR

holds the top position, with APD trailing as second in the US. The UNOS Program

ranks as the third-largest kidney exchange program in the US.

While our discussion has primarily centered on kidney exchange practices within

the US, it’s important to note that research and implementation of kidney exchange

programs have gained significant traction globally. Following the establishment of

NEPKE in the US, countries across Europe, Asia, and Australia have seen notable

progress in this field. Despite this global momentum, there are still countries, such

as Germany and Japan, that have yet to fully embrace kidney exchange programs.

Korea, once a leader in the practice of kidney exchange, has shifted its focus towards

incompatible transplants.18 Germany prohibits kidney exchange, permitting trans-

17Deceased-donor chains are already incorporated in the initial model of Roth, Sönmez, and Ünver (2004)
and TTCC mechanism is tailored for their use. A priority mechanism can also be used here, as we proposed
for altruistic donors, by treating w like an altruistic donors and pairing it with |P| different auxiliary pa-
tients. The integer programming solution is also straightforward to generalize. Yilmaz (2011) proposes
an egalitarian lottery mechanism when unrestricted length deceased-donor chains and paired exchange
sizes are feasible. They consider the deceased-donor option w as an inferior option to living donors. Also
see Cheng and Yang (2021) for the characterizations of the gains from larger exchanges when chains are
possible in large kidney exchange pools, extending the analysis in Roth, Sönmez, and Ünver (2007).

18See Chun, Heo, and Hong (2021) for a market design study exploring kidney exchange when blood-
type incompatible and tissue-type incompatible transplants are feasible, aiming to minimize them. A sim-
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plants only through relatives of patients, while Japan’s reluctance is rooted in cultural

factors within the transplant community.

On a positive note, several European countries have thriving kidney exchange pro-

grams. For example, the UK, which pioneered the use of market design techniques

in Europe (Manlove and O’Malley, 2012), as well as programs in Scandinavia (An-

dersson and Kratz, 2019; Kratz, 2021; Weinreich et al., 2023), and The Netherlands,

which was one of the first European countries to implement such programs. While

these European programs may operate on a more modest scale compared to the US,

they continue to facilitate kidney exchange transplants successfully. Most of these

programs utilize various integer-programming-based schemes, primarily focusing on

limited-size paired exchanges. Notably, Italy has implemented deceased-donor chains

(Furian et al., 2020), a departure from the typical scheme. Further insights into these

European developments can be found in the works of Biró et al. (2019) and Biró et al.

(2021), which explore these initiatives from a market design perspective.

2.9 Frictions that Potentially Increase the Scope of Kidney Ex-

change
The primary frictions in kidney transplantation have long been recognized as

blood-type incompatibility and tissue-type incompatibility. The kidney exchange

paradigm has leveraged some of these frictions notably tissue-type incompatibility.

Typically, patients with compatible and highly sought-after blood-type donors rarely

participate in kidney exchange programs. However, in such cases, the occurrence of

less common tissue-type incompatibility within these pairs can be leveraged to assist

unfortunate blood-type incompatible pairs through kidney exchange. As a result, pa-

tients with highly sought-after blood types but tissue-type incompatible donors have

been playing a crucial role in facilitating paired exchanges, as discussed in Section 2.6.

Two innovative ideas, akin to leveraging tissue-type incompatibility, have

emerged in the medical literature. One of these concepts has been embraced as a

more viable and ethical concept, while the other has sparked more controversy.

2.9.1 Leveraging Temporal Incompatibility
The first concept revolves around recognizing temporal incompatibility as a pivotal

factor in kidney transplantation and as a facilitator in kidney exchanges. Veale et

al. (2017) point out that some patients experience declining kidney function but do

not immediately need a kidney transplant. Many of these patients often have older,

compatible paired donors who are willing to donate a kidney. Due to their advanced

ages, these donors have a narrow time window for donation. Veale et al. (2017) report

ilar study by Sönmez, Ünver, and Yilmaz (2018) contrasts the tradeoffs of blood-type incompatible versus
tissue-type incompatible transplants in kidney exchange.
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successful implementation of donor chains initiated by these older donors, who act

like altruistic donors. In return, the patient paired with the older donor is promised a

kidney transplant as a terminal tail patient when they need a kidney transplant.

2.9.2 Leveraging Financial Incompatibility through Global Kidney Ex-
change

On the other hand, a more contentious policy intervention arises from recognizing

financial incompatibility as a barrier to kidney transplantation. The concept of global kid-
ney exchange (Rees et al., 2017), championed by economist Alvin Roth and Dr. Michael

Rees of APD, aims to address the plight of impoverished patients in low and middle-

income countries where kidney transplantation is either prohibitively expensive or lo-

gistically challenging. Despite having a compatible paired donor, such patients often

cannot undergo the transplant operation locally due to financial constraints. Under

global kidney exchange, they can participate in a kidney exchange, with patients in

high-income countries–such as the US–who have incompatible donors. This approach

yields substantial financial savings by eliminating dialysis costs in participating high-

income countries, with these savings then directed toward financing the operation

of the compatible patient-donor pair facing financial hardship in low and middle-

income countries.

Though heavily promoted and organized by APD, since 2015, over the span of

7 years, only 52 such transplants have taken place (Rees et al., 2022), largely due

to significant ethical concerns raised by the medical community regarding this prac-

tice. Ambagtsheer et al. (2020) provides a comprehensive analysis of the opposition to

global kidney exchange. Opposing organizations include the Council of Europe Com-

mittee on Organ Transplantation, the European Union’s National Competent Author-

ities on Organ Donation and Transplantation, and the Declaration of Istanbul Custo-

dian Group against organ trafficking. Most arguments against global kidney exchange

contend that it exploits poor countries and individuals, with assistance to impover-

ished patients coming at the cost of “donated” organs, thereby constituting organ

trafficking and increasing the risk of organs being sourced from paid donors. Fur-

thermore, inadequate donor and patient medical follow-up in their home countries

may pose significant risks to their well-being. As a result, many argue that global

kidney exchange undermines various ethical norms, a stance echoed by Dr. Francis

Delmonico (Delmonico and Ascher, 2017), a pivotal figure in the initial collaboration

between market designers and medical doctors, who also led the statement of The

Declaration of Istanbul Custodian Group (2020) on the issue.
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2.10 How to Maximize the Benefit from Kidney Exchange?
Before concluding this section, we discuss two potential interventions that could

significantly enhance the welfare gains from kidney exchange.

The first proposal involves implementing a token point system to address ineffi-

ciencies stemming from misaligned incentives among transplant centers.

The second intervention focuses on incentivizing compatible pairs to participate

in exchange programs. This innovation aims to mitigate the efficiency loss caused by

donors with highly sought-after blood types donating to their paired patients with

less sought-after blood types (e.g., donors with blood type O donating to patients

with blood type A), thereby substantially expanding the scope of kidney exchange.

2.10.1 Addressing Inefficiencies in Collaborative Kidney Exchange Pro-
grams

Large-scale kidney exchange programs usually include many transplant centers as

member institutions. Transplant centers submit the database of their eligible patients

and donors to the centralized clearinghouse of the collaborative exchange program.

Then, the exchange program executes a mechanism to find a match. The resulting

transplants are often carried out at the patient’s home center. Donors either travel or

their kidney grafts are transported to the home center of the receiving patient.

Kidney exchange programs exhibit fragmentation, particularly in the US: there

are multiple large-scale nationwide programs such as the NKR, APD, and UNOS Na-

tional Program. Additionally, many large individual transplant centers are member

institutions in one or more of these collaborative exchange programs, and they each

also conduct kidney exchanges internally to match their own patients.

A recent study by Agarwal et al. (2019) showed that these centers tend to partic-

ipate in collaborative exchange programs only with their more challenging-to-match

patients, those who cannot be matched internally. This partial participation practice

leads to substantial inefficiencies.

Understanding the incentives driving transplant centers’ participation decisions is

crucial. Typically, each transplant center aims to maximize the number of its patients

who receive transplants.19 Unfortunately, there is no collaborative kidney exchange

mechanism that maximizes the number of transplants and makes full participation

a dominant strategy for each transplant center as the following example from 2005c

demonstrates:

Example 4 Suppose there are two centers, A and B, that are members of a collaborative kid-
ney exchange program. Each center aims to maximize the number of its patients who receive

19Both due to altruistic reasons and their revenues being tied to the transplants they conduct.
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transplants. Center A has four patients with paired donors pA
1 , pA

2 , pA
3 , and pA

4 , while Cen-
ter B has three patients with paired donors pB

1 , pB
2 , and pB

3 . The set of individually rational
exchanges is as follows (the patients in Center B are shown in lighter gray) (see Figure 13):

pA1

pB1

pA2 pA3

pB2

pA4

pB3

Center A

Center B

Figure 13: Exchanges in Example 4. With only two-way exchanges feasible, each undirected edge
of the graph represents an individually rational donor exchange.

E =
{
(pB

1 , pA
1 ), (pA

1 , pA
2 ), (pA

2 , pA
3 ), (pA

3 , pB
2 ), (pB

2 , pB
3 ), (pB

3 , pA
4 )

}
.

Each center can internally match only two of its patients without participating in the central-
ized exchange program. Center A can conduct internally exchange (pA

1 , pA
2 ) and Center B

can conduct (pB
2 , pB

3 ).
Suppose we use a centralized exchange mechanism that maximizes the number of trans-

plants (simply, a maximum mechanism). If each center truthfully reports their patients and
paired donors, there are two maximum matchings.

µ1 =
{
(pA

1 , pA
2 ), (pA

3 , pB
2 ), (pB

3 , pA
4 )

}
, µ2 =

{
(pB

1 , pA
1 ), (pA

2 , pA
3 ), {pB

2 , pB
3 )
}

.

Thus, any maximum mechanism chooses either µ1 or µ2 for this problem. Of the two, matching
µ1 leaves one patient from Center B unmatched, while matching µ2 leaves one patient from
Center A unmatched.

If it chooses µ1, Center B can manipulate it by reporting to the system only pB
1 and inter-

nally matching pB
2 , pB

3 with each other: In this case the centralized mechanism would choose

µ′ =
{
(pB

1 , pA
1 ), (pA

2 , pA
3 )

}
as a result all three patients of Center B would be matched (see Figure 14).

If it chooses µ2, Center A can manipulate it by reporting to the system only pA
3 , pA

4 and
internally matching pA

1 , pA
2 with each other: In this case the centralized mechanism would

44



pA1

pB1

pA2 pA3

pB2

pA4

pB3

Center A

Center B

=⇒

pA1

pB1

pA2 pA3

pB2

pA4

pB3

Center A

Center B

Figure 14: In Example 4, when µ1 in the first panel is chosen then Center B can manipulate by
withholding pairs pB

2 and pB
3 as seen in the second panel.

choose
µ′′ =

{
(pA

3 , pB
2 ), (pB

3 , pA
4 )

}
as a result, all four patients of Center A would be matched (see Figure 15).

pA1

pB1

pA2 pA3

pB2

pA4

pB3

Center A

Center B

=⇒

pA1

pB1

pA2 pA3

pB2

pA4

pB3

Center A

Center B

Figure 15: In Example 4, when µ2 in the first panel is chosen then Center A can manipulate by
withholding pairs pA

1 and pA
2 as seen in the second panel.

Agarwal et al. (2019) utilizes empirical evidence to demonstrate the widespread

nature of the fragmentation problem within kidney exchange programs in the US.

They illustrate that centers routinely conduct internal within-center exchanges, com-

promising efficiency in the process. Notably, within-center exchanges account for 62%

of kidney exchange transplants in the US. In contrast, the collaborative exchange pro-

grams predominantly facilitate exchanges across centers, targeting harder-to-match,

highly sensitized patients, differing significantly from the characteristics of within-

center exchanges. Additionally, more than 20% of O blood-type donors are matched

with non-O blood-type patients in within-center exchanges, surpassing the rate seen

in exchanges organized by collaborative programs. This is given as evidence of the
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inefficiency of within-center exchanges.

To incentivize truthful participation in collaborative exchange programs, they pro-

pose a token-money-based system where token rewards for each patient-donor pair

transplanted within the collaborative system are tied to the concept of marginal product
of patient-donor pairs, inspired by the theory of the firm within general equilibrium

theory.20 If a center runs out of its token budget, it cannot submit new pairs to the

system. If one of its easy-to-match overdemanded pair without highly sensitized pa-

tients is matched in the collaborative system, the center earns tokens, while if one of

its difficult-to-match pairs is matched, then the center is charged tokens.21

2.10.2 Incentivizing Compatible Pairs to Participate in Exchange

Patients with compatible donors rarely participate in kidney exchange, as there

may not be a tangible benefit. However, this convention was partly influenced by the

evolving partnership between market designers and members of the transplantation

community. The initial model proposed by Roth, Sönmez, and Ünver (2004) incen-

tivizes compatible pairs to participate by offering them a higher quality donor if they

are matched in an exchange, as discussed in Section 2.3.

However, as highlighted in Section 2.4, this option remained underutilized as the

model with compatibility-based preferences (Roth, Sönmez, and Ünver, 2005b, 2007)

became the cornerstone of real-life exchange systems. This shift was essentially a

prerequisite set by the head of New England Organ Bank, Dr. Francis Delmonico,

for collaborating with our team of market design economists to improve their kidney

exchange program.

As a by-product of this new approach, no naturally induced “biological” scheme

existed for incentivizing compatible patient-donor pairs to participate, leading to al-

20As explained in Section 2.6, an overdemanded type pair, such as an A −O pair, can facilitate the match-
ing of at least one underdemanded type pair, such as an O − A pair. Thus, such an overdemanded type
pair’s marginal product is at least 2 (it can be more larger when three-way exchanges or altruistic donor
chains are routinely practiced). On the other hand, an underdemanded pair, like the O − A pair, is not
needed to facilitate an exchange on the margin, as there are many other pairs of the same type, and they
cannot participate in an exchange without the help of an overdemanded type pair. Thus, an underde-
manded type pair has a marginal product of 0. Leveraging a comprehensive dataset from NKR, Agarwal
et al. (2019) estimate the empirical marginal products of patient-donor pairs. They find inefficiency in the
current system, as the overdemanded type pairs with easy-to-match patients (i.e., with patients who are not
highly sensitized) are not always matched in kidney exchange. However, whenever they are matched, their
marginal product becomes close to 1.7. On the other hand, pairs with highly sensitized patients or under-
demanded types have marginal products close to zero. Their proposed system involves a token reward of
each matched pair i with estimated marginal product MPi and an estimated probability of transplantation
Πi is set to MPi

Πi
− 1. The subtraction by 1 ensures we exclude the pair itself in the reward calculation.

21Besides these two studies, center participation incentives are further studied by Ashlagi et al. (2015)
for worst-case efficiency scenario of strategy-proof mechanisms, Ashlagi and Roth (2014) for providing
an asymptotically Bayesian incentive-compatible and efficient mechanism, Toulis and Parkes (2015) for
analytically characterizing tradeoffs of fragmentation vs centralization in a random graph-based model.
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most negligible participation of compatible pairs. However, a few centers, such as the

Methodist San Antonio Hospital in Texas (Bingaman et al., 2012), continued to include

compatible pairs in their exchanges.

Starting with Roth, Sönmez, and Ünver (2004), many papers in the economics lit-

erature, including Roth, Sönmez, and Ünver (2005a), Nicolò and Rodríguez-Álvarez

(2012), Sönmez and Ünver (2014), Nicolò and Rodríguez-Álvarez (2017), Sönmez and

Ünver (2015), and Sönmez, Ünver, and Yenmez (2020), have considered “biological”

or “institutional” incentive mechanisms to compel compatible pairs to participate in

kidney exchange. The medical community (Veatch, 2006; Kranenburg et al., 2006;

Gentry et al., 2007; Steinberg, 2011; Ferrari et al., 2017) has also found the idea of

including compatible pairs to be plausible and important.

More recently, a new medical technology called eplet matching, which is a more

advanced and accurate version of the older HLA matching technology leveraged in

the simulations of Roth, Sönmez, and Ünver (2004), is introduced for use in kidney

exchange programs. The largest kidney exchange program in the US, NKR, is in-

centivizing compatible patient-donor pairs to participate by promising to find better

matches using this technology.22

Among all the discussed interventions, compatible pair participation is by far the

most important innovation to the current kidney exchange paradigm, with the poten-

tial to increase kidney exchange transplants by 1.6 times its current amount, or 1800

additional transplants per year (Sönmez, Ünver, and Yenmez, 2020).

Sönmez and Ünver (2015) and Sönmez, Ünver, and Yenmez (2020) propose an

“institutional” incentive scheme to encourage the participation of compatible pairs

in kidney exchange. Consider a compatible pair that is “overdemanded,” such as

an A patient with a compatible O paired donor. Under the incentive scheme, if the

pair participates in kidney exchange rather than opting for direct transplantation, the

patient receives priority on the deceased-donor waiting list in case they require a re-

transplant due to graft failure in the future. Therefore, patients from overdemanded

pairs are provided with “insurance” against future graft failure in exchange for a more

efficient matching for their paired donor. Since patients typically lead healthy lives

until their kidney transplant fails, it is likely that they would still be fit to undergo a

22Their webpage reads
“Eplets are small patches of polymorphic amino acids on the surface of HLA antigens. These amino acids are the
targets of HLA antibodies.
While utilizing traditional HLA antibody matching, scientists noticed that some transplanted kidneys were
significantly outperforming their projected survival times. Upon closer investigation, they discovered that these
better-performing kidneys had fewer mismatched HLA eplets.”

citing, Wiebe et al. (2017) on benefits of eplet matching for longer survival of a kidney transplant. See
https://www.kidneyforlife.org/for-centers/about-eplet-matching retrieved on 12-29-2023.
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second transplant. The expected survival period of a successful living donor kidney

transplant is only about 16 years.

The authors employ a continuum large market model and, using numerical cal-

ibration, calculate that an additional 180 transplants would be conducted for every

10% participation of such compatible pairs in exchange in the US per year. Thus,

the participation of even a modest number of compatible pairs in exchange has the

potential to substantially increase the number of kidney transplants.23

This policy does not inherit the ethical problems associated with “list exchange” or

“deceased-donor chains.” The patient who would be prioritized on the waitlist is not

of blood type O and, therefore, does not join the blood type O waitlist, which typically

has one of the longest waiting times. Indeed, this scheme was favorably received by

the transplant community (Gill et al., 2017).

3 Living-Donor Liver Exchange
In this section, we discuss another life-saving application of matching theory, mar-

ket design for liver exchange, and its successful implementation at İnönü University

Liver Transplant Institute in Malatya, Turkey. Although the principles of this appli-

cation are similar to those of kidney exchange, it also exhibits several notable differ-

ences.

In Chapter 2, while discussing market design for kidney exchange, we observed

that including compatible patient-donor pairs where the donor has a more sought-

after blood type than the recipient into the exchange would substantially increase

the efficacy of donor exchanges. Additionally, we have explored various sources of

friction in living donation. These can be utilized to introduce “institutional” or “bi-

ological” incentive schemes aimed at compelling such pairs to participate in kidney

exchange. The organization of paired exchanges for living-donor liver transplantation

(LDLTs) exploits a few other liver-specific sources of frictions that can be the basis of

other forms of “biological” incentive schemes, thus expanding the scope of liver ex-

change.

3.1 Background
LDLT differs from living-donor kidney transplantation in a few important ways.

Unlike kidneys, the liver is a single organ. Therefore, living donation involves dis-

secting and removing only a lobe of the liver from the donor to transplant into the pa-

23In addition to the literature and advances cited here, several studies consider dynamic aspects of kidney
exchange, mostly pointing out that matching ”almost” as many pairs as possible at every instance is nearly
optimal using the technologies at hand (e.g., see Ünver, 2010; Kerimov, Ashlagi, and Gurvich, 2023). Others
discuss exploiting gains through unpaired exchanges over time (Ausubel and Morrill, 2014; Akbarpour et
al., 2020). Dynamic matching is explored in more detail in Section 12 of this handbook.
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tient. The liver comprises two well-defined lobes: a larger right lobe, which averages

around 60-70% in size, and a smaller left lobe. Additionally, for pediatric patients,

two segments of the left lobe, referred to as “Segments 2-3,” can be transplanted. (See

Figure 16 for an illustration of liver segments and lobes.)

Figure 16: Liver segments, from Orcutt et al. (2016). The left lobe (Segments 1, 2, 3, 4) comprises
approximately 30-40%, while the right lobe (Segments 5, 6, 7, 8) constitutes around 60-70% of the
liver. These percentages exhibit significant variation between individuals. Segments 2 and 3 of
the left lobe can also be used as a graft in transplantation for pediatric patients.

The two liver portions, the remnant remaining in the donor and the graft trans-

planted to the patient, each grow back so that each person has a completely function-

ing liver weeks after the transplant operation.

Just like kidney transplantation, blood-type compatibility is an essential requirement

for liver transplantation. While, as with kidneys, some Asian countries perform

blood-type incompatible transplants, this practice is discouraged in much of the west-

ern world. Unlike kidney transplantation, however, tissue-type incompatibility is not

a concern for liver transplantation, and it is often not checked. Tissue-type incompat-

ible livers are routinely transplanted without any long-term harm.

If blood-type compatibility were the only factor for liver transplantation, then the

only possible donor exchanges between incompatible pairs would involve two-way

exchanges between:

• Blood-type A patients with blood-type B donors, and

• Blood-type B patients with blood-type A donors.

Thus, the scope of liver exchange would be very limited. However, key to our model

and analysis, there are several important considerations regarding the “size” of the

liver graft for transplantation.
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The patient requires a substantially large graft to survive because they are only

receiving a portion. The widely accepted norm is that a patient needs to receive a graft

that is at least 0.8% of their body weight (the whole liver is around 2% of the body

weight, making it the second largest human solid organ after the skin). However,

since the received graft needs to fit in the abdominal liver cavity, it cannot be too large

either (with around 2% being the upper limit).

After a potential donation, it’s crucial for the donor to retain at least 30% of their

liver for a safe operation. Consequently, if the right lobe constitutes more than 70% of

the liver, right lobe donation becomes unfeasible for the donor.24

Thus, for safety reasons concerning both patients and donors, size compatibility
assumes a significant role in liver transplantation, unlike in kidney transplantation.

The relevance of graft size extends beyond size compatibility in LDLT. A compatible

patient-donor pair may seek to participate in liver exchange for various reasons, such

as reducing donor risk through a less risky left lobe donation or obtaining a better-

sized graft for the patient. For instance, if the donor can only donate their right lobe

to their paired patient, the pair may opt for an exchange where they can donate their

left lobe to mitigate risks associated with donation.

Moreover, compatible pairs may also aim to participate in liver exchange to im-

prove the long-term success of the transplant by receiving a blood-type identical graft

rather than a blood-type compatible one.

These inherent transplantation barriers have significantly influenced the expanded

scope of recent developments in liver exchange.

Given the considerably higher donor risk associated with living liver donation

compared to kidney donation, it is more commonly pursued in countries where de-

ceased donation is not a primary source of organ procurement. Such countries are

predominantly located in the Middle East and Eastern Asia, notably including In-

dia, Pakistan, South Korea, Japan, Taiwan, and Turkey. However, in recent years, the

number of LDLTs in the US has been increasing due to the acute shortage of transplant

livers.

The global-first liver exchange was conducted in South Korea in 2002 (Hwang et

al., 2010), although the scope of liver exchange has been limited in this country. The

number of liver exchange transplants remained at 52 from 2002 to 2018, representing

0.4% of the LDLTs conducted in South Korea in this period (Kim, 2022). One important

challenge has been the complexity in organizing liver exchange, with multi-center col-

laborations being much less common than in kidney exchange. This traditional setup

has imposed significant barriers on the number of transplants that can be conducted

24Additionally, other factors such as fatty liver or anatomical variations may render the donor ineligible
to donate either lobe.
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simultaneously, as a single center may lack the necessary resources to facilitate multi-

way liver exchanges.

The simplified liver exchange model we discuss in this section, with two individ-

ual/graft sizes, is based on the working paper 2018, later published in 2020 for the

more general case with an arbitrary number of individual/graft sizes. Reflecting the

logistical capacity of the vast majority of liver transplant programs worldwide, liver

exchanges are restricted to two-way exchanges in our formal model.25

3.2 Liver Exchange Model with Two Individual/Graft Sizes
Let I be a set of liver patients, with each patient paired with a single living donor.

We sometimes refer to i ∈ I as a pair when it is convenient.26 For the simple version

of the model presented in this section, individuals come in two sizes: large l or small

s. Let S = {s, l} denote the set of sizes and B = {O, A, B, AB} denote the set of blood

types. Thus, B × S represents the set of individual types.

For the benchmark case of the model as a reference, we start by considering left-lobe
transplants only.

A patient and a donor are left-lobe compatible if

1. the patient is blood-type compatible with the donor, and

2. the donor is not smaller than the patient.

Formally, the left-lobe compatibility relation is defined as the liver donation partial
order ⊵ on the set B × S of individual types. The partially ordered set (B × S ,⊵)

forms a lattice depicted in Figure 17.

Os 

Ol 

Bl Al 

Bs As ABl 

ABs 

Figure 17: Left-lobe compatibility lattice (B × S ,⊵).
25Apart from the Banu Bedestenci Sönmez Liver Paired Exchange System, the two authors have been

jointly operating with the Liver Transplant Institute at İnönü University, Malatya, Turkey, later discussed in
Section 3.3.2, only two other liver exchange programs have ever performed exchanges larger than two-way,
with each conducting one three-way exchange as of March 2024. Thus, while larger exchanges, up to 6-way,
have been performed regularly at İnönü University, their experience has not yet been replicated elsewhere.

26Since each donor has a single donor, we do not denote a patient’s donor separately.
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This lattice is order-isomorphic to the standard partial order ≥ over the corners of

the three-dimensional unit cube, or the binary cube {0, 1}3 (see Figure 18) such that

each individual type t ∈ B × S is associated with the following vector X ∈ {0, 1}3:

X1 = 0 ⇐⇒ t has the A antigen

X2 = 0 ⇐⇒ t has the B antigen

X3 = 0 ⇐⇒ t is small

Here, it is helpful to note that, individuals with blood type AB have both A and B
antigens, individuals with blood type A have A antigen only, individuals with blood

type B have B antigen only, and individuals with blood type O have neither A nor B
antigen. Blood type compatibility means that the donor does not have any antigen

the patient lacks. That is the basis of the order isomorphism.

For notational simplicity, we will work with the representation ({0, 1}3,≥).

Os 

Ol 

Bl Al 

Bs As ABl 

ABs 

110 

111 

101 011 

100 010 001 

000 

Figure 18: Isomorphism between (B × S ,⊵) and ({0, 1}3,≥).

The type of a patient-donor pair is represented through the individual types of its

patient and donor, respectively, as X − Y ∈
(
{0, 1}3)2.

A liver exchange problem with two sizes is represented as a pair [I, τ], where each i ∈ I
corresponds to a pair, denoted as τ(i) = X −Y, with a patient of type X ∈ {0, 1}3 and

a donor of type Y ∈ {0, 1}3.27 Sometimes, we denote type X −Y as X1X2X3 −Y1Y2Y3.

A (left-lobe) direct transplant consists of a single pair i of type X −Y such that Y ≥ X.

Such pairs are called (left-lobe) compatible pairs.

Note that, Y ≥ X means that:

1. Y1 ≥ X1. The donor of pair i lacks the A antigen if the patient of pair i lacks

the A antigen.

27If the set of individual types is given as {0, 1}2 × {0, 1, . . . , S − 1} for some S > 2, then we refer to this
problem as a liver exchange problem (with S sizes).
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2. Y2 ≥ X2. The donor of pair i lacks the B antigen if the patient of pair i lacks the

B antigen.

3. Y3 ≥ X3. The donor of pair i is at least as large as the patient of pair i.

A (left-lobe-only two-way) liver exchange consists of a pair i of type V − W and an-

other pair j of type X − Y such that Y ≥ V and W ≥ X, and it is represented as

{i, j}.

We assume that there is endowment bias, so that no patient with a left-lobe com-

patible pair participates in a left-lobe-only liver exchange.

A matching is a collection of mutually exclusive exchanges and direct transplants.

In this arrangement, if a pair is compatible, it participates in a direct transplant. There-

fore, individual rationality is implicitly embedded in this definition for brevity.

3.2.1 Matchings with Left-Lobe-Only Two-Way Exchanges

We begin by examining the structure of left-lobe-only exchanges and identifying

the types of matchings that are Pareto efficient. To facilitate our exploration, we intro-

duce a concept that will prove highly valuable.28

The value of a pair type X1X2X3︸ ︷︷ ︸
=X

−Y1Y2Y3︸ ︷︷ ︸
=Y

is defined as

v(X − Y) =
3

∑
k=1

(Yk − Xk).

We can conceptualize a scenario with left-lobe-only transplants as one where each

pair of type X − Y “consumes” three goods, represented by pairs Xℓ − Yℓ (ℓ = 1, 2, 3).

Here, if Yℓ < Xℓ for any ℓ ∈ {1, 2, 3}, direct transplantation is precluded. For instance,

if Y1 < X1, then Y1 = 0 and X1 = 1, indicating that the donor possesses an A antigen

absent in the patient. Note that, due to the endowment bias, a pair has nothing to

gain from an exchange unless Yℓ < Xℓ for some ℓ ∈ {1, 2, 3}. Conversely, a pair has

nothing to offer to another pair in an exchange unless Yℓ > Xℓ for some ℓ ∈ {1, 2, 3}.

Therefore, we arrive at the following observation:

Observation 1 In any liver exchange problem, the only types that could be part of a two-way
exchange are

X − Y ∈
(
{0, 1}3)2 such that X ≱ Y and Y ≱ X.

Consequently, only types of values −1, 0, or 1 can be part of a left-lobe-only two-way exchange
with two sizes.

28We should note that this concept is most useful for the two-size model with the binary 3-cube lattice
compatibility structure, where the size plays an analogous role to A and B antigens. It’s important to
mention that for models with more than two sizes, the intuitions we develop here do not apply.

53



101-110

110-101

101-011011-101

011-110

110-011

101-010011-100

110-001

010-101

001-110

100-011

100-010

010-001100-001

001-010

010-100

001-100

2-Waste

0-Waste
1-Waste

Value 1

Value 0

Value -1

Pair ValuesExchange Wastes

Figure 19: Feasible left-lobe-only two-way exchanges and their wastes when there are two sizes.
An undirected edge between two pair types designates a feasible two-way exchange between
pairs of these types .

The waste of an exchange between pair types V − W and X − Y is defined as

v(V − W) + v(X − Y).

Then, all feasible left-lobe-only exchanges have non-negative waste.

Observation 2 In a liver exchange problem with two sizes, any two-way left-lobe-only ex-
change is either 0-waste, 1-waste, or 2-waste.

Figure 19 depicts all feasible two-way exchanges and their wastes in the two-size

model between pair types.

Using the matroid theory results introduced in Section 2 of Chapter 1 and Propo-

sition 1 in Section 2.4, as the two-way exchange problem spans the matching matroid,

a left-lobe-only two-way matching is Pareto-efficient if and only if it maximizes the

number of transplants. Moreover, one way to design a Pareto-efficient mechanism is

by directly using the matroid greedy algorithm.29 However, we will take a more di-

rect approach, exploiting the lattice-compatibility structure and the concept of waste.

Note that, in a two-way left-lobe-only exchange, if it results in 1-waste or 2-waste,

then at least one of the patients is “using up” a more sought-after liver graft than

29Recall that the matroid greedy algorithm requires the independent system of a matroid to be known
or to check whether a constructed set is independent or not using an external algorithm. Edmonds (1965)
algorithm can be utilized for this latter purpose for this problem.
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they need. For instance, this could occur when a small patient receives a graft from a

large donor, or when a blood type A patient (having antigen A) receives a graft from

a blood type O donor (lacking antigen A). Therefore, it is intuitively clear that lower

waste exchanges are associated with higher efficiency.

The following algorithm, which corresponds to the sequential minimization of

waste in choosing exchanges, is due to Ergin, Sönmez, and Ünver (2018):

Two-Size Left-Lobe-Only Sequential Two-way Exchange Algorithm.
Fix a priority order over patients.

Step 0. Clear all feasible direct transplants.

Step 1. Clear 0-waste exchanges following the given priority order.

Step 2. Clear 1-waste exchanges following the given priority order among the remain-

ing patients.

Step 3. Clear 2-waste exchanges following the priority order among the remaining pa-

tients.30

We depict the functioning of this algorithm in Figure 20. This graph representa-

tion will help us also decipher the main mechanism we introduce when right-lobe

transplants are also feasible.

We have the following result.

Theorem 10 (Ergin, Sönmez, and Ünver, 2018) Given a liver exchange problem with two
sizes, the left-lobe-only sequential two-way exchange algorithm maximizes the number of left-
lobe-only two-way exchanges.

3.2.2 Incentives for Right-Lobe Donation

We next consider the possibility of right-lobe transplantation in addition to the

left-lobe transplantation. Thus, we have the following two LDLT technologies:

• Left-lobe donation: It is less risky for the donor. It requires left-lobe compat-

ibility, i.e., a blood-type compatible donor should be at least as large as the

patient.

30This part is not as straightforward because of the triangular feasible exchange structure governing pairs
with 2-waste exchanges; but the structure is simple enough that we can immediately tell how this process
will go forward: Suppose at the beginning of Step 3 there are n1 pairs of type τ1 = 100 − 011, n2 pairs of
τ2 = 010 − 101, and n3 pairs of τ3 = 001 − 110. W.l.o.g. suppose n1 ≥ n2 ≥ n3 so that the other orderings
are symmetrically handled. If n1 ≥ n2 + n3, then all τ2 and τ3 type pairs are matched with τ1 type pairs who
are chosen by priority. If n1 < n2 + n3, then all remaining pairs of these three types are matched if their total
number is even, and only the lowest-priority one among them remains unmatched if their total number is
odd. After determining which pairs will be matched, among them, we can match τ3 type pairs with any of
the other two types so that an equal number of pairs of the other two types τ1 and τ2 are remaining to be
matched. Then, we match those two groups with each other.
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Figure 20: Steps 1-3 of the left-lobe-only sequential two-way exchange algorithm.
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• Right-lobe donation: It is more risky for the donor. It allows a blood-type

compatible donor to donate to a larger patient.

For right-lobe donation feasibility, in addition to left-lobe compatibility, we define

right-lobe-only compatibility: a donor of type Y ∈ {0, 1}3 is right-lobe-only compatible
with a patient of type X ∈ {0, 1}3 if X ̸≤ Y but X ≤ Y1Y21, meaning that Y is not

left-lobe-compatible with X but right-lobe compatible.

Observe that a donor of type Y is right-lobe-only compatible with a patient of type

X if, and only if (i) X1 ≤ Y1, (ii) X2 ≤ Y2, and (iii) X3 = 1 and Y3 = 0.

These technologies and the associated donor risk profile motivate the following

layered preferences for a pair:

• Donating the donor’s left lobe is always preferable to donating the donor’s

right lobe or not donating at all.

• However, the preference between donating the right lobe versus not donating

at all is not clear: The pair may prefer donating the right lobe to not donating

at all, or they may prefer not donating at all to donating the right lobe.

Thus, depending on their willingness for the right-lobe donation of the pair, there are

two possible preferences for pairs indicated with their types: The type willing (w), who

prefer right lobe donation to not donating at all, and the type unwilling (u), who prefer

not donating to right lobe donation.

An outcome for a donor-patient pair is denoted as (x, y), where x refers to the type

of donation the donor endures, and y denotes the type of transplant it participates in.

The set of possible outcomes is given as:{
(∅, ∅), (Donate Left, Direct),(Donate Left, Exchange),

(Donate Right, Direct), (Donate Right, Exchange)
}

Depending on their willingness type, the two possible preference relations over

outcomes for each patient-donor pair i, starting with the best outcome at the top, are

given as:

Willing preferences Rw
i Unwilling preferences Ru

i

(Donate Left, Direct) (Donate Left, Direct)

(Donate Left, Exchange) (Donate Left, Exchange)

(Donate Right, Direct) (∅, ∅)

(Donate Right, Exchange)
...

(∅, ∅)
...
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As before, for each i ∈ I, we focus only on individually rational exchanges given a

willingness profile R = (Ri)i∈I with Ri ∈ {Rw
i , Ru

i } for each i ∈ I:

• A left-lobe compatible pair does not participate in an exchange but participates

only in a direct transplant.

• A right-lobe-only compatible pair participates in an exchange only if its donor

donates their left lobe; otherwise, it participates in a direct right-lobe trans-

plant.

We assume that the willingness type of a pair is private information. As before,

we study direct revelation mechanisms. In this case, they are used to elicit willingness

types.

We denote the type of a pair of type X1X2X3 − Y1Y20 together with their will-

ingness type as X1X2X3 − Y1Y20t, where t ∈ {u, w} denotes whether they have

unwilling Ru
i or willing Rw

i preferences, respectively. Thus, when a pair of type

X1X2X3 − Y1Y20w is chosen to donate the right lobe, it is treated as if it is of type

X1X2X3 − Y1Y21. We refer to this treatment as a transformation.

When the use of a type X1X2X3 − Y1Y21 covers both native X1X2X3 − Y1Y21 type

pairs and transformed X1X2X3 − Y1Y20w type pairs, we refer to it as an auxiliary type.

We have the following intermediate result:

Lemma 1 In a liver exchange problem with two sizes and a given willingness profile R, if a
type X − Yw = X1X2X3 − Y1Y20w pair can participate in a two-way exchange with some
auxiliary type V − W pair then either

• X ≤ W and V ≤ Y, in which case type X − Yw pair donates a left lobe, or
• X ≤ W and V ≤ Y1Y21 but not V ̸≤ Y, in which case type X − Yw pair donates a

right lobe.

Depending on their types, the following result characterizes all possible transplant

options for pairs:

Lemma 2 (Individually Rational Two-way Matchings) Suppose both left-lobe and
right-lobe transplantation are feasible. Then, in a liver exchange problem with two sizes,
given a willingness profile R, a pair type X − Y belongs to one of the following seven disjoint
categories:

Cat. 0. X > Y1Y21: A pair of this type cannot participate in an exchange or a direct trans-
plant.

Cat. I. X ≤ Y: A pair of this type participates in a direct left-lobe transplant.
Cat. II. Y3 = 0 & X = Y1Y21: A pair of this type participates in a direct right-lobe transplant

only if they are willing.
Cat. III. Y3 = 1 & X ̸≥ Y & X ̸≤ Y: A pair of this type can only participate in exchange, and

only by donating a left lobe.
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Figure 21: Possible transformations: Only 4 types in Category V (010 − 100w, 100 − 010w,
011 − 100w, 101 − 010w) can both donate left lobe or right lobe in individually rational two-
way exchanges. Only 5 types in Category IV (010 − 000w, 100 − 000w, 110 − 000w, 110 − 010w,
110 − 100w) can donate right lobe but not left lobe in an individually rational two-way exchange.

Cat. IV. X3 = 0, Y3 = 0 & X > Y: A pair of this type can only participate in exchange, and
only by donating a right lobe when they are willing (see Figure 21).

Cat. V. Y3 = 0 & X ̸≥ Y & X ̸≤ Y1Y21 (010 − 100, 100 − 010, 011 − 100, 101 − 010): A
pair of this type can only participate in exchange, either by donating a left lobe or a
right lobe when they are willing (see Figure 21).

Cat. VI. X < Y1Y21 & X ̸≥ Y & X ̸≤ Y: A pair of this type can participate in exchange by
donating a left lobe, or receive a direct right-lobe transplant when they are willing.

3.2.3 An Incentive-Compatible and Pareto-Efficient Mechanism

We explore mechanisms that are dominant-strategy incentive compatible in the

revelation of willingness types.

Formally, a mechanism is a function that maps each willingness type profile to a

matching. Given a mechanism φ and willingness type profile R, let φ[R] denote the

matching chosen by φ under R, and φ[R](i) denote the resulting outcome for each

pair i ∈ I.

A mechanism φ is incentive compatible if it constitutes a (weakly) dominant strategy

for each pair to truthfully reveal its willingness type. That is, for any pair i ∈ I with

willingness type t ∈ {w, u}, any s ∈ {w, u} \ {t}, and any willingness type profile for

other pairs R−i,

φ[Rt
i , R−i](i) Rt

i φ[Rs
i , R−i](i).
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When right-lobe transplantation is feasible, Pareto efficiency no longer implies

transplant maximality. Moreover, in general, there exists no transplant maximal

mechanism that is incentive-compatible.

Proposition 5 There is no incentive-compatible mechanism that maximizes

1. the number of transplants, or even
2. the number of left-lobe transplants.

The proof of this result follows from the following example:

Example 5 Consider a set I = {i1, i2, i3, i4} of patients and their types τ given as:

τ(i1) = 101 − 011, τ(i2) = 100 − 011,

τ(i3) = 011 − 100, τ(i4) = 011 − 100.

Suppose i3 and i4 are both willing.
Any left-lobe-donation- or total-transplant-maximizing matching (two of which can be ob-
tained by swapping i3 and i4 with each other) generates two exchanges. Consider these two
matchings:

µ =
{
{i1, i3}, {i2, i4}

}
µ′ =

{
{i1, i4}, {i2, i3}

}
While the donors of pairs i3 and i4 can only donate their right lobes to the patient of pair

i1, they can also more preferably donate their left lobes to the patient of pair i2. Any (prob-
abilistic) mechanism that chooses a matching with the maximum number of transplants or
the maximum number of left-lobe transplants chooses at least one of these two matchings in
its support. W.l.o.g., suppose µ is that matching. Then i3 has an incentive to announce its
type as unwilling by revealing R′

i3 = Ru
i3 , as the mechanism will then choose µ′, which is the

unique left-lobe-donation- and total-transplant-maximizing matching in this case, with prob-
ability 1. Hence, there is no incentive-compatible mechanism that maximizes the total number
of transplants or left-lobe transplants.

Therefore, we propose a mechanism that is Pareto-efficient and incentive-

compatible, albeit not necessarily maximal. This mechanism is built upon a sequential

algorithm akin to the one utilized for left-lobe-only exchanges. We attain incentive

compatibility by gradually transforming willing pairs only after their left-lobe trans-

plant prospects are fully exhausted. As a result, a willing pair has no incentive to

falsify its type as unwilling to secure a left-lobe donation over a right-lobe one. More-

over, employing a fixed priority order in each step to manage exchanges involving

different pair categories ensures that attempting to manipulate it in reverse—where

an unwilling pair falsely claims willingness—yields no benefit either.

For each category of pairs specified in Lemma 2, we initially observe whether in-

60



centive compatibility is pertinent and its implications if so. These observations will

then inform the formulation of a Pareto-efficient and incentive-compatible mecha-

nism.

Cat. 0. They cannot participate in any direct transplant or exchange; they remain with-

out a transplant. There are no incentive issues related to them.

Cat. I. They can only participate in direct left-lobe transplant; we assign them a direct

left-lobe transplant at the beginning. There are no incentive issues related to

them.

Cat. II. They can only participate in a direct right-lobe transplant; if they are willing,

we transform them at the beginning and assign them a direct right-lobe trans-

plant. There are no incentive issues related to them.

Cat. III. They can participate only in an exchange and only via left-lobe donation. There

are no incentive issues related to them.

Cat. IV. They can participate only in an exchange and only via right-lobe donation; if

they are willing, we transform them to donate a right lobe at the beginning.

There are no incentive issues related to them.

Cat. V. They can participate only in an exchange, and either via left-lobe or right-lobe

donation. We need to take their incentives into account and gradually trans-
form them to donate a right lobe if they are willing after their left-lobe donation

prospects are fully exhausted.

Cat. VI. They can participate in an exchange only via left-lobe donation or in a direct

right-lobe transplant. We need to take their incentives into account. If they are

willing and still unmatched until the end of the algorithm, we transform them

at the end to participate in a direct right-lobe transplant.

The following mechanism is from Ergin, Sönmez, and Ünver (2018). It builds on

the same insight from left-lobe-only exchanges to clear 0-waste, 1-waste, and then 2-

waste exchanges in this order for efficiency, while integrating with our above-outlined

strategy for sustaining incentive compatibility.

Left-or-Right-Lobe Two-Way Exchange Mechanism.
Fix a priority order over pairs.

Step 0. Direct transplant each Category I and Category II type w pair.

Step 1. Transform Category IV type w pairs.

Clear 0-waste exchanges following the given priority order.

At least one of the Category V types 010 − 100 and 100 − 010 is fully depleted.

Assume without loss of generality, type 100 − 010 pairs are depleted (when

type 010 − 100 pairs are depleted, the algorithm is symmetrically defined):
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Step 2. a. Clear all remaining exchanges of Category V type 010 − 100 pairs

(which are all 1-waste).

b. Transform any remaining Category V type 010 − 100w pairs.

No exchange remains for pairs of the Category V type 011 − 100.

Clear the newly formed exchanges of Category V type 101 − 010 pairs

(which are 0-waste).

c. Transform the remaining Category V w pairs, which are of types 011 −
100w and type 101 − 010w.

Clear the newly formed 0-waste exchanges (which are only between

auxiliary types 011 − 101 and 101 − 011).

d. Clear 1-waste exchanges following the given priority order.

Step 3. Optimally clear 2-waste exchanges.

Step 4. Direct transplant each remaining Category VI type w pair.

We depict the steps 1-3 of the algorithm in Figure 22.

We conclude the formal analysis in this section with the following result:

Theorem 11 (Ergin, Sönmez, and Ünver, 2018) In a liver exchange environment with
two sizes when only two-way exchanges are allowed, the left-or-right-lobe sequential two-way
exchange mechanism is individually rational, Pareto-efficient, and incentive compatible.

3.3 Liver Exchange Programs
While liver exchange has been practiced since 2002, the utilization of matching

theory and market design in real-life implementation is relatively new. In this section,

we discuss liver exchange programs in South Korea, India, and the US, which evolved

without involvement from design economists, as well as a recent liver exchange pro-

gram designed and managed by economists.

3.3.1 Liver Exchange Programs in South Korea, India and the US

The ASAN Center in South Korea conducted the first liver exchange in the early

2000s (Hwang et al., 2010). With the exception of two three-way exchanges, all re-

ported liver exchanges globally had been two-way prior to 2022. The first three-way

exchange took place in Pakistan (Salman, Arsalan, and Dar, 2023), and a second was

conducted in Gurugram, India, at the Medanta Institute (Soin et al., 2023). The lat-

ter exchange program also reported 88 liver exchange transplants in 44 two-way ex-

changes conducted between 2013 and 2022 within the same paper.

Agrawal, Gupta, and Saigal (2023) summarizes the efficacy of long-standing pro-

grams apart from Medanta. They discuss three distinct programs: Max Saket Hos-

pital in New Delhi, India (Agrawal et al., 2022), which conducted 34 liver exchange
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Figure 22: Steps 1-3 of the left or right-lobe two-way exchange mechanism assuming after Step 1
all Cat. V type 100 − 010 pairs are depleted.
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transplants (constituting 1.45% of all LDLTs in the center) between 2012 and 2021;

the ASAN Center’s program in Seoul, South Korea (Hwang et al., 2010; Jung et al.,

2014), conducted 26 liver exchange transplants (1.2% of all LDLTs in the center) be-

tween 2003 and 2011; and the University of Pittsburgh Medical Center (UPMC) in the

US (Gunabushanam et al., 2022), which conducted 20 liver exchange transplants be-

tween 2019 and 2021 (8.3% of all LDLTs in the center). Importantly, seven of the liver

exchanges were through non-directed donor chains for the UPMC program, thus in-

creasing its efficacy.

In the US, a pilot national liver paired exchange program was initiated through

UNOS in 2021, encompassing 17 transplant centers. Unfortunately, the program

ceased operation in 2023 without conducting a single exchange. Their efforts were

exclusively limited to finding and conducting two-way exchanges.

Thus, possibly due to the lack of involvement from design economists until re-

cently, the overall global landscape of liver exchange practices has been bleak com-

pared to kidney exchange. However, a recently established program, with the assis-

tance of the authors of this chapter, challenges this trend.

3.3.2 Banu Bedestenci Sönmez Liver Paired Exchange System at Malatya
İnönü University, Turkey

The authors of this chapter, in collaboration with the Liver Transplant Institute

team at Malatya İnönü University in Turkey, under the leadership of Dr. Sezai Yil-

maz, a professor of transplantation surgery, established a liver exchange program in

2022. This institute ranks globally as the second highest in performing LDLTs annu-

ally, following the ASAN Transplant Center in South Korea.

The principles of this system were detailed in Yilmaz et al. (2023b). A significant

departure from the assumptions outlined in Ergin, Sönmez, and Ünver (2018, 2020)

is the routine conduct of multi-way exchanges, enabled by the center’s capacity to

facilitate up to six transplants simultaneously. As a prelude to the exchange program,

in 2019 they executed five simultaneous (non-exchange) direct transplants, a world-

first rehearsal (Yilmaz et al., 2023a).

As of March 2024, the program has performed 2 six-way exchanges, 2 five-way ex-

changes, 4 four-way exchanges, 10 three-way exchanges, and 14 two-way exchanges

by March 2024, leading to a total of 96 transplants. In 2023 alone, this program fa-

cilitated 64 LDLTs, constituting 27.7% of the LDLTs performed in the Institute.31 The

only other reported exchanges larger than two-way in the world are the previously

mentioned two three-way exchanges.

The design of the liver exchange system at the Institute relies on several center-

31Refer to https://canlikaracigernakli.inonu.edu.tr/en for system details, retrieved on 2/19/2024.
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specific factors, such as their unique capacity to carry out large exchanges. Histori-

cally, donor outcomes from right-lobe and left-lobe donations have shown similarity

at the Institute, with over 3600 LDLTs performed until March 2024. Consequently, this

team prefers right-lobe transplants for adult patients, as left-lobe grafts often present

more challenging anatomical variations during surgery. Their patient demographic

also includes a substantial number of pediatric patients for whom they utilize left-lobe

or segment 2-3 transplants. As such, the center predominantly carries out right-lobe

transplants in exchanges involving adult patients and left-lobe or segments 2-3 trans-

plants for pediatric patients. Nevertheless, the fundamental principle of incorporating

compatible patient-donor pairs into the system is upheld, provided they are willing,

and the patient receives at least an equivalent graft to what the donor could donate,

often receiving a superior graft. Superior ABO-identical grafts are often provided in-

stead of ABO-compatible but non-identical grafts from their donors, as non-identical

ABO grafts may more often induce antibody rejection in the long term. When there is

no benefit from ABO match, better-sized grafts are transplanted to the patients than

their compatible donors can provide.

In conclusion, exploiting size incompatibility plays a pivotal role alongside the in-

volvement of compatible pairs in the success of this liver exchange program. These

factors, combined with the capability to execute larger exchanges, have led to an un-

precedented efficacy of liver exchange at the Institute.

4 Cadet-Branch Matching in the US Army
In the last two decades, the branch assignment processes for cadets at the United

States Military Academy (USMA) and Reserve Officer Training Corps (ROTC) have

undergone a series of reforms. This section examines the shortcomings of the USMA-

2006 and USMA-2020 mechanisms, each adopted by the Army to accommodate a new

objective, and discusses the partnership between the Army and market designers that

led to the adoption of a new mechanism, DPCO, for the Class of 2021. The primary fo-

cus will be on the theoretical and operational aspects of these mechanisms, highlight-

ing the challenges encountered and how DPCO uniquely addressed these challenges,

leading to its adoption. Building on Sönmez and Switzer (2013) and Sönmez (2013),

this section largely follows Greenberg, Pathak, and Sönmez (2023).

4.1 Background
Each year, the US Army employs centralized matching systems to allocate thou-

sands of graduating cadets from the USMA at West Point and the Reserve Officer

Training Corps (ROTC) to their initial military occupation, also referred to as a branch.

These branch assignments hold significant consequences for the cadets’ career pro-

gression. Prior to the Class of 2006, cadets were assigned positions within Army
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branches through a priority mechanism based on a cadet performance ranking known

as the order of merit list (OML). Under this mechanism, cadets would submit their pref-

erences for branches, and the cadet with the highest order of merit score (OMS) would

be assigned their most preferred branch, followed by the second-highest OMS cadet

receiving their preferred branch among those with remaining positions, and so forth.

This mechanism underscored the importance of a meritocratic hierarchy within the

Army.

4.1.1 BRADSO Program and the 2006 Branching Reform

In response to declining junior officer retention rates during the late 1990s and

early 2000s, the Army initiated a series of retention incentives for cadets at USMA

and ROTC starting in 2006.

One of the most popular incentives, which involved overhauling the branching

mechanism, was the branch of choice (BRADSO) program.

Under this program, cadets receive higher priority for a portion of positions within

any given branch if they express willingness to extend their Active Duty Service Obli-

gation (ADSO) by three years with that branch. Consequently, the extended ADSO

entails eight years of obligatory service, compared to the standard five-year ADSO

term. We refer to the ADSO extension as the price of the branch.

The message space of the new mechanism was also expanded by requesting cadets

to report the set of branches for which they are willing to pay the increased price in

exchange for receiving increased priority at a fraction of its positions.

The USMA-2006 Mechanism. Under the USMA-2006 mechanism, branch assign-

ments follow a process similar to the previous OML-induced priority mechanism,

with one significant difference:

Once the base-price positions are filled within any branch, priority is given to

cadets who have indicated willingness to pay the increased price for the remaining

flexible-price positions.

The prices are subsequently determined as follows:

• Cadets who receive a base-price position are charged the base price.

• Cadets who receive a flexible-price position are charged:

– the base price if they have not indicated willingness to pay the increased

price for their assigned branch, and

– the increased price if they have indicated willingness to pay the in-

creased price for their assigned branch.
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Shortcomings of the USMA-2006 Mechanism. Two aspects of the USMA-2006

mechanism were problematic.

First, cadets were asked if they were willing to pay more for a branch without

considering other options. For example, a cadet couldn’t say they’d pay more for

their top choice branch if their only other option was a lower choice branch, but not if

it was their second choice.

Second, cadets who express willingness to pay the increased price for a branch are

charged the increased price upon receiving one of its flexible-price positions, even if

they would have received the same position at a base price without expressing such

willingness.

These aspects, in turn, lead to several shortcomings of the USMA-2006 mechanism,

including the following two:

• Detectable priority reversal: A cadet may be assigned a position at the increased

price, while a lower-ranked cadet, based on the OML, receives a position at the

same branch at the base price.

• Failure of incentive compatibility: A cadet may benefit from concealing their will-

ingness to pay the increased price (failure of BRADSO incentive compatibility

or BRADSO-IC) or from misrepresenting their branch preferences.

The root causes of failures under the USMA-2006 Mechanism were twofold: (1)

the message space lacks sufficient richness to capture cadet preferences over branch-

price pairs, and (2) the assignment’s two elements—the branch assignment and the

price assignment—are determined sequentially rather than jointly.

The Initial Proposal of the Cumulative Offer Mechanism. Both root causes

of the failures can be addressed through foundational research on matching with con-
tracts (Hatfield and Milgrom, 2005), and in particular, relying on the cumulative offer
mechanism, covered in Chapter 9 of this handbook.

Hence, to address the root causes of the failures, Sönmez and Switzer (2013) pro-

posed a refinement of the cumulative offer mechanism, implemented with branch

choice rules that capture the Army’s policy objectives. The proposed mechanism op-

erates as a direct mechanism, wherein cadets express their preferences over branch-

price pairs. Initially, the Army perceived this message space as overly complex and

deemed the adoption of a new mechanism with a more intricate message space un-

necessary for three primary reasons:

1. BRADSO-IC failures and detectable priority reversals have been infrequent in

practice.

2. Any BRADSO-IC failure or detectable priority reversal can be manually rec-
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tified ex-post, as each instance involves a cadet unnecessarily paying the in-

creased price at their assigned branch.

3. Although there may be additional priority reversals that cannot be manually

corrected ex-post, their verification relies on cadet preferences over branch-

price pairs, information that is unavailable under the existing USMA-2006

message space.

In summary, any failure of the USMA-2006 mechanism can be rectified manually

afterward or may not be verifiable with the available data.

4.1.2 USMA-2020 Mechanism

In 2012, the Army introduced a Talent-Based Branching (TBB) program to create

a ”talent market” where additional information about each cadet influences their pri-

ority at a branch. Under this program, branches assess cadets into three tiers: High,

Medium, and Low. These ratings were initially part of a pilot initiative for several

years.

For the Class of 2020, the Army incorporated these ratings into the branching pro-

cess. Priorities at each branch were determined first by the tier and then by the OML

within the tier. Additionally, changes were made to the BRADSO policy: cadets will-

ing to pay the increased price now received higher priority within their tier only.

Given the decision to incorporate cadet ratings into the branching process within

a tight timeline, the Army opted to maintain the existing message space for the new

mechanism, as utilized in previous years. Utilizing an adjusted priority order that

took into account both TBB ratings and willingness to pay increased prices, the new

mechanism employed the individual-proposing deferred acceptance (DA) algorithm (Gale

and Shapley, 1962) to determine branch assignments.

Prices were then determined as follows: Constrained by a maximum number of

flexible-price positions at each branch and following the reverse-priority order of

branches, cadets indicating willingness to pay the increased price at their assigned

branch were charged accordingly, while remaining matched cadets were charged the

base price.

4.1.3 Army’s Partnership with Market Designers

Alongside inheriting the limitations of the USMA-2006 mechanism, the USMA-

2020 mechanism introduced fresh challenges. Although the number of flexible-price

positions at each branch remained at 25% of the total capacity, a priority upgrade due

to increased-price willingness was applied to all positions.

This design choice introduced a new type of incentive compatibility failure known

as strategic BRADSO. Previously, indicating a willingness to pay the increased price

could potentially harm cadets due to BRADSO-IC failures, but now it could also bene-
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fit them with a costless priority upgrade due to strategic BRADSO. Consequently, the

mechanism became highly complex and more prone to widespread failures, including

priority reversals that cannot be manually corrected ex-post.

The USMA leadership promptly recognized the potential for detectable prior-

ity reversals under the USMA-2020 mechanism, stemming from either the failure of

BRADSO-IC or the presence of strategic BRADSO. A significant concern arose regard-

ing the erosion of cadets’ trust in the Army’s branching process. Upon implementa-

tion for the Class of 2020, there was a noticeable increase in the number of cadets

adversely affected compared to those impacted by USMA-2006 (Greenberg, Pathak,

and Sönmez, 2023).

In response to these failures, the Army revisited the earlier reform proposal in

Sönmez and Switzer (2013) and Sönmez (2013). This case serves as a reminder that

reform is often triggered not by a superior alternative, but by a glaringly deficient

existing institution (Sönmez, 2023). A partnership was forged with market design

experts Parag Pathak and Tayfun Sönmez, with Major Kyle Greenberg spearheading

the reform efforts at USMA.

In the rest of this section, we present the formal model and analysis that led to the

new branching mechanism adopted by the Army for both USMA and ROTC, starting

with the Class of 2021.

4.2 Formal Model
We define I as the set of cadets. Let T = {t0, t+} represent the possible contractual

terms to secure a position, where t0 denotes the base price and t+ denotes the increased

price. B is a set of branches, where each branch b ∈ B has a total of qb positions, with

q f
b ≤ qb denoting the maximum number of positions available at the increased price

t+. These positions are referred to as flexible-price positions.

The preference relation of each cadet i ∈ I, denoted by ≻i, is a linear order on

(B × T) ∪ {∅}. For every cadet i ∈ I and branch b ∈ B, we assume that (b, t0) ≻i

(b, t+), indicating that a position at the base price is always preferred over the same

position at the increased price. The resulting cadet preferences are represented by Pi.

Each branch b has a baseline priority order πb, which is a linear order on I. The set

of branch baseline priorities is denoted by Π.

The Price Responsiveness Policy. The Army’s branching system incorporates

an embedded price responsiveness policy, akin to a marginal rate of substitution,

which enhances the priorities of cadets willing to pay the increased price by com-

mitting to longer service periods.

For a given branch b ∈ B and baseline priority order πb ∈ Π, the relation ωb is a
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linear order on I × T with two key properties: it reflects the baseline priority order πb

for any fixed contractual term, and it is positively monotonic in contractual term for

any given cadet. Formally,

1. for each i, j ∈ I and t ∈ T, (i, t) ωb (j, t) ⇐⇒ i πb j, and

2. for each i ∈ I, (i, t+) ωb (i, t0).

This linear order identifies the priority upgrade gained for the flexible-price posi-

tions by paying the increased cost. Let Ωb(πb) be the set of resulting price responsive-

ness policies.

4.2.1 Outcome and Mechanism

A contract is a triple x ≡
(

i(x), b(x), t(x)
)
∈ I × B × T, indicating a position for

cadet i(x) at branch b(x) at price t(x). Let X = I × B × T be the set of all contracts.

Let Xi = {x ∈ X : i(x) = i} be the set of contracts that involve cadet i. Similarly, let

Xb = {x ∈ X : b(x) = b} be the set of contracts that involve branch b.

An allocation is a set of contracts X ⊆ X , such that:

1. For any i ∈ I,
∣∣∣{x ∈ X : i(x) = i}

∣∣∣ ≤ 1.

2. For any b ∈ B,
∣∣∣{x ∈ X : b(x) = b}

∣∣∣ ≤ qb.

3. For any b ∈ B,
∣∣∣{x ∈ X : b(x) = b and t(x) = t+}

∣∣∣ ≤ q f
b .

Let A ⊆ 2X be the set of allocations.

For an allocation X ∈ A and cadet i ∈ I, the assignment Xi of cadet i under alloca-

tion X is defined as:

Xi =

{
(b, t) if (i, b, t) ∈ X

∅ if X ∩ Xi = ∅
.

With a slight abuse of notation, b(Xi) indicates the branch of assignment Xi. A cadet

i ∈ I is unmatched under allocation X ∈ A if Xi = ∅.

A mechanism consists of a message space Si for each cadet i ∈ I along with an outcome
function φ : ×i∈I Si → A that selects an allocation for each message profile. Let

S =×i∈I Si be the set of message profiles.

A mechanism
(
S , φ

)
is a direct mechanism if Si = Pi for each i ∈ I.

4.2.2 The Army’s Policy Objectives as Formal Axioms
Greenberg, Pathak, and Sönmez (2023) formulate Army’s policy objectives as tech-

nical axioms and characterize the unique direct mechanism that satisfies all.

All but one of these axioms are defined both for allocations and mechanisms. In

those cases, as before, a mechanism satisfies the axiom if its outcome satisfies the

axiom for all message profiles.

An allocation X ∈ A satisfies individual rationality if, for any i ∈ I,

Xi ≻i ∅.
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Under individual rationality, no cadet is assigned a branch-price pair that they find

unacceptable.

An allocation X ∈ A satisfies non-wastefulness if, for any b ∈ B and i ∈ I,∣∣∣{x ∈ X : b(x) = b
}∣∣∣ < qb and Xi = ∅ =⇒ ∅ ≻i (b, t0).

Under non-wastefulness, no position at a branch is left idle while a cadet is left unas-

signed, unless they would rather remain unassigned than receive the idle position at

its base price.

An allocation X ∈ A satisfies no priority reversals if, for any i, j ∈ I, and b ∈ B:

b(Xj) = b and Xj ≻i Xi =⇒ j πb i.

Under no priority reversals, no cadet i prefers the branch-price package (b, t) of an-

other cadet j to their own assignment, despite having a higher baseline priority for

branch b.

We next present two auxiliary definitions highlighting our next axiom’s intuition.

Given an allocation X ∈ A and a cadet i ∈ I with t(Xi) = t+, a cadet j ∈ I \ {i}
has a legitimate claim for a price-reduced version of cadet i’s assignment Xi if:

1.
(
b(Xi), t0) ≻j Xj, and

2. (j, t0) ωb(Xi) (i, t+).

Here, cadet j’s request for a position at branch b(Xi) at the base price t0 is justified

because the price responsiveness policy ωb(Xi) maintains their priority for a position

at branch b(Xi) over cadet i, even if cadet i opts to pay the increased price.

Given an allocation X ∈ A and a cadet i ∈ I with t(Xi) = t0, a cadet j ∈ I \ {i} has

a legitimate claim for a price-increased version of cadet i’s assignment Xi if,

1.
(
b(Xi), t+

)
≻j Xj,

2. (j, t+) ωb(Xi) (i, t0), and

3.
∣∣∣{k ∈ I :

(
k, b(Xi), t+

)
∈ Xb(Xi)

}∣∣∣ < q f
b(Xi)

.

Here, cadet j’s request for a position at branch b(Xi) at the increased price t+ is justi-

fied. This is because, even if cadet i holds a higher baseline priority at branch b(Xi),

the price responsiveness policy ωb(Xi) overrides this priority in favor of cadet j pro-

vided that cadet j offers a higher price than cadet i. Condition 3 is crucial here; oth-

erwise, the assignment of cadet i’s position to cadet j at the increased price t+ would

not be feasible due to the upper cap on the number of increased-price positions.

The next axiom formulates the idea that, the assignments respect the Army’s price

responsiveness policy.

An allocation X ∈ A satisfies enforcement of the price responsiveness policy if, no cadet

j ∈ I has a legitimate claim for either a price-reduced version or a price-increased
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version of the assignment Xi of another cadet i ∈ I \ {j}.

Capturing the Army’s objective to incite cadets’ trust in the Army’s branching pro-

cess, the last axiom is the strategy-proofness: Truthful preference revelation is a domi-

nant strategy for each cadet.

4.3 Army’s New Mechanism: Dual-Price Cumulative Offer

Mechanism
The Dual-Price Cumulative Offer (DPCO) mechanism is a direct mechanism based on

the cumulative offer procedure (Hatfield and Milgrom, 2005), complemented by the

following choice rule.

Dual-Price Choice Rule CDP
b . Given a branch b ∈ B and a set of contracts X ∈ Xb,

select (up to) qb contracts with distinct cadets in two steps as follows:

Step 1. For the base-price positions, exclusively select contracts at the base price with

the highest-priority cadets according to their baseline priorities.

Step 2. For the flexible-price positions, select the highest-priority remaining contracts

based on the price responsiveness policy ωb.

Dual-Price Cumulative Offer (DPCO) Mechanism.
Fix any linear order of cadets, such as the OML.32.

Step 0. No contract is on hold initially.

Step k. (k > 0)

• The highest-OMS cadet currently without a contract on hold, whom we

refer to as ik, offers their most-preferred previously-unrejected contract

xk to the branch of the contract b(xk), and

• considering all offers Xk it has received up to (and including) Step k,

branch b(xk) holds the contracts in CDP
b(xk)

(Xk), and rejects all others.

We conclude the procedure if there are no cadets remaining with acceptable

contracts that haven’t been rejected or if no contracts are rejected, indicating

that all contracts on hold are finalized. Otherwise, we proceed to Step k + 1.

4.4 The Characterization Result
The following result provides justification for the Army’s reform of its branching

system, in partnership with market design economists, at both USMA and ROTC,

commencing with the Class of 2021.

32The outcome remains independent of the choice of this tie-breaker, and any linear order would suffice
(Kominers and Sönmez, 2016)
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Theorem 12 (Greenberg, Pathak, and Sönmez, 2023) Fix a profile of baseline priority
orders (πb)b∈B ∈ Π and a profile of price responsiveness policies

(
ωb

)
b∈B ∈×b∈B Ωb(πb).

A direct mechanism satisfies individual rationality, non-wastefulness, enforcement of the price
responsiveness policy, no priority reversals, and strategy-proofness if, and only if, it is the
DPCO mechanism.

As presented in Greenberg, Pathak, and Sönmez (2023), the entire analysis, includ-

ing the characterization theorem, extends to multiple prices.

4.4.1 Broader Implications of Analysis

Zhou and Wang (2021) explores public high school admissions in China under

the ZX Policy (Ze Xiao). In this price responsiveness policy, a fraction of the seats

are available with an increased tuition. Baseline priorities are based on scores on a

centralized exam. The higher-tuition contract increases this score by a fixed amount

for the ZX-eligible seats. Shanghai and Tianjin have a single ZX tuition level, making

these applications completely analogous to the Army’s problem. In some cities, there

were multiple tuition levels where higher tuition levels resulted in higher adjustments

to student scores. This policy was discontinued after 2015.

4.5 Broader Implications and Proof-of-Concept for Minimal-

ist Market Design
The Army deemed the design a success and adopted it for ROTC ahead of sched-

ule. Greenberg, Pathak, and Sönmez (2023) argue that this serves as a proof-of-

concept for a new institutional design paradigm called minimalist market design (Sön-

mez, 2023). This institution design paradigm may be especially valuable in the fol-

lowing contexts:

• When the need for change is not clearly established, and an outsider seeks to

initiate reform.

• When the “intended” institution is apparent, but identifying it requires formal-

ism and technical expertise.

• When the institution’s mission cannot be fully described by a single-

dimensional objective function.

On a broader scale, the Army’s economist-guided branching reform underscores

the significance of fundamental and customized theories in policy-oriented economic

research, especially for the case of aspired design.

5 Affirmative Action in India
In Section 4, we explored the challenge faced by Army officials in integrating

BRADSO incentives with the branching system. They needed to create a mechanism

73



to allocate positions based on two criteria. While they managed to implement policies

based on one criterion using a priority mechanism, incorporating a second proved

challenging.

These challenges aren’t confined to the military domain. Complex systems like

the Army’s branching structure demand expertise in market design. Therefore, aca-

demic market designers should broaden their focus beyond economic principles like

preference utilitarianism and explore various normative criteria.

As underscored by Li, 2017, market design must consider ethics because policy-

makers often struggle to clearly articulate their ethical requirements. Despite their

understanding of the environment, they may lack precision in expressing their ethical

needs. Moreover, even if policymakers can articulate their ethical requirements, they

may lack the expertise to design mechanisms that align with these principles.

Next, we will explore how the involvement of design economists could have

helped the judiciary avoid costly crises over several decades in India. Despite lacking

training in formal methods, Indian justices have significantly influenced the norma-

tive principles underpinning the country’s affirmative action policies. They are often

instrumental in designing the mechanisms to implement these principles.

India is home to the world’s most extensive affirmative action program, encom-

passing recruitment for public sector jobs, admissions to public universities, and elec-

tions for legislative seats. This program is explicitly outlined and governed by the

country’s Constitution, shaped by congressional amendments, and frequently subject

to legal challenges resolved by the Supreme Court. Our objective in this section is

to illuminate the key components of this program through the lens of matching the-

ory, providing a direct application of reserve systems discussed in Chapter 1, Section

4.2. Recently, Sönmez and Yenmez, 2022a formalized these principles in implement-

ing the most critical Indian affirmative action policies using the framework of reserve

systems.33

33From the market design side, Baswana et al. (2019) reported the design and implementation of a match-
ing mechanism for placement to the most prestigious schools in India incorporating merit and affirmative
action-based admissions. Some other works related to or inspired by affirmative action policies in India
exist. Echenique and Yenmez (2015) gave affirmative action policies in India as an application of con-
trolled choice rules in matching theory. Aygün and Turhan (2020) considered a centralized matching model
in which students may have heterogeneous preferences over whether they receive a position at a college
through affirmative action or regular admissions. They used Indian affirmative action as an example of
why this could happen. Using an empirical approach, Thakur (2021) tested the change of the impact of the
Indian Civil Service state assignment mechanism on the population of individuals affected. Finally, Evren
and Khanna (2024) studied a two-dimensional dynamic apportionment problem to design a roster system.
Single-dimensional roster point systems are used in Indian affirmative action, and they pinpoint which
category of individuals are qualified for the next arriving position. On the other hand, recent legal devel-
opments in India suggest that hiring decisions in teaching institutions should respect affirmative action for
department-wide affirmative action constraints and institution-wide affirmative action constraints.
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In this section, we summarize the evolution of this system through the lens pro-

vided by Sönmez and Yenmez, 2022a. Given the complexity of the principles laid

down in law, the axiomatic framework introduced by Sönmez and Yenmez, 2022a is

invaluable. Through this framework, certain normative and legal principles based

on the country’s laws are translated into fairness axioms in matching theory (refer to

Section 4 of Chapter 1 for the basis of these axioms). We’ll demonstrate that, akin to

the application of the Army’s branching system presented earlier, minimalist market

design (Sönmez, 2023) is particularly relevant in this context.

5.1 Vertical and Horizontal Reservations
In this subsection, we discuss the historical institutional background governing

affirmative action in India. Throughout the section, we follow the terminology of

Sönmez and Yenmez (2022a) and refer to a reserve system as a “choice rule”.

The affirmative action program in India, commonly known as the “reservation

system,” is sanctioned by the 1950 Constitution of the Union of India. It provides

affirmative action for various disadvantaged groups in hiring for government jobs,

admissions to public universities, and elections for legislative seats. For each disad-

vantaged group, a fraction of positions is reserved.

Higher-level affirmative action provisions, called vertical reservations (VR) mainly

include four constitutionally designated groups:

• Scheduled Castes (SC) and Scheduled Tribes (ST) are the original beneficiaries.

• Other Backward Classes (OBC) and Economically Weaker Section (EWS) are recog-

nized these protections through constitutional amendments.

Lower-level affirmative action provisions, called horizontal reservations (HR), are

provided for other disadvantaged groups such as persons with disabilities, women,

ex-servicemen, etc.

Several Supreme Court of India (SCI) cases and their decisions played an impor-

tant historical, institutional, and analytical role in shaping these policies.

5.1.1 Stand-Alone Implementation of VR Policy: Indra Sawhney (1992)

The concepts of vertical and horizontal reservations were introduced in the land-

mark Supreme Court judgment Indra Sawhney vs. Union of India (1992) (Supreme Court

of India, 1992), also known as the Mandal Commission Case.

“A little clarification is in order at this juncture: all reservations are not of the same
nature. There are two types of reservations, which may, for the sake of convenience,
be referred to as vertical reservations and horizontal reservations. The reservation in
favour of scheduled castes, scheduled tribes and other backward classes [under Article
16(4)] may be called vertical reservations whereas reservations in favour of physically
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handicapped [under clause (1) of Article 16] can be referred to as horizontal reservations.
Horizontal reservations cut across the vertical reservations – what is called interlocking
reservations.”

Vertical reservations (or VR protections) correspond to provisions sanctioned under

Article 16(4) of the Constitution (Central Government Act, 1949). As a reparatory

and compensatory mechanism, they were originally intended for historically discrim-

inated groups such as SC, ST, and OBC. With a controversial constitutional amend-

ment, they are also offered for EWS since 2019.

The decision announced that the reservations were to be earmarked in the form

of a set aside protection: Positions secured based on merit do not count against VR-

protected positions.

“It may well happen that some members belonging to, say Scheduled Castes get selected
in the open competition field on the basis of their own merit; they will not be counted
against the quota reserved for Scheduled Castes; they will be treated as open competition
candidates.”

Together, individuals who do not belong to any VR-protected category make up

the general category individuals. Positions that are not VR protected are referred to as

open category (or open) positions. Any individual is eligible for these open positions.

Horizontal reservations (HR protections), as sanctioned under Article 16(1) of the

Constitution, aim to provide a minimum guarantee for disadvantaged groups such

as persons with disabilities, women, ex-servicemen, and others. Implementation of

this secondary affirmative action policy ensures that positions secured on merit still

count against HR-protected positions.

There is one other key difference between VR and HR protections. VR policy is

implemented as “hard reserves”; they cannot be awarded to individuals who are not

members of the protected group. On the contrary, HR policy is implemented as “soft

reserves”; they simply provide preferential treatment to members of the protected

group. However, if there are insufficient members of the target group, HR-protected

positions can be awarded to other individuals. Refer to Section 4.2.3 of Chapter 1 of

this handbook for a discussion on hard reserves and soft reserves.

In India, individuals can belong to at most one Vertical Reservation (VR)-protected

category. When HR protections are absent, implementing VR protections is straight-

forward using the Over-and-Above Choice Rule that was discussed in Chapter 1, Sec-

tion 4. We restate this rule:

Over-and-Above Choice Rule.

Step 1. Allocate open positions to the highest merit-ranking individuals.

Step 2. For each VR-protected group, allocate the reserved positions to the highest

76



merit-ranking members of the group who remain unassigned.

5.1.2 Joint Implementation of VR and HR Policies: Anil Kumar Gupta
(1995)

Most applications involve both HR and VR protections. Throughout India, 4-5% of

positions are HR protected for persons with disabilities. Moreover, in many states, 30-

35% are HR protected for women. However, since HR-protected groups can overlap

with VR-protected groups, concurrent implementation poses challenges.

To address this issue, the Supreme Court’s judgment in Anil Kumar Gupta vs.

State of U.P. (1995) (Supreme Court of India, 1995) introduced the following choice

rule, mandating it throughout India:

SCI-AKG Choice Rule.

Step 1a. Provisionally allocate open positions to the highest merit-ranking individuals.

Step 1b. Utilizing individuals who are not VR-protected, make any needed adjustments

to provisional awardees in Step 1a to accommodate open-category HR protec-

tions.34

Step 2a. For each VR-protected group, provisionally allocate the reserved positions to

the highest merit-ranking members of the group who remain unassigned.

Step 2b. Make any needed adjustments to provisional awardees in Step 2a to accom-

modate HR protections within VR-protected positions.

Observe that, without HR protections, Steps 1b and 2b become redundant, and the

SCI-AKG choice rule becomes equivalent to the Over-and-Above choice rule. Unlike

the Over-and-Above choice rule, however, the SCI-AKG choice rule has a critical flaw

that has introduced two key anomalies, sparking thousands of litigations in India over

the next 25 years.

Before presenting the failures of the SCI-AKG choice rule, we demonstrate how it

works with an example.

Example 6 (The Mechanics of the SCI-AKG Choice Rule) Suppose there is a single
VR-protected reserve category besides the open category, and there are 300 positions in a gov-
ernment department, 240 of which are reserved for the open category and 60 reserved for the
reserve category. Also, within each category, there is a minimum guarantee of 50% for women
(120 seats reserved within open category and 30 within the reserve category).

There are 300 general-category men (mG) and 100 general-category women (wG) who are
not eligible for the reserve category positions. Additionally, there are 100 reserve-category men
(mR) and 100 reserve-category women (wR).

34We will be more precise about how this is done below in Example 6.
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Suppose the merit exam scores — used as the admission criterion for this government job
— are distributed uniformly between 1 and 100 so that the same distribution is obtained in
each group, i.e., given a score, there are 3 general-category men with that score and 1 from each
other group.

We use several figures to demonstrate the iterative procedure of the SCI-AKG choice rule.
Before the assignment starts, Figure 23 summarizes the setup.

OPEN		(0.5	w)	 RESERVED	(0.5	w)	

Merit	Score	

mG	

mR	

wG	

wR	

Figure 23: Setup of Examples 6 and 7.

SCI-AKG choice rule allocates positions through the following steps:
Step 1a. Open category positions are provisionally assigned to the highest-merit individ-

uals, resulting in 120 positions being assigned to members of the group mG and 40 positions
being assigned to each of the groups mR, wG, and wR (See Figure 24).

OPEN		(0.5	w)	 RESERVED	(0.5	w)	

Merit	Score	

mG	

mR	

wG	

wR	

Figure 24: Step 1a of SCI-AKG choice rule in Example 6.
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Step 1b. In Step 1a, only 80 women are admitted to the open category, although there is
a minimum guarantee of 120 seats for women within the open category. Thus, as part of the
HR policy “adjustment”, 40 of the lowest-scoring men are removed from open category seats:
30 general-category men and 10 reserve-category men are displaced (see Figure 25).

OPEN		(0.5	w)	 RESERVED	(0.5	w)	

Merit	Score	

mG	

mR	

wG	

wR	

CSCI	

Figure 25: Step 1b - removal of “extra” men in the SCI-AKG Rule in Example 6 as part of open-
category HR adjustment.

To complete the open-category HR policy adjustment process, 40 general-category women
with the next highest scores are admitted to fill these vacated positions, resulting in a total of
80 open category positions being awarded to general-category women (see Figure 26).

OPEN		(0.5	w)	 RESERVED	(0.5	w)	

Merit	Score	

mG	

mR	

wG	

wR	

CSCI	

Figure 26: Step 1b - replacement of women to vacated positions in the SCI-AKG Rule in Example
6 as part of open-category HR adjustment.

Step 2. Afterwards, reserve category positions are provisionally assigned to the remain-
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ing highest-scoring members of the reserve category. The 10 reserve category men who were
displaced in Step 1b from their open category seats to fulfill the HR protections for women all
have higher scores than all remaining reserve-category women. In Step 2a, each of these men
receives a position, followed by 25 reserve-category men and 25 reserve-category women. As
there is a minimum guarantee of 30 positions for women within the reserve category, adjust-
ments are necessary. In Step 2b, the 5 lowest-merit reserve-category men are displaced and
replaced with the remaining highest-merit reserve-category women. Eventually, 30 reserve-
category women and 30 reserve-category men are chosen for the reserve-category positions
(see Figure 27 for the final assignment).

OPEN		(0.5	w)	 RESERVED	(0.5	w)	

Merit	Score	

mG	

mR	

wG	

wR	

CSCI	

Figure 27: Final outcome of the SCI-AKG Rule after Step 2 in Example 6.

The outcome of the SCI-AKG choice rule is such that, subject to awarding positions to the
highest-scoring individuals within each group:

• 90 out of 300 general-category men,
• 60 out of 100 reserve-category men,
• 80 out of 100 general-category women, and
• 70 out of 100 reserve-category women

receive positions.

5.1.3 Limitations of the SCI-AKG Choice Rule and Their Adverse Impli-
cations

Example 6 illustrates two related shortcomings of the SCI-AKG choice rule.

In Step 1b, as we adjust the provisional assignment from Step 1a to respect the HR

protections for women in the open category, the reserve category women are not con-

sidered for the vacated seats. Some may be more deserving than the general-category

women who were assigned to the vacated seats. This is especially problematic if some
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of these more deserving reserve-category women do not receive a VR-protected po-

sition either in Step 2. This is exactly what has happened in this example. As seen

in Figure 27, the lowest-merit individual accepted from each group, wG, has a lower

cutoff than wR. This creates justified envy for the 10 reserve-category women who

are not matched but each have a score that is at least as high as the lowest-score

general-category woman accepted (with 9 having strictly higher scores). In essence,

low-privilege women lose positions to higher-privilege women despite having higher

merit scores, directly conflicting with the essence of affirmative action.

Due to the justified envy, the SCI-AKG choice rule also incentivizes adversely af-

fected reserve-category women to conceal their VR-protection status. They would be

better off if they never revealed their reserve category.

Formally, SCI-AKG choice rule violates the following two properties, often result-

ing in outcomes that contradict the philosophy of affirmative action.

No Justified Envy (Sönmez and Yenmez, 2022a): A higher-merit-ranking individ-

ual cannot lose a position to a lower-merit-ranking individual, unless the latter is of

strictly lower privilege.

Incentive Compatibility (Aygün and Bó, 2021): An individual never loses a position

solely due to declaring their reserve-eligible attributes.

Root Cause of the Failures of the SCI-AKG Choice Rule. Observe that, the

key issue with the SCI-AKG choice rule lies in its Step 1b. VR-protected individu-

als are not considered for open positions when adjustments for HR policy are made.

Thus, the root cause of the failures is the denial of VR-protected individuals of their

open category HR protections if they claim their VR protections.

In practice, these problems with the SCI-AKG choice rule had a profound effect in

the country, leading to thousands of lawsuits with a waste of resources in litigation

efforts and an effective halt in hiring practices in some places. We summarize some of

these judicial cases filed in the decades following 1995 to demonstrate the severity of

the problems due to failures of no justified envy and incentive compatibility.

Litigations Related to the Axiom of No Justified Envy. In numerous cases,

public institutions resisted adopting the Supreme Court-mandated procedure and

allowed reserve-category candidates to benefit from open-category HR protections.

This resistance often led to litigation from lower merit-ranking general-category can-

didates who were not selected.

1. Rajeshwari vs State (2013) (Rajasthan High Court, 2013): A large-scale litiga-

tion with 120 petitions against the State of Rajasthan ensued when the State allowed
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reserve-category women to benefit from open-category HR protections. The High

Court ruled that the State was at fault and ordered the State to adopt the Supreme

Court-mandated procedure.

2. Ashish Kumar Pandey and Others vs State (2016) (Allahabad High Court, 2016):

This case resembled Rajeshwari vs State (2013), with 25 petitioners litigating against

the State of Uttar Pradesh for allowing reserve-category women to benefit from open-

category HR protections. This case was polarizing, as the counsel for petitioners ar-

gued that the error was intentional, stating,

“The action of the Board is not only motivated but purports to take forward the un-
written agenda of the State Government to accommodate as many numbers of OBC/SC
candidates in the open category.”

The judge of the case ruled that the State must correct their erroneous application

of HR protections, emphasizing that the State played foul:

“There is merit in the submission of the learned counsel for the petitioners that the con-
duct of the members of the Board appears not only mischievous but motivated to achieve
a calculated agenda by deliberately keeping meritorious candidates out of the select list
[. . .] I am constrained to hold that both the State and the Board have played fraud on the
principles enshrined in the Constitution with regard to public appointment.”

The State appealed the judgment and lost the appeal as well.

3. Smt. Megha Shetty vs State (2013) (Rajasthan High Court - Jodhpur, 2013):

This case was similar to the earlier ones, with a general-category petitioner litigating

against the State for allowing reserve-category women to benefit from open category

HR protections. Unlike the earlier cases, this case was dismissed at the High Court.

The petitioner appealed the decision, bringing the case to a larger bench of the High

Court. The appeal was also dismissed. The judges had difficulty entertaining the

possibility that a procedure mandated by the Supreme Court could possibly allow for

justified envy:

“The outstanding and important feature to be noticed is that it is not the case of the
appellant-petitioner that she has obtained more marks than those 8 OBC (Woman) can-
didates...”

In numerous other cases, a public institution that used the Supreme Court-

mandated procedure faced litigation from reserve-category candidates who were not

selected despite having higher merit scores than their general-category counterparts

who were selected.

4. Asha Ramnath Gholap (2016) (Bombay High Court, 2016): Following the law,

the State used the Supreme Court-mandated choice rule, resulting in an instance
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of justified envy. A reserve-category petitioner brought the case to the High Court.

The judges granted the petition, stating that a candidate cannot be denied an open-

category position based on their reserve-category membership.

Litigations Related to the Failure of Incentive Compatibility. Some cases

were examples of wrongful implementation and possible misconduct. While appli-

cants are entitled to declare their social categories or traits, they are not required to.

Since the SCI-AKG choice rule is not incentive-compatible, withholding this informa-

tion may make sense.

5. Shilpa Sahebrao Kadam (2019) (Bombay High Court, 2019a): Several candidates

withheld their reserve-category memberships to take advantage of the open-category

HR protections. Authorities requested personal information to identify their reserve-

category memberships and evaluated their applications as if these candidates claimed

their VR protections. The candidates were all denied positions despite having higher

merit scores than their general-category counterparts who were selected due to open-

category HR protections. So they went to court.

The petitioners lost the case despite the “faulty” implementation. Indeed, the

faulty implementation seems to be “systematic” and “intentional” as revealed by the

court proceedings.

“According to Respondent - Maharashtra Public Service Commission, in view of the
Circular dated 13.08.2014, only the candidates belonging to open (Non-reserved) cate-
gory can be considered for open horizontally reserved posts meaning thereby, the reserve-
category candidates cannot be considered for open horizontally reserved post. Reference is
made to a communication issued by the Additional Chief Secretary (Service) of the State
of Maharashtra dated 26.07.2017, whereunder it is prescribed that a female candidate
belonging to any reserve-category, even if tenders application form seeking employment
as an open category candidate, the name of such candidate shall not be recommended for
employment against an open category seat.”

6. Smt. Tejaswini Raghunath Galande (2019) (Bombay High Court, 2019b): The pe-

titioner declared her reserve-category membership despite the lack of VR-protected

positions for her category. She lost access to open-category HR protections, resulting

in an instance of justified envy. Prior to bringing her case to the High Court, she filed

a petition to a lower court. Her case was dismissed. She appealed at the High Court,

which in turn was granted. There are, however, similar petitions which have been

dismissed.
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5.1.4 Addressing the Failures: Two-Step Minimum Guarantee Choice Rule

Since the root cause of the crisis from SCI-AKG choice rule is the denial of VR-

protected individuals’ open-category HR protections, a resolution lies in removing

this restriction. That is, in Step 1b of the procedure, all individuals are considered the

adjustments for open-category HR protections rather than only the members of the

general category who are ineligible for VR protections. For reasons that will be clear

in Section 5.3, we refer to this modified choice rule as two-step minimum guarantee
(2SMG) choice rule.

Using the same setup as in Example 6 (see Figure 23), we next present how 2SMG

choice rule works.

Example 7 (Mechanics of the 2SMG Choice Rule)
Step 1a. Open category positions are provisionally assigned to the highest-merit individuals,
resulting in 120 positions being assigned to members of the group mG and 40 positions being
assigned to each of the groups mR, wG, and wR (see Figure 28).

OPEN		(0.5	w)	 RESERVED	(0.5	w)	

Merit	Score	

mG	

mR	

wG	

wR	

Figure 28: Step 1a of 2SMG Choice Rule in Example 7.

Step 1b. In Step 1a, only 80 women are admitted to the open category, although there is
a minimum guarantee of 120 seats for women within the open category. Thus, as part of the
HR policy “adjustment”, 40 of the lowest-scoring men are removed from open category seats:
30 general-category men and 10 reserve-category men are displaced (see Figure 29).
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OPEN		(0.5	w)	 RESERVED	(0.5	w)	

Merit	Score	

mG	

mR	

wG	

wR	

Figure 29: Step 1b - replacement of women to vacated positions in the 2SMG choice rule in
Example 7 as part of open-category HR adjustment.

This is where the procedure differs from the SCI-AKG choice rule: To complete the open-
category HR policy adjustment process, 40 women with the next highest scores—20 each from
general and reserve categories—are admitted to fill these vacated positions, resulting in a total
of 60 open category positions being awarded to general-category women and 60 to reserve-
category women (see Figure 30).

OPEN		(0.5	w)	 RESERVED	(0.5	w)	

Merit	Score	

mG	

mR	

wG	

wR	

Figure 30: Step 1b - replacement of women to vacated positions in the 2SMG choice rule in
Example 7 as part of open-category HR adjustment.

Step 2. Afterwards, reserve category positions are provisionally assigned to the remaining
highest-scoring members of the reserve category. In Step 2a, 40 reserve-category men are pro-
visionally placed as they have the highest merit scores among the remaining reserve-category
individuals, followed by 10 reserve-category men and 10 women for the remaining 20 seats.
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Since this assignment violates the minimum guarantee of 30 positions for reserve-category
women, 20 reserve-category men with the lowest merit scores are displaced in Step 2b and
replaced with the remaining 20 reserve-category women with the highest merit scores. Thus,
in the end, 30 reserve-category women and 30 reserve-category men are placed in Step 2 (see
Figure 31).

OPEN		(0.5	w)	 RESERVED	(0.5	w)	

Merit	Score	

mG	

mR	

wG	

wR	

Figure 31: Final outcome of 2SMG Choice Rule after Step 2 in Example 7.

The outcome of 2SMG choice rule is such that, subject to awarding positions to the highest-
scoring individuals within each group:

• 90 out of 300 general-category men,
• 60 out of 100 reserve-category men,
• 60 out of 100 general-category women, and
• 90 out of 100 reserve-category women

receive positions.

Directly addressing the root cause of the failures of the SCI-AKG choice rule, it

is easy to observe that the 2SMG choice rule satisfies the axioms of no justified envy

and incentive compatibility (Sönmez and Yenmez, 2022a). In Example 7, eligible for

open-category HR protections, not only are the reserve-category women no longer

disadvantaged compared to general category women, but they also benefit from pos-

itive discrimination as intended by the Constitution.

5.1.5 Constitutional Resolution: Saurav Yadav vs. State of Uttar Pradesh
(2020)

In a March 2019 working paper, Sönmez and Yenmez, 2019—later published in

Sönmez and Yenmez, 2022a—documented the failures of the SCI-AKG choice rule and

linked its shortcomings to its failure of the no justified envy axiom. They proposed the
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2SMG choice rule as a solution. Despite causing significant disruption in the country

for a quarter of a century, the Supreme Court had not addressed the failure of the

SCI-AKG choice rule before the circulation of this paper. However, this changed in

December 2020 with a landmark Supreme Court judgment. Using arguments similar

to those presented by Sönmez and Yenmez (2019, 2022a), the justices arrived at the

same conclusions in Saurav Yadav vs. State of Uttar Pradesh (2020) (Supreme Court

of India, 2020) as Sönmez and Yenmez had earlier. Specifically:

• The no justified envy axiom—first time formulated in a Supreme Court

judgment—is now mandated for all choice rules used in India.

• The long-standing SCI-AKG choice rule was rescinded due to its failure to sat-

isfy the no justified envy axiom.

• As a possible replacement for the SCI-AKG choice rule, the 2SMG choice rule

is endorsed, although it is not explicitly mandated.

• The implementation of VR protections in the presence of HR protections has

gained clarity to a degree previously unavailable.

Sönmez, 2023 interprets the parallel with Sönmez and Yenmez, 2019, 2022a as external

validation for minimalist market design, briefly discussed in Section 4.5.

We proceed with our section, conducting a formal analysis as an application of

matching theory to elaborate on the broader implications of this reform in India.

5.2 Formal Model
There are q identical positions that need allocation to a set of individuals I. Each

individual i ∈ I requires one position and endowed with a distinct merit score σ(i) ∈
R+. While individuals with higher merit scores naturally have stronger claims for

a position in the absence of affirmative action (AA) policies, various groups benefit

from two types of AA policies: Vertical Reservations (VR) and Horizontal Reservations
(HR).

The VR policy is managed through a system of category membership. Let R be

the set of reserve-eligible categories, and g ̸∈ R denote the general category for those

ineligible for VR protections. The function ρ : I → R ∪ {∅} represents the (reserve-

eligible) category membership function. Each individual belongs to a single category

in R ∪ {g}, so that ρ(i) = c indicates that individual i belongs to the reserve-eligible

category c ∈ R, and ρ(i) = ∅ indicates that individual i belongs to the general cate-

gory g.

Let qc denote the number of category-c positions set aside for members of a reserve-

eligible category c ∈ R. For any reserve-eligible category c ∈ R, an individual i ∈ I
is eligible for category-c positions if ρ(i) = c. Let qo = q − ∑c∈R qc denote the number of

the open category (or category-o) positions. All individuals are eligible for open category
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positions. Let V = R ∪ {o} denote the set of vertical categories for positions.

For each vertical category v ∈ V, let Iv ⊆ I denote the set of individuals who are

eligible for positions in category v. Therefore, Io = I, as all individuals are eligible for

the open category, and Ic = {i ∈ I : ρ(i) = c} for any c ∈ R.

Given a category v ∈ V, a category-v choice rule (or single-category choice rule for
category v) is a function Cv : 2I → 2Iv

such that, for any J ⊆ I,

Cv(J) ⊆ J ∩ Iv and |Cv(J)| ≤ qv.

A (multi-category) choice rule is a function C =
(
Cν

)
ν∈V : 2I →×ν∈V 2Iν

such that, for

any set of individuals J ⊆ I,

1. for any vertical category v ∈ V,

Cv(J) ⊆ J ∩ Iv and |Cv(J)| ≤ qv,

2. for any two distinct vertical categories v, v′ ∈ V,

Cv(J) ∩ Cv′(J) = ∅.

For any choice rule C =
(
Cν

)
ν∈V , the resulting aggregate choice rule Ĉ : 2I → 2I is

given as

Ĉ(J) =
⋃

ν∈V

Cν(J) for any J ⊆ I.

For any set of candidates, a choice rule C indicates which ones receive positions

and from which categories. The resulting set of candidates selected by the choice rule

C is given by the aggregate choice rule Ĉ.

The HR policy is managed through a system of trait ownership. Let T be a set

of traits associated with HR protections. Let τ : I → 2T be the trait function that

identifies each individual’s traits. For any vertical category v ∈ V and trait t ∈ T, let

qv
t be the minimum number of category-v positions that must be awarded to eligible

individuals with trait t. We refer to these positions as the category-v HR-protected

positions for trait t.
While each individual is a member of a single category in R ∪ {g} in India, they

may have multiple traits. We refer to HR policies where an individual can have at

most one trait as non-overlapping HR protections, and those where an individual can

have multiple traits as overlapping HR protections.

We start with the more basic case of non-overlapping HR protections as it is sim-

pler, and more importantly, the court rulings are presented for this case. The failure

of the SCI-AKG choice rule is already prominent in this case. Although the SCI-AKG
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choice rule is not well-defined for the more general case, in Section 5.4, we will present

an analysis of this case as well. We will show that there is a choice rule in this case

as well that uniquely satisfies the Supreme Court’s mandates in Saurav Yadav (2020)

(Supreme Court of India, 2020).

5.3 Analysis for Non-Overlapping HR Protections
HR protections are provided within each vertical category on a minimum guarantee

basis. This means that positions obtained without invoking any HR protection still

accommodate the HR protections. Institutions in India typically implement the HR

policy through the kind of “adjustments” illustrated in Examples 6 and 7. However,

there is a more direct way to implement this policy.

Given any vertical category v ∈ V, HR protections within category-v can be im-

plemented with the following choice rule, first formalized in Hafalir, Yenmez, and

Yildirim (2013).

Minimum Guarantee Choice Rule Cv
mg.

For any set of individuals J ⊆ Iv,

Step 1. For each trait t ∈ T, assign HR-protected positions to highest merit-score indi-

viduals in J who have trait t.
Step 2. For positions unfilled in Step 1 (open or HR-protected), choose the highest

merit-score individuals in J who are still unassigned.

Since VR protections are implemented on an over-and-above basis and HR protec-

tions are implemented within each vertical category on a minimum guarantee basis,

Sönmez and Yenmez (2019, 2022a) proposed a two-step implementation of the min-

imum guarantee choice rule for the joint implementation of the two policies. This

involves first applying it for the open category, and subsequently for each reserve-

eligible category.

2-Step Minimum Guarantee Choice Rule (2SMG) C2s
mg =

(
C2s,ν

mg
)

ν∈V .
Given a set of individuals J ⊆ I,

Step 1. C2s,o
mg (J) = Co

mg(J),

Step 2. C2s,c
mg (J) = Cc

mg

((
J \ Co

mg(J)
)∩ Ic

)
for any c ∈ R.

Importantly, when HR protections are non-overlapping, this procedure is equiv-

alent to the choice rule presented in Section 5.1.4, which is derived as a minimal-

ist amendment of the SCI-AKG choice rule by ensuring everyone’s eligibility for HR

policy adjustments in Step 1b (Sönmez and Yenmez, 2022a). By processing the HR-
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protected positions first within each category, the current formulation becomes more

direct, eliminating any need for adjustments.

Saurav Yadav (2020) (Supreme Court of India, 2020) marks the end of an era where

a three-judge bench of the Supreme Court brought an end to the 25-year tenure of the

AKG-SCI choice rule and endorsed the 2SMG choice rule, the formulation defined

through the adjustment process. This formulation of the 2SMG choice rule first ap-

peared in Indian court rulings with the judgment Tamannaben Ashokbhai Desai (2020)
(Gujarat High Court, 2020) where it became mandated for the State of Gujarat.

Another key mandate in Saurav Yadav (2020) is the enforcement of the axiom of

no justified envy, in case a choice rule that differs from 2SMG is adopted by a public

institution. While this axiom was always implicitly expected in the country, it was

never explicitly formulated prior to this judgment, thus causing much of the crisis on

joint implementation of VR and HR policies. Therefore, not only Sönmez and Yenmez

(2019, 2022a) correctly anticipated the “proper” amendment of the SCI-AKG choice

rule, but also the intended social justice axiom in the spirit of the country’s affirmative

action policies.

Perhaps due to the aftermath of the AKG-SCI choice rule’s enforcement, the

Supreme Court justices have merely endorsed the 2SMG choice rule and refrained

from enforcing it. However, one misleading aspect of this “seemingly” more flexible

guidance on selecting an allocation mechanism exists.

Desiderata Mandated under Saurav Yadav (2020). As we have emphasized,

accurately identifying the root cause of the crisis as the failure of no justified envy under

the rescinded SCI-AKG choice rule, the justices have mandated this important axiom

under Saurav Yadav (2020). On top of this axiom, three additional desiderata are also

mandated with this landmark judgment.

We next formulate all four mandates as rigorous axioms.

A choice rule C =
(
Cν

)
ν∈V is non-wasteful if, for every J ⊆ I, v ∈ V, and j ∈ J,

j ̸∈ Ĉ(J) and |Cv(J)| < qv =⇒ j ̸∈ Iv.

A position can remain idle at any category v ∈ V only if none of the individuals who

remain unassigned is eligible for a category-v position. This mild efficiency axiom has

been mandated in India since Indra Sawhney (1992).
The following auxiliary concept simplifies the formulation of our next three ax-

ioms.

Given a category v ∈ V and set of individuals J ⊆ Iv, let nv(J) denote the max-

imum number of HR-protected positions that can be honored; i.e., awarded to their
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intended beneficiaries. For the case of non-overlapping HR protections, for any cate-

gory v ∈ V, the HR-maximality function nv : 2Iv → Z+ is given as follows:

For any J ⊆ Iv,

nv(J) = ∑
t∈T

min
{∣∣{i ∈ J : t ∈ τ(i)}

∣∣, qv
t

}
.

A choice rule C =
(
Cν

)
ν∈V maximally accommodates HR protections if, for each J ⊆ I,

v ∈ V, and j ∈
(

J ∩ Iv) \ Ĉ(J),

nv(Cv(J) ∪ {j}
)
̸> nv(Cv(J)

)
.

An individual cannot remain unassigned if they can increase the number of HR-

protected positions honored at some category for which they are eligible. It became

mandated in India with Saurav Yadav (2020) in this form. It fails under the rescinded

SCI-AKG choice rule because VR-protected individuals had been deemed ineligible

for HR protections within open positions under this rule.

A choice rule C =
(
Cν

)
ν∈V satisfies no justified envy if, for each J ⊆ I, v ∈ V,

i ∈ Cv(J), and j ∈
(

J ∩ Iv) \ Ĉ(J),

either σ(i) > σ(j) or nv(Cv(J)
)
> nv

((
Cv(J) \ {i}

)
∪ {j}

)
.

At any category v ∈ V, a lower merit-ranking individual i ∈ Iv can receive a position

at the expense of a higher merit-ranking individual j ∈ Iv who remains unassigned

only if replacing i with j decreases the number of HR-protected positions that are

honored at category v. The mandate of this axiom is the main message of Saurav
Yadav (2020). In India, this axiom is widely referred to as the principle of merit when

v = o, and as the principle of inter se merit when v ∈ R.

A choice rule C =
(
Cν

)
ν∈V complies with VR protections if, for each set of individuals

J ⊆ I and reserve-eligible category c ∈ R, whenever i ∈ Cc(J) (and hence i ̸∈ Co(J))
the following three conditions hold:

1. |Co(J)| = qo,

2. for each j ∈ Co(J),

either σ(j) > σ(i) or no(Co(J)
)
> no((Co(J) \ {j}) ∪ {i}

)
, and

3. no(Co(J) ∪ {i}
)
̸> no(Co(J)

)
.

Here, the first two conditions formulate the idea of a vertical reservation à la

Indra Sawhney (1992). The third condition is a new mandate in Saurav Yadav (2020),
and it additionally requires that a member of a reserve-eligible category who can in-

crease the number of HR-protected positions honored in the open category shall not
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be awarded a VR-protected position.

Apart from enforcing the axiom of no justified envy and rescinding the SCI-AKG

choice rule, Saurav Yadav (2020) also brings much-needed clarity to a subtle aspect of

the implementation of VR protections in the presence of HR protections. When the

concept of vertical reservations was introduced in Indra Sawhney (1992), its defining

characteristics were described as follows:

“It may well happen that some members belonging to, say Scheduled Castes get selected
in the open competition field based on their own merit; they will not be counted against
the quota reserved for Scheduled Castes; they will be treated as open competition candi-
dates.”

However, no judgment of the Supreme Court before Saurav Yadav (2020) explic-

itly formulated what it means to get selected in the open competition based on merit

when there are also HR protections. To a large extent, much of the disarray about

the concurrent implementation of VR and HR policies boils down to this ambiguity.35

This vagueness is now removed under Saurav Yadav (2020), where an individual who

gets selected in the open competition based on merit is legally defined as one who

deserves an open category position based on merit with or without invoking the HR

protections. The third condition in our last axiom is an implication of this clarification.

Collectively, the mandates in Saurav Yadav (2020) have a very sharp policy impli-

cation.

Theorem 13 (Sönmez and Yenmez, 2022a) Suppose each individual has at most one trait.
A choice rule is non-wasteful, maximally accommodates HR protections, satisfies no justified
envy, and complies with VR protections if, and only if, it is the 2SMG choice rule C2s

mg.

Therefore, while Saurav Yadav (2020) has not explicitly enforced and merely en-

dorsed the 2SMG choice rule, it has indirectly enforced this choice rule through its

other mandates.

5.4 Overlapping HR Protections
We next extend our analysis to the general version of the problem with overlap-

ping HR protections. In India, VR-protected groups do not overlap with each other,

although they do overlap with HR-protected groups. So far, we have assumed that

HR-protected groups do not overlap with each other either (i.e., individuals have at

most one trait). Court cases seem to abstract away from any complications due to

overlapping HR-protected groups.

However, in many field applications, HR-protected groups overlap, e.g., HR pro-

35A key (but underutilized) role for a market designer is bringing formalism to analytical concepts de-
veloped by layman or experts in non-technical fields.
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tections for “women” and “persons with disabilities”.

A key question arises: Does a member of multiple HR-protected groups count to-

wards minimum guarantees for all these groups or only one of them upon admission?

This is unlegislated and typically left at the discretion of the central planner.

We adopt the latter one-to-one HR matching convention. There are several reasons

for this choice. Position numbers are typically announced for category-trait pairs in

practice in India, which automatically embeds this convention into the outcome of

the problem. Thus, it is way more widespread in the field. From a formal perspective,

this convention also provides a “clean” generalization of Theorem 13 to the general

version of the problem with overlapping HR protections, thus specifying a unique

choice rule that abides by the mandates of Saurav Yadav (2020) for this case as well.

One natural question is, why not use the 2SMG choice rule (cf. Section 5.3) for this

case as well? That is, first allocate open positions with the minimum guarantee choice

rule in Step 1, and next use the same choice rule for each VR-protected category in

Step 2. After all, 2SMG uniquely satisfies the mandates of Saurav Yadav (2020) for the

simpler case with non-overlapping HR protections.

This idea is not farfetched; however, there is a technical problem. When HR pro-

tections are non-overlapping, no individual is eligible for multiple HR-protected po-

sitions, thus making Step 1 of the minimum guarantee rule (cf. Section 5.3) uniquely

defined. However, this is not the case when HR-protected positions overlap. De-

pending on how we process the traits, we may choose different sets of individuals.

For example, if we process traits with a given fixed sequence, some processing orders

may lead to the needless rejection of high-merit individuals. This problem is analo-

gous to the problem with sequential reserve rules introduced in Section 4 of Chapter

1, as illustrated in Example 20 of that chapter.

Thus, processing HR protections in a “mechanical” way using a fixed sequence

of traits may lead to implausible outcomes, which may depend on the processing se-

quence of HR-protected groups. Higher merit-score individuals can be rejected at the

expense of lower merit-score individuals without increasing the overall representa-

tion of HR-protected groups. HR-protected groups may end up being unnecessarily

underrepresented.

The admission of an individual with multiple traits presents a “flexibility” in ac-

commodating HR protections; one that is lost under the minimum guarantee choice

rule.

This flexibility can be utilized to obtain a more meritorious outcome. To formulate

a generalization of the minimum guarantee choice rule that achieves this objective,

we first need to generalize the HR-maximality function nv (cf. Section 5.3) for each

vertical category v ∈ V.
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5.4.1 Generalized HR-Maximality Function and Meritorious Horizontal
Choice Rule

Consider a situation with two HR-protected positions, one for women and one for

persons with disabilities. If the only individuals with these traits are a disabled man

and a disabled woman, it will not be possible to honor both HR-protected positions

if the HR-protected position for persons with disabilities is awarded to the disabled

woman. While she could as well receive the HR-protected position for women, the

disabled man cannot. Thus, the assignment of HR-protected positions has non-trivial

consequences for cases of overlapping HR protections.

Given a category v ∈ V and set of individuals J ⊆ Iv, recall that nv(J) denotes the

maximum number of HR-protected positions that can be “honored”; ie, awarded to

target beneficiaries. This expression is key for all Saurav Yadav (2020) axioms. For the

general case with overlapping HR protections, this number can be found through sev-

eral polynomial time algorithms, such as Edmonds’ Blossom Algorithm (Edmonds,

1965). It requires the maximal matching of individuals to traits.

Given a category v ∈ V and a set of individuals J ⊊ Iv, an individual i ∈ Iv \ J
increases HR utilization of J if

nv(J ∪ {i}) = nv(J) + 1.

We are ready to formulate a generalization of the minimum guarantee choice rule,

introduced by Sönmez and Yenmez, 2022a, that utilizes the flexibility in accommodat-

ing the HR protections under the one-to-one HR matching convention.

Meritorious Horizontal Choice Rule Cv
M

.

Step 1.

Step 1.0. Let I0 = ∅.

Step 1.k. (k > 0) Assuming such an individual exists, choose the highest merit-

score individual in J \ Ik−1 who increases the HR utilization of Ik−1.

Denote this individual by ik and let

Ik = Ik−1 ∪ {ik}.

Continue with Step 1.k+1.

If no such individual exists, proceed to Step 2.

Step 2. For unfilled positions, choose unassigned individuals with the highest merit

scores until either all positions are filled or all individuals are selected.

The following result justifies the naming of the meritorious horizontal choice rule

Cv
M

.
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Proposition 6 (Sönmez and Yenmez, 2022a) Given a category v ∈ V, let Cv be any
single-category choice rule that maximally accommodates HR protections. Then, for every
set of individuals J ⊆ Iv,

1. |Cv(J)| ≤ |Cv
M
(J)|, and

2. for every k ≤ |Cv(J)|, if i is the k-th highest merit-score individual in Cv
M
(J) and j is

the k-th highest merit-score individual in Cv(J), then

i = j or σ(i) > σ(j).

The next result shows that the meritorious horizontal choice rule Cv
M

is the only

plausible procedure to accommodate the HR protections under the one-to-one HR

matching convention.

Theorem 14 (Sönmez and Yenmez, 2022a) Given a category v ∈ V, a single-category
choice rule is non-wasteful, maximally accommodates HR protections, and satisfies no justified
envy, if, and only if, it is the meritorious horizontal choice rule Cv

M .

5.4.2 2-Step Meritorious Horizontal Choice Rule

The following choice rule, as proposed by Sönmez and Yenmez, 2022a, is a gen-

eralization of the 2SMG choice rule for the case of the model with overlapping HR

protections. Instead of the minimum guarantee choice rule, it employs the meritori-

ous horizontal choice rule in each step.

2-Step Meritorious Horizontal Choice Rule (2SMH) C2s
M
= (C2s,ν

M
)ν∈V .

Given a set of individuals J ⊆ I,

Step 1. C2s,o
M

(J) = Co
M
(J)

Step 2. C2s,c
M

(J) = Cc
M

((
J \ Co

M
(J)

)∩ Ic)) for any c ∈ R.

Our next result establishes that the 2SMH choice rule is the only mechanism that

abides by the Saurav Yadav (2020) axioms for the general case of the problem with

overlapping HR protections.

Theorem 15 (Sönmez and Yenmez, 2022a) A choice rule is non-wasteful, maximally ac-
commodates HR protections, satisfies no justified envy, and complies with VR protections if,
and only if, it is the 2SMH choice rule C2s

M
.

5.5 Indian Affirmative Action with Multiple Institutions
In many cases, the positions to be filled are not identical. For instance, there are

multiple institutions, each of which requires adherence to affirmative action laws. Ap-

plicants often have strict preferences for these institutions.
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This broader version of the problem is significant in India because it covers not

only the allocation of some of the most prestigious public jobs (e.g., Indian Adminis-

trative Service positions) but also the assignment of public college seats, such as the

admissions process for the Indian Institutes of Technology, world renowned engineer-

ing schools in India (Baswana et al., 2019)).

The results we give here extend the prescription of the 2SMH choice rule intro-

duced in Section 5.4 to this setting. This subsection follows Sönmez and Yenmez

(2022b), and almost all definitions and results are from this paper.

Suppose a set of students I, a set of vertical categories V = R ∪ {o}, a set of traits

T, a reserve category eligibility function ρ, and a trait function τ are given as before.

Let the set of schools be denoted as S. Each school s ∈ S has qs identical positions.

For each s ∈ S and c ∈ R, let qc
s denote the number of VR-protected school seats at

school s for members of reserve-eligible category c. For each s ∈ S, the number of

open category seats are given as qo
s = qs − ∑c∈R qc

s. For each s ∈ S, v ∈ V, and t ∈ T,

let qv
s,t denote the minimum number of seats guaranteed at school s for category-v

eligible students who possess trait t. Let

q =
(

qs,
(
qν

s , (qν
s,t)t∈T

)
ν∈V

)
s∈S

refer to the capacity and reserve vector at all schools.

For each student i ∈ I, let ≻i denote a strict preference relation over S ∪ {∅},

where ∅ refers to remaining unmatched. Let ⪰i refer to its weak preference relation.

We define Pi as the set of all strict preferences for student i. Let P =×i∈I Pi represent

the set of preference profiles.

Merit scores are specific to each school. For every school s ∈ S and student i ∈ I,

let σs(i) denote the score of student i at school s. Let σs =
(
σs(i)

)
i ∈ I represent the

vector of scores relevant for school s ∈ S. For any given school s ∈ S, we assume that

no two different students share the same score in σs. The score profile is denoted as

σ = (σs)s∈S.

An Indian AA environment with multiple institutions is denoted by

[I, S,P , V, T, q, σ, ρ, τ]. In this subsection, we fix such an environment. There-

fore, a problem is denoted by a preference profile ≻= (≻i)i∈I ∈ P .

An outcome of a problem in this environment is a matching µ : I →
(
S × V

)
∪ {∅}

such that |µ−1(s, v)| ≤ qv
s for each s ∈ S and v ∈ V. Given a matching µ and a student

i ∈ I, define

s
(
µ(i)

)
=

{
s if µ(i) = (s, v)
∅ if µ(i) = ∅

.

Let M be the set of matchings in this environment.
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Fix a problem ≻∈ P . We have the following axioms.

A matching µ is individually rational if for each student i ∈ I,

s
(
µ(i)

)
⪰i ∅.

Our next four axioms represent generalizations of Saurav Yadav (2020)’s axioms

(cf. Section 5.3) to the most general version of the problem with overlapping HR

protections and heterogeneous positions.

A matching µ satisfies non-wastefulness if for each s ∈ S, v ∈ V, and i ∈ I,

s ≻i µ(i) and |µ−1(s, v)| < qv
s =⇒ i ̸∈ Iv.

Since HR protections can be overlapping, for each school s ∈ S, we rely on the gen-

eralized HR maximality function nv(.) given in Subsection 5.4, originally formulated

for a single institution.

A matching µ satisfies maximal accommodation of HR protections if for each s ∈ S,

v ∈ V, and i ∈ Iv,

s ≻i s
(
µ(i)

)
=⇒ nv

s

(
µ−1(s, v) ∪ {i}

)
̸> nv

s

(
µ−1(s, v)

)
.

A matching µ satisfies no justified envy if for each i ∈ I, s ∈ S, v ∈ V, and j ∈ Iv,

µ(i) = (s, v) and

s ≻j s
(
µ(j)

) }
=⇒

{
σs(i) > σs(j) or nv

s

(
µ−1(s, v)

)
> nv

s

((
µ−1(s, v) \ {i}

)
∪{j}

)
.

A matching µ complies with VR protections if for each s ∈ S, c ∈ R, and i ∈ Ic,

whenever µ(i) = (s, c), the following three conditions hold:

1. |µ−1(s, o)| = qo
s ,

2. for each j ∈ I with µ(j) = (s, o),

σs(i) > σs(j) or no
s

(
µ−1(s, o)

)
> no

s

((
µ−1(s, o) \ {i}

)
∪ {j}

)
, and

3. no
s

(
µ−1(s, o) ∪ {i}

)
̸> no

s

(
µ−1(s, o)

)
.

A mechanism is a function φ : P → M that chooses a matching for each problem

of the environment.

A mechanism φ satisfies a property defined for matchings, if for each problem

≻∈ P , φ[≻] satisfies this property for problem ≻.

The following incentive-compatibility property, a gold standard in practical appli-

cations of matching theory, is defined for mechanisms only.
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A mechanism φ is strategy-proof if for each ≻∈ P , i ∈ I and ≻′
i∈ Pi,

φ[≻i,≻−i](i) ⪰i φ[≻′
i,≻−i](i).

We next introduce a mechanism that relies on the generalization of the celebrated

individual-proposing deferred acceptance (DA) algorithm (Gale and Shapley, 1962),

defined in Section 2 of Chapter 1 when schools have choice rules.

Each school s ∈ S uses the 2SMH choice rule with respect to its score vector σs

and its capacity and reserve vector
(

qs,
(
qν

s , (qν
s,t)t∈T

)
ν∈V

)
. Denote this multi-category

choice rule as Cs =
(
Cν

s
)

ν∈V .

The following mechanism, formulated and proposed for India in Sönmez and Yen-

mez, 2022b, comprises implementing the individual-proposing deferred acceptance

(DA) algorithm under the choice rule profile
(
Cs
)

s∈S:

Mechanism 2SMH+DA.

Step 0. At the initiation, no offers are considered rejected by any school, and no stu-

dent holds an offer from any school, and thus H(0)
s = ∅ for each school s ∈ S.

Step k. (k ≥ 1)

Offer stage: Each student i who does not have a held offer from the previous

step offers a match to their most preferred acceptable school, which has not

rejected them in a previous step. If such a school does not exist, they remain

unmatched at the end of the algorithm.

Holding and Rejection stage: Each school s ∈ S, which has been holding offers

from the set of students H(k−1)
s ⊆ I and receives offers from a set of students

O(k)
s ⊆ I at the Offer Stage of Step k, holds offers of students in

H(k)
s = Ĉs

(
H(k−1)

s ∪ O(k)
s

)
and rejects the rest of the students in H(k−1)

s ∪ O(k)
s .

The algorithm terminates if there are no rejections. The outcome matching of

the mechanism µ is determined as follows for each s ∈ S, v ∈ V, and i ∈
Cv

s

(
H(k)

s

)
,

µ(i) = (s, v).

Otherwise, the algorithm continues with Step k+1.

We are ready to present the two main results of this subsection:

Theorem 16 (Sönmez and Yenmez, 2022b) In an Indian AA environment with multiple
institutions, of all mechanisms that satisfy individual rationality, non-wastefulness, maximal
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accommodation of HR protections, no justified envy, and compliance with VR protections, the
mechanism 2SMH+DA Pareto dominates any other.

Theorem 17 (Sönmez and Yenmez, 2022b) In an Indian AA environment with multiple
institutions, a mechanism satisfies individual rationality, non-wastefulness, maximal accom-
modation of HR protections, no justified envy, compliance with VR protections, and strategy-
proofness if, and only if, it is the 2SMH+DA mechanism.

5.6 Extensions: Some Other Applications of Reserve Systems
There are many other applications in the matching theory literature integrating the

implementation of affirmative action policies into school choice or student placement.

Dur et al. (2018) documented the unintended consequences of certain reserve cate-

gory processing policies in the Boston school choice system, which later influenced

policy in Boston. The consequences of incorporating a reserve system for affirma-

tive action into the Chicago school choice system were analyzed by Dur, Pathak, and

Sönmez (2020). Aygün and Bó (2021) analyzed incentive problems associated with

implementing affirmative action in Brazilian college admissions.

Sönmez and Yenmez (2022b) showed that the Chilean K-12 school choice system

is a special case of the model presented in Section 5.5 with only an open category. In

this application, there are only minimum guarantee reserves.

Pathak, Rees-Jones, and Sönmez (2020) documented and analyzed the sequential

reserve system used in the H1-B visa application process by foreign workers applying

for work permits in the US. A recent policy change in the order in which the reserve

categories are processed led to an overall change in admission outcomes without al-

tering the reserve quotas.

Economist-designed reserve systems guided by medical ethics principles (cf.

Pathak et al., 2023) have also played a crucial role in the equitable allocation of scarce

medical resources during the COVID-19 pandemic, which we discuss in Section 8.3.

6 Entry-Level Physician Matching Markets and

Unraveling of Their Appointment Dates
One of the first documented and studied markets through the lens of matching

theory is the new physician markets in the US (Roth, 1984) and the regions of the

UK (Roth, 1990). Some of these markets adopted centralized mechanisms that rely

on variants of the celebrated deferred acceptance (DA) algorithm of Gale and Shapley

(1962) in their matching process, either before or independently of Gale and Shap-

ley’s academic work. Later, these methods were adopted in some other professional

entry-level labor markets (see Roth, 2008 for further markets where variants of DA
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algorithms were adopted in two-sided matching markets). These markets do not ex-

plicitly involve wages in the bargaining process, as these jobs mostly consist of interim

educational positions, such as internships, residencies, or fellowships, and are differ-

ent in nature from many other professional job markets.

Roth (1984) documented the challenges existing in the labor market for new grad-

uates of US medical schools during the mid-20th century, followed by a widespread

market failure that led to a system overhaul. The quality of prospective doctors was

uncertain in advance of their graduation, and yet, due to the “unraveling” of appoint-

ment dates, such appointments were being finalized earlier and earlier in successive

years. This unraveling prompted a shift from a decentralized market to establishing a

centralized clearinghouse mechanism. Remarkably, the labor market started to use a

stable mechanism equivalent of the college-optimal stable mechanism a decade before

it was introduced and theoretically studied by the seminal work of Gale and Shapley

(1962).

Alvin Roth and his collaborators went on to extend this unraveling vs. stability hy-

pothesis to various entry-level labor markets for skilled professionals and other inter-

esting decentralized or semi-centralized matching institutions, with sides in full (but

also rarely, partial) possession of the required “property rights” of their arrangements

(see Chapter 1 for a discussion and the importance of property rights in matching).

In this section, we survey these developments and the heuristic used by Roth and

Peranson (1999) for the couples problem in the 1990s after a second market failure of the

centralized market in the National Residency Matching Program (NRMP) in the US.

6.1 Background
During the 1940s, a decentralized market structure led to a chaotic environment

where hospitals searched for promising medical students, often extending job offers

as early as two years before a student’s graduation. Upon a doctor’s graduation, they

needed to work as a medical resident for a period of time to be certified as doctors.

This premature action resulted in the phenomenon of unraveling of appointment dates,

disrupting the orderly market process. Students were compelled to commit to posi-

tions well in advance of finalizing their interests, also hindering the assessment of the

adequacy of the students by the hospitals as their final grades were not available.

Recognizing the chaos stemming from these practices, pivotal changes were insti-

tuted. In 1944, the Association of American Medical Colleges (AAMC) implemented

measures delaying the release of crucial student information, such as grades, until

later stages of their medical education. Despite mitigating the immediate concerns,

this approach merely addressed symptoms rather than fundamentally resolving the

underlying issues. A sequence of subsequent adjustments between 1945 and 1951
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attempted to tackle the persisting problems did not result in much improvement,

particularly regarding waitlisted students’ strategies in delaying acceptance to secure

preferable positions.

These shortcomings paved the way for adopting a centralized matching mecha-

nism (Roth, 1984). This transformation introduced in the 1951-52 market, initially

voluntary, improved the situation despite allowing participants to seek alternative ar-

rangements outside the system. Concerns, however, lingered about the fairness of

the assignment algorithm, prompting deliberations and the evolution of the match-

ing process. The Boston Pool Plan, which is equivalent to the college-proposing de-

ferred acceptance algorithm, gained an advantage due to its ability to ensure equitable

matches. Over time, despite the voluntary nature of participation, this algorithm be-

came the de facto mechanism for the residency match.

Roth argues that the success of the NRMP mechanism is due to its ability to gener-

ate stable matchings besides ending chaotic decentralized hiring. This was pivotal in

diminishing incentives for doctors and hospitals to seek external contractual arrange-

ments, reinforcing the efficacy of the centralized matching system. We next explore

more carefully the relationship between the stability of a mechanism and costly un-

raveling.

6.2 Unraveling of Transactions in Matching Markets, Central-

ization, and The Stability Hypothesis
The evolution towards a centralized clearinghouse in the medical resident market

underscores the issues caused by the congestion and coordination failures of decen-

tralized offers in market clearing. Additionally, Roth and Xing (1994) studied how

coordination problems arising from dynamic market features and challenges associ-

ated with coordinating transactions influence market interactions.

The unraveling problem was, at least anecdotally, documented in various markets.

These include sorority rushes at US colleges (Mongell and Roth, 1991), the clinical

psychology PhD labor market (Roth and Xing, 1997), the federal law clerkship market

(Avery et al., 2001; Haruvy, Roth, and Ünver, 2006; Posner et al., 2007), the market for

gastroenterology fellows (Niederle and Roth, 2003, 2004), and even the arrangement

of college-level American football post-season games (Frechette, Roth, and Ünver,

2007). The last paper and Niederle and Roth (2003) provide two of the few empirical

pieces of evidence of the inefficiency of unraveling. Otherwise, much of the evidence

on inefficiencies caused by unraveling is based on anecdotal evidence or historical

accounts of the evolutionary market forces that led to reorganization.

From a theoretical side, Li and Rosen (1998) developed a two-period matching

model with monetary transfers, focusing on unraveling due to initial productivity

101



uncertainty. Niederle, Roth, and Ünver (2013) proposed a model in labor markets

where firms have a fixed identity, exploring unraveling driven by insurance against

potential imbalances between firms and productive workers, without transfers. Other

unraveling models consider search frictions (Damiano, Li, and Suen, 2005) and strate-

gic complementarities (Echenique and Pereyra, 2016) where early contracting arises

due to search costs.

Roth (1990) posits that implementing a stable matching through a clearinghouse

might reduce the likelihood of unraveling and widespread market failure. Kagel

and Roth (2000) conducted stylized laboratory experiments illustrating that introduc-

ing a stable mechanism can prevent costly unraveling. In contrast, unraveling was

widespread under some of the unstable mechanisms abandoned in the field.

Yet, some unstable mechanisms survived in the regional medical matching mar-

kets of the UK, possibly due to other idiosyncratic features of the market environ-

ments and mechanisms (Roth, 1991; Ünver, 2001, 2005).

The stability hypothesis also provides only a rough intuition against unravel-

ing. Sönmez (1999a) shows that stable matching mechanisms do not entirely prevent

agents from pre-arranging matches. The basic intuition is that, while the stability of

a mechanism assures that its outcome is immune to re-contracting, it does not ensure

that better outcomes cannot be obtained if institutions rely on the mechanism to fill

only some of their positions.

Formally, a matching mechanism φ is weakly manipulable via pre-arranged matches
if there is a college admissions market with responsive college preferences [C, I, q,≻]

and some college-student pair (c, i) such that

c ⪰i φ[C, I, q,≻](i)

and

φ
[
C, I \ {i}, (qc − 1, q−c),≻−i

−i

]
(c) ∪ {i} ⪰c φ[C, I, q,≻](c)

with at least one of the weak preference relations holding strictly.36 Here, preference

profile ≻−i
−i is obtained from the preference profile ≻−i of all agents except student i,

and for the restricted market by removing student i from their preferences.

In this arrangement between student i and college c,

1. student i weakly prefers college c over its outcome from the mechanism, and

2. the college weakly prefers student i together with its outcome from the cen-

36A college admissions environment with responsive college preferences was defined in Section 2 of
Chapter 1 in this handbook. Here, we allow the possibility of agent sets and college capacities for colleges
to change instead of fixing them as in that section. Thus, a market is denoted by the whole list of students,
colleges, their capacities and the preference profile, not just by the preference profile.
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tralized market (which does not include student i) over its outcome from the

mechanism (which includes student i) without the outside arrangement with

student i.

A mechanism φ is strongly manipulable via pre-arranged matches if both preference

relations are strict in the above definition.

The following result implies that the link between the stability of a mechanism and

unraveling is not as strong as one might think.

Theorem 18 (Sönmez, 1999a) In a college admissions environment with responsive college
preferences, there is no matching mechanism that is stable and immune to strong manipula-
tions via pre-arranged matches.

6.3 Calls for Doctor-Proposing Deferred Acceptance Mecha-

nism
As discussed in Section 2 of Chapter 1 of this handbook, truth-telling is neither a

dominant strategy for students nor for the colleges under the college-optimal stable

mechanism. Moreover, of all stable matchings, while it generates the best one for

colleges, it yields the worst one for students. These theoretical results became widely

known in the mid-1990s in the medical community. The National Residency Matching

Program (NRMP) came under increased scrutiny from students and their advisors,

who believed that it did not operate in the best interest of students and was open

to the possibility of different kinds of strategic behavior (Roth and Rothblum, 1999).

There were calls to change to the doctor-proposing version of deferred acceptance,

which generates the doctor-optimal stable matching. Another significant reason for

these calls was that truth-telling is a dominant strategy for doctors under the proposed

algorithm, whereas it is not under the college-optimal stable one. Doctors would not

bear the burden of strategizing under such a reform.

6.4 Addressing the “Couples Problem” in Medical Matching
As early as 1970s, another significant issue in medical matching pertained to the

increasing number of married couples among medical school graduates. The initial

hospital-optimal stable matching mechanism did not accommodate couples seeking

to coordinate their job placements. This often resulted in scenarios where each doctor

in the couple could be assigned to hospitals in different parts of the country, and

hence, they had limited choices to apply if they wanted to avoid this outcome.

The rise in married doctor couples led to a decline in medical student participa-

tion in the NRMP during the 1970s. Consequently, the NRMP introduced a new proce-

dure to address couple preferences. In this procedure, couples, certified by their dean,

could register as a unit. One member was designated the “leading member,” and both
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submitted separate rank-order lists of positions. The leading member underwent the

match process individually, while the other member’s list was adjusted to align with

the “community,” a group of hospitals (for example, in the same geographic area)

where the leading member was matched. Initially, the NRMP determined communi-

ties, but later proposals allowed couples to specify their preferred community.

In this design, the challenge arises from couples consuming pairs of job positions,

whereas the procedure only solicits preferences over individual positions. Accommo-

dating preferences over pairs of hospitals is a challenge under stability. Even with just

one couple, a stable matching may not exist. We explore these issues in more detail

below.

Stability with Couples. Consider the college admissions market with responsive

college preferences introduced in Section 2 of Chapter 1 of this handbook. Here, we

modify this model to include couples.

Let H be a set of hospitals and D be a set of doctors. Let S ⊆ D denote the set of

single doctors. The remaining set of doctors D \ S is even in size and made up of couples.

Each hospital h has a capacity qh and a strict responsive preference relation ≻h over

the set of doctors D. Each single doctor d ∈ S has a strict preference relation ≻d over

hospitals H and the option ∅ to remain unmatched. Each couple consists of a pair of

doctors d1, d2 ∈ D \ S and is denoted as c = (d1, d2). Let C be the set of couples. Each

couple has a strict preference relation ≻c over
(

H ∪ {∅}
)2. Given strict preferences

≻a of an agent in a ∈ H ∪ S ∪ C, let ⪰a denote the induced weak preference relation.

In this section, we refer to the 4-tuple [S, C, H,≻] as a many-to-one matching market
with couples and responsive hospital preferences or simply a couples problem.

A match for a couple (d1, d2) is denoted as a pair (x1, x2) so that x1 is the assign-

ment of d1 and x2 is the assignment of d2.

A matching is appropriately defined for this market so that no hospital h ∈ H is

matched with more than qh doctors, each single doctor is matched with at most one

hospital, and each couple is matched with at most two hospitals.

We consider the following blocks to a matching.

A single doctor d ∈ S blocks a matching µ if

∅ ≻d µ(d).

A couple c ∈ C block a matching µ if(
µ(c)1, ∅

)
≻c µ(c), or

(
∅, µ(c)2

)
≻c µ(c), or

(
∅, ∅

)
≻c µ(c).
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A hospital h ∈ H blocks a matching µ if

∅ ≻h d for some doctor d ∈ µ(c).

A single doctor d ∈ S and a hospital h ∈ H block a matching µ if

1. h ≻d µ(d), and

2. d ≻h d′ for some d′ ∈ µ(h) or
[
d ≻h ∅ and

∣∣µ(h)∣∣ < qh

]
.

A couple c = (d1, d2) ∈ C and a hospital h ∈ H block a matching µ if there exists a

doctor of the couple dk ∈ {d1, d2} and their partner dℓ ∈ {d1, d2} \ {dk} such that

1. (x1, x2) ≻c µ(c) where xk = h and xℓ = µ(c)ℓ, and

2. dk ≻h d for some d ∈ µ(h) or
[
dk ≻h ∅ and

∣∣µ(h)∣∣ < qh

]
.

Given a pair of (not necessarily distinct) hospitals h1, h2 ∈ H, a couple c =

(d1, d2) ∈ C and the pair of hospitals (h1, h2) block a matching µ if

1. (h1, h2) ≻c µ(c),
2a. d1 ≻h1 d for some d ∈ µ(h1) or

[
d1 ≻h1 ∅ and

∣∣µ(h1)
∣∣ < qh1

]
, and,

2b. d2 ≻h2 d for some d ∈ µ(h2) or
[
d2 ≻h2 ∅ and

∣∣µ(h2)
∣∣ < qh2

]
.

We refer to the set of agents that form a block as a blocking coalition.

A matching is stable if it is not blocked.

Roth (1984) shows that, in general, a stable matching may not exist in a many-to-

one matching market with couples. The following example, based on an example in

Kojima, Pathak, and Roth (2013), illustrates this possibility.

Example 8 Suppose there are two hospitals h1, h2 with one position each. There is one single
doctor s and one couple c = (w, m) with the following preference profile:

≻s: h2 h1 ∅

≻(w,m): (h1, h2) (h1, ∅) (∅, ∅)

≻h1 : {s} {w} ∅

≻h2 : {m} {s} ∅

Consider a matching µ which is not blocked by a doctor, by a couple or by a hospital. We
will show that there is still a coalition that blocks µ.

If couple’s both doctors are matched, µ(w, m) = (h1, h2), then the single doctor s is un-
matched, and together with hospital h1 they block µ.

If only the couple’s first doctor w is matched (i.e., µ(w, m) = (h1, ∅)), then hospital h2

is either unmatched or matched with the single doctor s. In this case, hospital h2 and couple
c = (w, m) together block µ.

If both doctors of the couple are unmatched (i.e., µ(w, m) = (∅, ∅)), then
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• if µ(s) = h2, then couple c = (w, m) together with hospitals h1 and h2 block µ, and
• if µ(s) = h1 or µ(s) = ∅, then single doctor s and hospital h2 block µ.

Hence, there exists no stable matching.

The New NRMP Mechanism. As this negative result rules out the possibility

of constructing a mechanism that always finds a stable matching, Roth and Peran-

son (1999) explored heuristics to assign single doctors and couples to hospitals.37

These heuristics are based on an alternative algorithm to find a stable matching in

an opposite-sex marriage market by Roth and Vande Vate (1990) starting from an ar-

bitrary unstable matching and matching agents in one blocking coalitions with each

other in each step. This version of the heuristic adopted resembles the sequential

adaptation of the deferred acceptance algorithm by McVitie and Wilson (1971). 38

Given a couples problem [S, C, H,≻], we describe this heuristic based on the con-

ceptual design in the online and print versions and the algorithmic schematic in the

print version of Roth and Peranson (1999).39 We refer to each single doctor and each

couple as an applicant in this heuristic.

Sequential NRMP Heuristic.
We construct finite sequences of agent sets A0 ⊊ A1 ⊊ A2 . . . and tentative match-

ings µ0, µ1, µ2, . . . such that for each k ≥ 0, there is no blocking coalition K ⊆ Ak of

µk.

Step 0. Set A0 = H and let µ0 = ∅ be the matching that leaves all agents unmatched.

There is no coalition K ⊆ A0 that blocks µ0.

Step k. (k > 0) Take an agent i ∈ (S ∪ C) \ Ak−1 and define

Ak = Ak−1 ∪ {i}.

We construct tentative matching µk through a recursive stage using µk−1. In

37In NRMP, there are other complications sometimes requiring a doctor to be matched with multiple
programs, one for first-year residency and one for later years, and other complications in some residency
programs’ assignment requirements. For brevity, we omit these complications here and focus on complica-
tions arising from the existence of couples.

38Later, such algorithms were found by Klaus and Klijn (2007) in the couples problem when couple
preferences satisfy a weak responsiveness property. A couple’s problem is a variant of a two-sided many-
to-many matching market. For many-to-many matching markets, when agents on one side (for example,
couples)have substitutable preferences (for example, couples) and agents on the other side have responsive
preferences (for example, hospitals), Kojima and Ünver (2008) introduced an algorithm that reaches to a
pairwise stable matching starting from an arbitrary unstable matching. Pairwise stability is weaker than
stability in the couples problem, as a matching is pairwise stable if it is immune to blocking by coalitions
including at most two agents.

39The schematic did not exist in the online version reached from the American Economic Review website
on 02/28/2024.
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this stage, we keep track of a set of applicants Î ⊆ S ∪ C and a set of hospitals

Ĥ ⊆ H that we dynamically update by adding and removing agents. We refer

to Î as the applicant stack and Ĥ as the hospital stack. These are ordered sets of

agents: When an agent is added to either set, it is added to the top. When an

agent is removed, it is removed from the top as well.

We also keep track of an interim tentative matching µ̂ that gets also updated so

that all applicants in Î are unmatched in µ̂. We initialize them as Î = {i}, and

Ĥ = ∅, and µ̂ = µk−1.

A. Internal Stabilization Stage:

A new tentative matching ν is formed using µ̂ as follows:

Remove an applicant j from applicant stack Î. Applicant j is either a single

doctor or a couple. If j is not in a blocking coalition of µ̂, then set ν = µ̂ and go

to the Internal Stability Check below. Otherwise, construct ν as follows:

A.1. We determine ν(j) as follows.

– If j is a single doctor: j is matched with the best hospital with

respect to ≻j that they are blocking µ̂ with.

– If j is a couple: Among all the blocking coalitions of µ̂ that j is a

member of, they are matched with the best option with respect

to ≻j, which can be two hospitals, one for each spouse, or one

hospital that only one spouse is matched with, or one hospital

that both spouses are matched with.

A.2 For each hospital h ∈ H: Let D+(h) be the (possibly empty) set of doc-

tors matched with h in Substep A.1. Let

D(h) = max
≻j

{
E ⊆ µ̂(h) ∪ D+(h) :

∣∣E∣∣ ≤ qh

}
.

Doctors in D(h) \ ν(h) are rejected by hospital h.

A.3. For each rejected doctor d by a hospital in Substep A.2:

– If d is a single doctor: Add d to the applicant stack Î and set

ν(d) = ∅.

– If d is a spouse in a couple c: Add c to the applicant stack Î. If

the other spouse of c is matched with some hospital h′ in µ̂, then

withdraw the spouse’s assignment from hospital h′. Set ν(c) =

(∅, ∅).

A.4. For each hospital h ∈ H: Let D−(h) be the set of the doctors who with-

drew their assignments from h in Substep A.3. If D−(h) ̸= ∅, add h to
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the hospital stack Ĥ. Set

ν(h) = D(h) \ D−(h).

A.5 The assignment of each remaining applicant is set to be the same in ν as

their assignment in µ̂.

Continue with the following check:

B. Internal Stability Check:

B.1. If Î ̸= ∅: Return to the Internal Stabilization Stage using tentative

matching µ̂ := ν.

B.2. If Î = ∅ and Ĥ ̸= ∅: Remove a hospital h from the hospital stack Ĥ.

B.2.1. Each single doctor i ∈ Ak that is preferred by h to a doctor in

ν(h) if |ν(h)| = qh and is acceptable if |ν(h)| < qh is added to the

applicant stack Î.

B.2.2. Each couple i ∈ Ak that has a spouse preferred by h to a doctor

in ν(h) if |ν(h)| = qh and has an acceptable spouse if |ν(h)| < qh

is added to the applicant stack Î.

B.2.3. The tentative matching ν is updated such that each applicant

added to Î in Substep B.2.1 or Substep B.2.2 is left unmatched,

and their matches from their assigned hospitals — if there are

any — are withdrawn and otherwise the matches of other appli-

cants and hospitals remain unchanged.

B.2.3. Any hospital with a withdrawn match in Substep B.2.3 is added

to the hospital stack Ĥ.

B.2.4. Return to Internal Stability Check.

B.3. If Î = ∅ and Ĥ = ∅:

– If there is a blocking coalition K ⊆ Ak of ν: Place all the hospitals

that belong to a blocking coalition to the hospital stack Ĥ and

return to Substep B.2.

– If there is no blocking coalition K ⊆ Ak of ν: Set µk = ν. If

(S ∪ C) \ Ak = ∅, then terminate the heuristic, and µk is the

outcome; otherwise, continue with Step k+1.

The following is a direct extension of the main result in Roth and Vande Vate (1990)

that inspired the sequential NRMP heuristic.

Proposition 7 When there are no couples, the sequential NRMP heuristic always terminates
and finds the doctor-optimal stable matching.
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Roth and Peranson (1999) ran simulations on historical data and numerical exper-

iments to inspect the consequences of the order in which we include applicants to the

set Ak in each step k and other sequencing decisions. Finally, they used the order

in which all single doctors are first processed, and then couples are processed, and a

certain stopping rule is added to Substep A.3. in case the heuristic does not termi-

nate for designing the new NRMP mechanism. In this stopping rule, if an applicant is

rejected by the same hospital in Subsetp A.3 (or hospitals if they are a couple) twice

in running of the algorithm, then the algorithm is stopped after Step A.4. return-

ing ν as the outcome matching. They reported that they did not observe too many

differences in changing these orders. They also verified on three years of historical

data from NRMP markets that the algorithms constructed using this heuristic always

converged to a stable matching.

Limitations of the Design. The Sequential NRMP heuristic might cycle for gen-

eral couple preferences when there are couples. It requires the aforementioned stop-

ping condition as instituted by Roth and Peranson (1999) to prevent it from going into

an infinite loop. That is why we refer to this procedure as a heuristic rather than an

algorithm.

Klaus, Klijn, and Massó (2007) demonstrated that the Roth and Peranson (1999)

design may fail to find a stable matching even when couples have responsive pref-

erences. In this case, the applicant-proposing deferred acceptance algorithm finds

a stable matching. Moreover, they showed that it can be manipulated by couples

acting single. Another issue is that the Roth and Peranson design is no longer

strategy-proof, even for single doctors. However, truth-telling becomes an approxi-

mate Bayesian Nash equilibrium under certain regularity conditions in large markets

(Kojima, Pathak, and Roth, 2013).

Further investigations by Kojima, Pathak, and Roth (2013) offer conditions under

which a stable matching exists in large couples problems, provided couples do not

constitute a significant portion of the market. They showed that a truncated version

of the sequential NRMP heuristic in which single doctors are processed first almost

surely converges to a stable matching as the problem size grows. Additional insights

were provided by Ashlagi, Braverman, and Hassidim (2014), who introduced a new

sequential heuristic for the couples problem. This heuristic almost surely converges

to a stable matching asymptotically even if the number of couples grew at a closer rate

to the singles but not faster.40

40Although the new NRMP mechanism is used in several entry-level labor markets in North America, the
Israeli Medical Intern Market was also recently redesigned by design economists and computer scientists to
address the couples problem and a parents problem (Bronfman et al., 2018). This market mostly resembles
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Another Solution to the Couples Problem. An interesting solution to the cou-

ples problem was proposed by Nguyen and Vohra (2018). However, this requires pos-

sibly changing the capacities of hospitals, albeit relatively modestly, and can only be

viable when such adjustments are possible, e.g., in places where hospitals are jointly

managed or can coordinate.

Theorem 19 (Nguyen and Vohra, 2018) Consider a many-to-one matching market with
couples and responsive hospital preferences. It is possible to construct a stable matching for an
alternative market obtained by changing the capacity of each hospital at most by 2 positions
and the overall capacity of hospitals by at most 4.

6.5 Other Developments in the NRMP Matching Market
The NRMP matching market has also gone through legal problems involving an

anti-trust case filed against the NRMP, which accused it of keeping wages artificially

low for new physicians through the centralized mechanism. Although the case was

eventually dismissed, Bulow and Levin (2006) showed in a model how such wage

compression could happen in equilibrium in an environment that does not involve

wage offers in its centralized clearinghouse as in the NRMP mechanism.

7 Course Allocation at Universities
In many universities, the registration procedure for courses operates as a dynamic

queue mechanism based on priority tiers: students in the highest priority tier are al-

located time windows to select their schedules sequentially, followed by subsequent

priority tiers (for example, our institution, Boston College, employs a similar sys-

tem). The exact priority order among students in the same priority tier is typically

determined by lottery. Once a section of an offered course reaches its capacity, it be-

comes unavailable for further selection. This environment mirrors an economy with

a mixture of common-ownership rights and priority-based entitlements. It involves

multi-unit demand, as each student typically registers for multiple courses. The unit

demand versions of such environments were explored in Chapter 1.

Some graduate business schools implement more sophisticated procedures for

course registration, with three notable examples coming to mind. Two of them, de-

signed by system operators, have been studied in the market design literature: the

University of Michigan Ross Business School (UMBS) employs a pseudo auction mech-

anism (Sönmez and Ünver, 2010; Krishna and Ünver, 2008), and the Harvard Business

School (HBS) utilizes a draft mechanism (Budish and Cantillon, 2012).41 The third ex-

a common-ownership economy, and traditionally, a random priority mechanism was used. A new design
similar to random priority, accommodating parents and couples, was designed by this team of authors.

41See Caspari (2020) for another investigation of mechanisms in the class of draft mechanisms.
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ample, a recently developed economist-designed system (Budish, 2011; Budish et al.,

2017; Budish and Kessler, 2022), has been adopted at the University of Pennsylvania

Wharton School of Business. This design extends the competitive equilibrium from

equal income (CEEI) concept proposed by Hylland and Zeckhauser (1979), explored

in Chapter 1, Section 3, to multi-unit demand environments.

In this section, we will provide a brief overview of the first two mechanisms and

their properties, followed by an exploration of the approximate-CEEI mechanism of

Budish (2011), which forms the foundation of the new Wharton mechanism.

7.1 The Model and Earlier Mechanisms Adopted in the Field
Each student i ∈ I can register for up to m courses, and each course c ∈ C can

accommodate a maximum of qc students. Let q = (qc)c∈C denote the capacity vector.

Students have strict preferences, denoted by ≻i, over schedules of courses—where a

schedule consists of a group of up to m courses. For each student i ∈ I, let Pi denote

the set of strict preferences.

The list [I, m, C, q,≻] represents a course allocation problem. Let [I, m, C, q,P ] denote

a course allocation environment, where P =×i∈I Pi is the set of all preference profiles.

A matching is a function µ : I → 2C that assigns a schedule to each student such that

no course c ∈ C is assigned to more than qc students, and no student is assigned more

than m courses.

We can directly extend the definitions of properties of matchings, mechanisms,

and lottery mechanisms, which we introduced in the house allocation model covered

in Section 3 of Chapter 1, to this model with multi-unit demand. We skip them for

brevity. We refer the reader to that section for their formal definitions in the unit-

demand setting.

7.1.1 Random Priority Mechanism

We define a priority mechanism extending its definition in the unit-demand setting

as follows. Let

π = i1 − i2 − . . . − i|I|

be a priority order over students.

Priority mechanism induced by π for course allocation.

Step 0. Let C0 = C.

Step k. (k ≥ 1) Suppose agent with the k’th highest priority under π, ik, is assigned

their best schedule among the courses in Ck−1. Let Ck ⊆ Ck−1 be the set of

courses that have not filled their capacity.

We terminate after Step |I|.
This mechanism is Pareto efficient, individually rational, and strategy-proof.
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Thus, a fair and strategy-proof way of assigning courses is a randomized version

of a priority mechanism, which is the direct version of the random queue mechanism

already used for course allocation in many schools when there is a single priority tier.

Formally, the random priority (RP) mechanism is the lottery mechanism that is obtained

by randomly determining a priority order over agents and implementing the induced

priority mechanism.

We have the following result, generalizing a similar result for RP in the unit-

demand environment.

Proposition 8 In any course allocation environment, the RP mechanism satisfies ex-post
efficiency, individual rationality, anonymity, and strategy-proofness.

We next consider two other mechanisms used at business schools in the US to

allocate schedules to students.

7.1.2 UMBS Pseudo Auction
Sönmez and Ünver (2010) reports that UMBS used a course allocation mechanism

based on students bidding over courses using token money. This is an indirect mecha-

nism. Each student is endowed with a budget of B tokens. UMBS asks students to bid

for their favorite courses, meaning students are asked to distribute B tokens among

courses. Let bi = (bi,c)c∈C denote the bid vector of student i, where ∑c∈C bi,c ≤ B and

bi,c ≥ 0 for each c ∈ C.

UMBS course allocation mechanism, referred as a pseudo auction, operates as fol-

lows:

The UMBS Pseudo Auction.
Each student i submits a bid vector bi.

Suppose bi1,c1 > bi2,c2 > . . . > bin,cn > 0 is the indexed sequence of ordered bids

after a random tie-breaker is applied to break ties among them if there are any.

Starting with the highest bid, courses are assigned with the following iterative

process:

Step 0. Initially, no student has received any courses, and no course is assigned to any

students.

Step k. (n ≥ k ≥ 1) If student ik has less than m courses assigned so far and course ck

is assigned to less than qck students in previous steps, then assign student ik

course ck.

An issue with the UMBS pseudo auction is that the mechanism implicitly inter-

prets that a student i prefers a course c to a course d if they bid higher for c than for d,

since it assigns course c before course d to the student even though their bids can clear

both courses’ cutoffs. However, student i may prefer course d to course c and yet still
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choose to strategically bid higher for c than for d, simply because c is a more popular

course. As a result, students may not get into a course d they prefer to one of their

assigned courses, even though their bid is higher than the lowest bid honored for d.

This, in turn, may lead to an efficiency loss, one that can be avoided by the following

mechanism proposed and analyzed by Sönmez and Ünver (2010):

Pareto-dominant Cutoff Equilibrium Mechanism.
Students bid for courses as in the UMBS pseudo auction, but at the same time they

also submit their preferences over schedules. Students are prioritized for each course

based on their submitted bids, with higher bids awarding higher priority. Then, the

student-proposing deferred acceptance algorithm (DA) is used to find a cutoff equi-

librium outcome for the submitted bid profile, extending the same concept defined in

the unit-demand environment for student placement with school priorities induced

by the bid profile (see Chapter 1, Section 4).

Theorem 20 (Sönmez and Ünver, 2010) Consider a course allocation problem with re-
sponsive student preferences over schedules. Suppose b = (bi)i∈I is a strict bid profile of
students.

1. The student-proposing DA algorithm finds the student-optimal cutoff equilibrium
matching at b. Let µ be this outcome.

2. If the same bid profile b were used, the UMBS pseudo auction outcome might not be a
cutoff equilibrium matching at b. Moreover, it cannot Pareto dominate µ.

On the other hand, for the same bid profile, the outcome of DA can Pareto domi-

nate the outcome of the UMBS mechanism.

The Pareto-dominant cutoff equilibrium mechanism was evaluated against the

UMBS mechanism through a combination of laboratory experiments, empirical analy-

sis of field data, and a supplementary survey of UMBS students conducted by Krishna

and Ünver (2008). The study demonstrated that the Pareto-dominant cutoff equilib-

rium mechanism significantly outperformed the UMBS pseudo auction in terms of

efficiency.

7.1.3 HBS Draft Mechanism

Although the RP mechanism is anonymous and thus satisfies equal treatment of

equals, it can be highly unfair ex post. A student who is drawn last in the priority

order may be left with fewer choices, possibly missing out on many of their favorite

courses, especially the most popular ones. This can lead to a significant level of un-

fairness.

A practical compromise is documented by Budish and Cantillon (2012). HBS em-

ploys a mechanism inspired by RP called the draft mechanism, akin to drafts used for
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selecting junior players for sports teams employed in professional sports leagues in

the US.

Unlike the UMBS pseudo auction, this mechanism is direct, in which students only

submit preferences over courses. It implicitly assumes that the schedule preferences

of students are responsive to individual preferences over courses.

The HBS Draft Mechanism.
Randomly draw a priority order π over students with the uniform distribution.

Define

π = i1 − i2 − . . . − i|I|.

Let πr represent the reverse order of π, i.e.,

πr = i|I| − i|I|−1 − . . . − i1.

The allocation proceeds in m rounds such that

• in each odd round (k = 1, 3, 5, . . .), π is activated, and

• in each even round (k = 2, 4, 5, . . .), the reverse priority order πr is activated.

Round k. (k ≤ m) Implement the unit-demand version of the priority algorithm induced

by the active priority order:

Step k.j (j ≤ |I|) The j’th highest priority student of the active priority order

is assigned their favorite course that has an available seat and was not

assigned to them in a previous round.

This mechanism is no longer strategy-proof, unlike the random priority mecha-

nism.

Empirical evidence by Budish and Cantillon (2012) based on surveys and field data

reveals extensive manipulation by students using the HBS draft mechanism, resulting

in efficiency loss. Additionally, suboptimal manipulation strategies lead to further

efficiency losses. Interestingly, they show that the RP mechanism, in which students

behave more truthfully, wouldn’t have fared better. The HBS draft mechanism, on

average, generates higher welfare for students even under sub-optimally manipulated

preferences. To illustrate this point, they provide an example, similar to the welfare

comparison between the probabilistic serial mechanism and RP mechanism for unit

demand by Bogomolnaia and Moulin (2001) explained in Section 3 of Chapter 1.

Example 9 Let I = {1, 2, 3, 4} be the set of students. Consider four courses, C = {a, b, c, d},
each with a capacity of 2 seats. Students require m = 2 courses each, with preferences as
follows:
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For each i ∈ {1, 2}, ≻i: a b c d,
For each j ∈ {3, 4}, ≻j: b a d c.

The RP mechanism yields the following random assignment for both student types:

Students {a, b} {c, d}
1, 2 1

2
1
2

3, 4 1
2

1
2

Under the HBS draft mechanism, the assignment is as follows:

Students {a, c} {b, d}
1, 2 1 0

3, 4 0 1

The HBS draft outcome stochastically dominates the RP outcome for each student.

7.2 Approximate CEEI as a Course Allocation Mechanism
Inspired by the concept of competitive equilibrium from equal incomes (CEEI) in

house allocation by Hylland and Zeckhauser (1979) (cf. Foley, 1967; Varian, 1974),

Budish (2011) uses a deterministic approximation of the same concept for course allo-

cation.

Suppose each student is provided a budget of B units of token money. Instead of us-

ing an indirect mechanism that involves explicit bidding, Budish leverages the utility

profile information of students over schedules to calculate an approximate competi-

tive equilibrium from equal incomes of a course allocation problem with utility representa-
tion, [I, m, C, q, u], where u = (ui)i∈I represents a profile of utility functions of students

over schedules.42

A price vector is a non-negative vector p = (pc)c∈C ∈ R
|C|
+ . The budget set of a

student i ∈ I is given as,

Bi(p|B) = {S ⊆ C : |S| ≤ m, ∑
c∈S

pc ≤ B}.

A price vector-matching pair (p, µ) is a competitive equilibrium from equal incomes
CEEI if:

1. For each i ∈ I,

µ(i) ∈ max
ui

Bi(p|B)

such that µ(i) is the cheapest schedule with this property.

2. For each c ∈ C, ∣∣∣µ−1(c)
∣∣∣ < qc =⇒ pc = 0.

42Budish (2011) considers more complex constraints on course assignments through feasibility con-
straints. For expositional reasons, we only consider a simple version of these constraints here.
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Note that, a CEEI may not exist for a given course allocation problem with a utility

representation.

In pursuit of an approximate positive existence result, Budish (2011) allows some

course capacities to be exceeded in allocation and token budgets of some students to

be increased by small error margins. He defines an (α, β)-approximate CEEI (A-CEEI)
for given α, β ∈ R+ as a price vector-matching-budget vector triple (p, µ; B) with

B = (Bi)i∈I ∈ R
|I|
+ such that:

1. For each i ∈ I,

µ(i) ∈ max
ui

Bi(p|Bi).

2. The market clearing error is within α: if the market clearing error for each

course c ∈ C is

ec =

 max
{∣∣∣µ−1(c)

∣∣∣− qc, 0
}

if pc = 0∣∣∣µ−1(c)
∣∣∣− qc if pc > 0

,

then we have √
∑
c∈C

e2
c ≤ α.

3. The ratio of maximum to minimum induced budgets is within β:

maxi∈I Bi

mini∈I Bi
≤ 1 + β.

Theorem 21 (Budish, 2011) Consider a course allocation problem [I, m, C, q, u] with util-
ity representation. If we can adjust the capacities of courses, for any β > 0, there exists a((√

|C|min
{

2m, |C|
})/

2, β
)

-A-CEEI.

We can make the budgets of students as equal as possible, without making them

exactly the same, and with an additional seat assignment of less than, on average, one

seat per course, an A-CEEI exists.

An A-CEEI, as given in the above theorem, may not be Pareto efficient, as posi-

tively priced courses are not necessarily fully filled, unlike in exact CEEI; however,

the inefficiency is small as the market clearing error is small.

In addition, the outcome matching is not necessarily envy-free, unlike a matching

supporting a CEEI, as the token budgets of agents can be different. But it satisfies the

following approximate fairness concept.

A matching µ is envy-free by up to one course if for any pair of students i, j ∈ I,

ui
(
µ(i)

)
< ui

(
µ(j)

)
=⇒ ui

(
µ(i)

)
≥ ui

(
µ(j) \ {c}

)
for some c ∈ µ(j).

Proposition 9 (Budish, 2011) Consider a course allocation problem [I, m, C, q, u] with util-
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ity representation. If we can adjust the capacities and β < 1
m−1 , then any matching supporting

a
((√

|C|min
{

2m, |C|
})/

2, β
)

-A-CEEI satisfies envy-freeness by up to one course.

An A-CEEI mechanism induced by β > 0 is a direct mechanism that assigns

each student i a uniformly random budget in Bi ∈ [B, (1 + β)B], and computes its((√
|C|min

{
2m, |C|

})/
2, β

)
-A-CEEI.43

Though not strategy-proof, Budish (2011) demonstrates the mechanism’s favor-

able incentive properties in larger market sizes under certain regularity assumptions

(also see Chapter 2 of this handbook about large market results).

Implementing A-CEEI as a real-life course allocation mechanism faces challenges

due to the complexity of utility functions over schedules that each student must re-

port. Budish and Kessler (2022) reported implementation of this mechanism in the

University of Pennsylvania’s Wharton School of Business using a fairly simple util-

ity reporting language. It has been successfully used for course allocation to MBA

students. The A-CEEI implementation for course registration represents another suc-

cessful application of matching theory that has changed real-life practices.

7.3 Other Designs for Course Allocation
Bichler and Merting (2021) report a successful design of a course allocation mech-

anism using student-proposing deferred acceptance algorithm in the Computer Sci-

ence Depratment of Technical University of Munich in Germany (also see Diebold et

al., 2014 for the underlying study).

This design does not allow schedule-based allocation involving complementari-

ties in preferences, although courses have priority rankings over students. Bichler

and Merting conducted an experimental study involving two other alternatives. One

is a design by Nguyen, Peivandi, and Vohra (2016) based on a generalization of the

probabilistic serial mechanism of Bogomolnaia and Moulin (2001) (covered in Section

3 of Chapter 1) when individuals have preferences allowing complementarities over

schedules. Instead of each individual eating from one object at a time, they consume

from a whole schedule until feasibility constraints kick in. Nguyen, Peivandi, and

Vohra (2016) show that the resulting probabilistic assignments can be implemented

as lotteries over bundles by some slight error regarding the correct capacity of the

courses, extending the Birkhoff (1946)-von Neumann (1953) Theorem to this combi-

natorial setting. In a similar vein, this mechanism is asymptotically strategy-proof in

43This random mechanism is not uniquely defined because the random assignment outcome for each stu-
dent depends on the method one uses to solve the computational A-CEEI problem given the error bounds,
as there is not necessarily a unique A-CEEI for a given error bound vector and budget vector for students.
The computation of an A-CEEI is quite cumbersome, and Budish et al. (2017) proposes a feasible computa-
tional method to implement it.
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a large market. Bichler and Merting (2021) find favorable evidence to adopt the bun-
dled probabilistic serial mechanism in their empirical study based on experiments and

empirical studies.

7.4 Extension: Allocation of Food to Food Banks
Another interesting application of a variant of the multi-unit demand model with

common ownership we discussed here pertains to the allocation of food donations to

food banks (Prendergast, 2017). Feeding America is the largest non-profit in America,

operating a large national network of food banks that provide food to meal programs

and food pantries. These, in return, distribute meals to the needy. Feeding America

needs to manage the allocation of food donations from large grocery store chains as

well as other local retailers to the local food banks on a regular basis, depending on

the needs of the banks.

Prendergast (2017) reports a successful design and implementation of a dynamic

bidding system, similar in vein to the UMBS course bidding mechanism. The system

endows food banks with token money, which they use to bid to a centrally managed

online bidding system for various food items depending on their needs.

The desire to adopt such a mechanism stemmed from the fact that the headquar-

ters of Feeding America did not have a good estimate of the heterogeneous needs of

local food banks, and thus, a preference revelation system was needed. For efficient

allocation and incentivizing truthful preference revelation, the headquarters consid-

ered adopting an auction using real money. They eventually decided that this would

be against the philosophy of the charity, and as a result, they settled on a design in-

volving bidding through token money, similar to allocating courses to students.

8 Other Notable Applications
We conclude the chapter with brief discussions of several other notable applica-

tions of matching theory.

8.1 Centralized School Admissions Through Exams as an Ap-

plication of Matching under Priority-based Entitlements
Many countries employ centralized college and high school admission through

exams, first observed by Balinski and Sönmez (1999) within the context of Turkey.

Some of the other countries utilizing centralized methods through exam scores in-

clude China (chen/jiang/kesten:20-empirical; Chen and Kesten, 2017, 2019), Greece,

Hungary (Biró, 2008), Taiwan (Dur et al., 2022), and others.

Centralized school admissions via exams are a direct application of models dis-

cussed in Chapter 1, Section 4 on matching under priority-based entitlements.
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Two of these countries, Turkey (Balinski and Sönmez, 1999) and Hungary (Biró,

2008), have historically adopted mechanisms that satisfy no justified envy. These

mechanisms are designed by system operators without the intervention of design

economists.

The Turkish mechanism, on the other hand, utilized a Pareto-inferior mechanism

prone to certain other unfairness and the possibility of another type of manipulation

besides preference manipulation by the students. A student may intentionally under-

perform in an exam and get a lower score to improve their assigned college (Balin-

ski and Sönmez, 1999). However, the Hungarian system employs the Gale-Shapley

student-optimal stable mechanism, which is devoid of such issues.

It is also worthwhile to discuss a “hybrid” mechanism, which combines design ele-

ments of both the two-sided college admissions model by Gale and Shapley (1962) and

the priority-based student placement model proposed by Balinski and Sönmez (1999).

This hybrid approach is relevant in German college admissions, as examined by West-

kamp (2013). Initially, seats at universities are allocated to students with strong claims,

followed by consideration of university preferences for the remaining seats based on

a specific formula. However, as shown by Westkamp (2013), this mechanism creates

strong incentives for student manipulation.

8.2 Design for School Choice Mechanisms as an Application

of Matching under Priority-based Entitlements
Many school districts worldwide use a matching mechanism to assign children to

public schools instead of automatically enrolling them in their neighborhood schools.

However, one of the historically most popular mechanisms, referred as the “Boston”

mechanism, was shown to have many unappealing properties by Abdulkadiroğlu

and Sönmez (2003). As a result of their efforts, the Boston public school district

was persuaded to adopt a strategy-proof mechanism without justified envy, the Gale-

Shapley student-optimal stable mechanism (Abdulkadiroğlu et al., 2005, 2006; Pathak

and Sönmez, 2008; Sönmez, 2023). This constitutes a direct application of matching

markets with priority-based entitlements, as covered in Chapter 1.

There was also an implementation in the New York City school district that fea-

tured both a two-sided structure with private property rights and matching under

priority-based entitlements. Some schools were free to submit their own preference

lists over applicants and capacities as in two-sided matching markets. However, most

of the schools were objects whose priority orders were determined by the school dis-

trict (Abdulkadiroğlu, Pathak, and Roth, 2005, 2009). This district also implemented

the Gale-Shapley student-optimal stable mechanism.

These applications and many other applications in school choice are partially
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based on Section 4 of Chapter 1, matching under priority-based entitlements. As one

of the most notable applications of matching theory, Chapter 4 of this handbook is

devoted to school choice.

8.3 Design of Reserve Systems for the Allocation of Scarce

Critical Care Resources in Times of Public Health Crisis
The COVID-19 pandemic has reignited discussions about the allocation guidelines

for limited medical resources such as ventilators, ICU beds, vaccines, and antivirals

during public health crises. Traditionally, prevailing guidelines in emergency health-

care medicine predominantly relied on priority systems as the primary means of re-

source allocation. A priority system relies on a priority ranking of individuals or

categories of individuals, and using this priority order assigns scarce resources. How-

ever, there are usually multiple ethical criteria that policymakers would like to respect

when allocating scarce medical resources, not just one. For example, in the case of

ventilators and ICU beds, besides a criterion that ranks individuals based on the ex-

pected success of the ventilator treatment in saving them, doctors would also like to

give some priority to essential personnel who get sick. However, a priority system is

not flexible enough to use two different criteria to allocate ventilators.

Starting with Pathak et al. (2023), a series of recent studies in economics, bioethics,

and emergency healthcare medicine have challenged the limitations of priority sys-

tems, documenting instances where decision-makers faced challenges in adequately

integrating and balancing ethical values in their guidelines (Pathak, Sönmez, and Ün-

ver, 2020, Schmidt, 2020, Schmidt et al., 2020, Persad, Peek, and Emanuel, 2020, Gali-

atsatos et al., 2020, Sönmez et al., 2021, Pathak, Sönmez, and Ünver, 2021, Makhoul

and Drolet, 2021, Persad et al., 2022). They advocated adopting a reserve system.

The theoretical basis of such classes of “generalized” reserve systems was dis-

cussed in Chapter 1, Section 4, using the theoretical framework and main results of

Pathak et al. (2023). For example, in the case of ventilator and ICU bed allocation, a

reserve system can be used to create a reserve category for essential personnel besides

the general category of individuals that are prioritized based on the metric of saving

most lives.

As the pandemic unfolded, evolving in real-time, these studies influenced pol-

icy decisions. Notably, Massachusetts embraced the reserve system for allocation of

monoclonal antibodies (Rubin et al., 2021), while Pennsylvania implemented dynamic

allocation methods for therapeutics using lotteries to implement equivalent reserve

systems (White et al., 2022; McCreary et al., 2023). Furthermore, informed by these

studies and the advocacy of bioethicists, the US National Academies of Sciences, Engi-

neering, and Medicine (NASEM) recommended an over-and-above reserve system based

120



on geographical social vulnerability for the allocation of COVID-19 vaccines (NASEM,

2020). Consequently, over 15 US states adopted various versions of reserve systems

in their vaccine allocation protocols.

Tennessee was the first state to adopt a reserve system for vaccine allocation (TDH,

2020). Several states followed suit, emphasizing equity and social justice in COVID-19

vaccine allocation, including Massachusetts, California, New Hampshire, North Car-

olina, Connecticut, Florida, Minnesota, Colorado, Mississippi, Maryland, Nebraska,

New Mexico, Georgia, Illinois, Richmond and Henrico Counties in Virginia, and

Washington, DC (see Pathak et al., 2023 for details of these applications).

8.4 Design of Israeli Psychology Master’s Match as an Appli-

cation of Two-Sided Matching with Contracts
As a market design effort utilizing the matching with contracts model, Hassidim,

Romm, and Shorrer (2017) report the successful adoption of a mechanism that they

designed for matching students to Psychology Master’s programs in Israel (see Chap-

ter 9 of this Handbook for more on the matching with contracts model by Hatfield

and Milgrom, 2005). Before 2014, this market was decentralized and suffered from a

chaotic admission process akin to the period before the adoption of the NRMP’s cen-

tralized matching procedure in 1950’s (see Section 6). The authors proposed to the

authorities to design a centralized matching mechanism akin to the NRMP matching

mechanism with a few notable differences. Although Master’s programs and stu-

dents constitute the two sides of the market, the choices of students are more com-

plicated than those of doctors due to different scholarship options, and the programs

have non-substitutable choice functions, unlike hospitals. Moreover, these program-

specific choice functions are highly heterogeneous across different programs. Despite

the availability of different tracks, scholarship options, and other complicated con-

straints imposed by programs, in general, these choice functions satisfy a weaker con-

dition called substitutable completability, originally introduced by Hatfield and Komin-

ers (2015), guaranteeing the existence of a stable matching. Moreover, these choice

functions also satisfy size monotonicity (or the law of aggregate demand; see Alkan

and Gale, 2003 and Hatfield and Milgrom, 2005), and hence, the student-proposing

deferred acceptance procedure turns out to be strategy-proof for students for submit-

ting their preferences (Hatfield and Kominers, 2015). A variation of this procedure,

which permits the couples to submit joint preferences and utilizes a version of the

sequential-offer heuristic (cf. Section 6) was adopted. Hassidim, Romm, and Shorrer

(2017) report that the main challenge in the design was coming up with the correct

preference expression language and choice function representation for the programs.

This mechanism was successfully adopted in 2014 and has been in use as of the 2024
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run. Additional insights into the running of this market and evidence regarding the

suboptimal behavior of the applicants in submitting their preferences are provided in

Hassidim, Romm, and Shorrer (2021).

8.5 Applications on Matching with Distributional Con-

straints
Kamada and Kojima (2015) observed that new physician markets in Japan differ

from the NRMP matching program in the US in one substantial way. In 2008, the

Japanese government instated a “regional cap,” restricting the total number of resi-

dents matched within each of the country’s prefectures. This move aimed to balance

the geographical distribution of doctors, counteracting the concentration in urban

centers at the detriment of rural areas. Following the adoption of these regional caps,

a modified mechanism known as the Japan Residency Matching Program (JRMP) was

introduced. This adjusted system addresses the caps by equalizing hospital capacities

if the total exceeds the regional limit. Essentially, if the combined capacity of hospitals

surpasses the cap, each hospital’s capacity is scaled down proportionally to align with

the regional restriction. Subsequently, the doctor-proposing deferred acceptance algo-

rithm, previously used before 2008, is employed under these adjusted capacities.44

Kamada and Kojima (2015) also drew attention to other examples with similar

aggregate capacity constraints. China’s graduate school admissions strategy mirrors

Japan’s approach in its new physician market. Annually placing over 400,000 students

since 2009 in academic and professional tracks, China aimed to increase its profes-

sional master’s degree holders. Implementing limitations on admissions to academic

master’s programs in 2010, the government reduced available seats in each program

by around 25% by 2015.

Similarly, Ukrainian college admissions impose hard caps on the number of state-

funded positions, establishing an aggregate capacity constraint for these slots.

Kamada and Kojima (2015) have shown that, tweaking the notion of “no justified

envy” slightly and endogenously adjusting hospital capacities could pave the way

for a more efficient and strategy-proof mechanism than JRMP mechanism. More-

over, more intricate distributional constraints beyond aggregate hierarchical capacity

constraints, such as matroidal constraints in priority-based entitlements (Hafalir et

al., 2022), can also be integrated. Expanding on this, Kamada and Kojima (2023b)

generalizes the theory of constraints for matching under priority-based entitlements

and two-sided matching, characterizing constraints that allow for a student-optimal

matching without justified envy (also see Kamada and Kojima, 2018).

44They note that similar restrictions exist in the UK residency matching market for new doctors as of
2015.
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8.6 Applications of Matching with Reassignment
Applications of Matching under Mixed Priority-based Entitlements and
Ownership. Inspired by dormitory allocation in US college campuses, a model of

mixed-ownership economies by Abdulkadiroğlu and Sönmez (1999) was discussed in

Chapter 1, Section 3. This model accounts for upperclassmen retaining their college

dorm rooms for the upcoming year if they wanted to. Dormitory allocation is, there-

fore, an application of matching models with reassignment of individuals, who have

inherited certain property rights due to their past assignments.

Notably, Abdulkadiroğlu and Sönmez, 1999 also discusses an intriguing dormi-

tory assignment mechanism employed in an MIT dorm called NH4. As shown by

Guillen and Kesten, 2012, this mechanism is equivalent to implementing the student-

proposing deferred acceptance (DA) algorithm by using a constructed priority pro-

file that assigns the highest priority to the tenants of rooms. Under this mechanism,

dorm rooms hold priorities over students, as in the priority-based entitlement model

of Chapter 1, Section 4. However, a student already occupying a room is automati-

cally moved to the top priority in that room’s priority order, regardless of their prior-

ity ranking in other rooms. Subsequently, the student-proposing DA algorithm is em-

ployed using this priority structure. The priority order doesn’t align with the intended

initial order, so the outcome does not necessarily satisfy no justified envy. Neverthe-

less, the NH4 mechanism is individually rational, unlike the random priority mecha-

nism with squatting rights used in many colleges and highlighted in Abdulkadiroğlu

and Sönmez (1999). Further analysis of the NH4 mechanism is carried out by Guillen

and Kesten (2012) both theoretically and experimentally.

Interestingly, Compte and Jehiel, 2008 observed that the NH4 mechanism is pre-

cisely the mechanism used in the centralized assignment and reassignment of tens of

thousands of secondary education teachers annually in France. Teaching positions

are public service jobs in France, and a centralized mechanism is used to assign and

reassign teachers to schools. Priority orders of schools over teachers are determined

through various factors. To encourage voluntary participation, teachers who seek

reassignment are given the highest priority at their own schools, regardless of how

they would be ranked by the French Ministry of Education priority system. Then,

the teacher-proposing DA algorithm with the updated priority rankings is used. This

mechanism satisfies both individual rationality and strategy-proofness. Moreover,

Combe, 2023 demonstrates other desirable properties of this mechanism, such as

minimizing justified envy among all individually rational and strategy-proof mech-

anisms. However, Combe, Tercieux, and Terrier, 2022 observe that this mechanism

lacks important efficiency features, resulting in too many blocks impeding mobility

and causing excessive efficiency loss. Consequently, they propose a new strategy-
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proof and efficient mechanism akin to the top-trading-cycles-like mechanisms in the

many-to-one setting, such as the “You-Request-My-House I Get-Your-Turn” (YRMH-

IGYT) mechanism of Abdulkadiroğlu and Sönmez (1999), discussed extensively in

Section 3 of Chapter 1.

A more recent paper Combe et al. (2022) also embeds the distributional objective

of making teacher quality as equal as possible across schools – a stated goal of the

Ministry of Education in France. They develop an inequality-decreasing, efficient,

individually rational, and strategy-proof mechanism.

Balancedness Axiom and Its Applications. Related class applications require

an explicit balancedness condition to be satisfied. In these problems, there are no new

applicants being assigned to vacant positions, and every matching is a reassignment

of individuals with an initial match.

Dur and Ünver (2019) introduced the balancedness condition and examined an

application known as tuition exchange among US colleges. Given the substantial cost

of college education in the US, many colleges offer free education for the children of

their faculty members, provided the student gains admission to the school. However,

smaller colleges might not offer all necessary programs, limiting the choices available

to faculty members for their children’s education. Tuition exchange programs facili-

tate opportunities among faculty members of different member institutions to swap

tuition benefits for their children.

Maintaining a balance between outgoing and incoming students with tuition ben-

efits is crucial for colleges in these programs. However, achieving stability and bal-

ancedness might be conflicting objectives. Dur and Ünver (2019) documented that

decentralized methods used in these markets led to the shutdown of some programs.

Currently, tens of thousands of students use these programs annually. Dur and Ünver

(2019) proposed a two-sided matching mechanism that satisfies balancedness. Their

mechanism is strategy-proof for students, individually rational for both colleges and

students, and under reasonable assumptions about their preferences, colleges would

truthfully disclose their capacities.

Additionally, certain longstanding exchange programs worldwide, such as those

for doctors and teachers, operate based on similar principles of balancedness.

Similarly, diversity considerations substantially enrich this problem domain when

the balancedness condition is embedded in reassignment. An application of reas-

signment under priority-based entitlements and diversity constraints was proposed

in Hafalir, Kojima, and Yenmez (2022) for inter-district school choice. Embedding di-

versity goals in the Erasmus student assignment program across European countries

also presents an intriguing application when efficiency is the goal (Dur, Kesten, and
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Ünver, 2015).

Kamada and Kojima (2023a) considered an aggregate balancedness axiom for stu-

dent assignment to kindergartens in Tokyo. A kindergarten district can accommodate

a student living in a different region as long as one of its resident students is assigned

to an out-of-district kindergarten. Tokyo has many kindergarten districts that they

refer to as regions. Each region’s kindergarten system is autonomous and locally

financed, making the balancedness axiom relevant. They consider matchings and

mechanisms that satisfy individual rationality, balancedness, and no justified envy.

Unlike the previously discussed problems, non-wastefulness can be violated in this

domain, as non-wastefulness and balancedness may not be compatible with each

other. Kamada and Kojima (2023a) study constrained efficient mechanisms among

the ones that satisfy the three properties: individual rationality, balancedness, and no

justified envy when priorities are weak or strict for districts. They show that there is

no strategy-proof mechanism satisfying these three properties along with constrained

efficiency. Nevertheless, they propose a mechanism, naturally not strategy-proof, for

achieving these goals after characterizing the graph-theoretic properties implied by

a matching that satisfies individual rationality, balancedness, no justified envy, and

constrained efficiency.

There are also applications in two-sided matching markets with status-quo match-

ings where schools or firms are involved as transacting parties with preferences and

stakes in allocation. In these applications, the reassignment of workers is a crucial

aspect of the market.

8.7 Refugee Assignment as a Market Design Problem
Delacrétaz, Kominers, and Teytelboym (2023) report that over 79.5 million peo-

ple were displaced due to conflicts in 2019 in the world, among whom 20 million

are categorized as refugees by UNHCR, the United Nations Refugee Agency. While

around 1.44 million refugees are unable to safely return home, they are eligible for

resettlement in countries offering permanent residence. The process of determining

where refugees are resettled has recently been studied within the matching theory

framework. Jones and Teytelboym (2016, 2017) and Andersson (2019) are some of the

first papers that attracted the attention of market designers to the refugee resettlement

problem. With the efforts of design economists, operations researchers, and computer

scientists, a machine-learning-based assignment system, Annie MOORE, is now be-

ing used in the US by The Hebrew Immigrant Aid Society (HIAS), a major refugee

resettlement agency, to find suitable places for refugees (Ahani et al., 2021).

Although crafted by market design experts, this mechanism still carries limita-

tions. One notable drawback is its failure to account for the preferences of refugees.
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This oversight is particularly significant considering that the initial resettlement loca-

tion substantially impacts refugees’ future prospects, as many do not move again for

years.

To address this issue, Delacrétaz, Kominers, and Teytelboym (2023) propose some

new mechanisms utilizing refugee preferences and locality priorities into account.

The problem differs from the ones we covered in Chapter 1 and in this chapter in

an important aspect. The refugees are usually allocated as families, and each family

has multi-dimensional constraints to be taken into account in matching, for example,

how many of the family members need jobs, how many of them require schooling,

how big of a house is needed for the family, etc. These multi-dimensional constraints

span an interesting, difficult, and much-studied operations research problem moti-

vated by knapsack packing: how do we fit the maximum number of items with differ-

ent dimensional sizes in a knapsack with a given capacity in each dimension? Taking

into account the family preferences over localities, locality priorities, and these knap-

sack constraints of families, Delacrétaz, Kominers, and Teytelboym (2023) propose

different mechanisms based on different interpretations of property rights over the

locality slots. To accommodate priority-based entitlements, they define a new and

interesting concept of no justified envy that they refer to as weak envy-freeness and pro-

pose a mechanism fulfilling this objective along with strategy-proofness for families

(the mechanism leads to some waste as fulfilling all these objectives is not possible).

This mechanism uses a variant of family-proposing deferred acceptance algorithm

and finds a family-optimal weakly envy-free outcome.

Additionally, they propose an efficient allocation mechanism that is strategy-

proof, Pareto efficient, and individually rational, building on the idea of top-trading

cycles. Also interpreting the Annie MOORE system’s assignment as initial endow-

ments for refugee families, they propose an efficient mechanism based on trading

these localities among families, akin to a version of top-trading cycles.

There has been increased interest in different aspects of this problem from market

designers, especially due to the immense refugee flow to Europe and other Middle

Eastern countries during the Syrian civil war of the 2010’s and to other European

countries during the Russia-Ukraine war in the 2020’s. For example, Caspari (2019)

studies how to design a centralized asylum seeker processing and assignment mech-

anism that fits into the European Union’s by-laws, utilizing the preferences of asylum

seekers. Andersson and Ehlers (2020) consider housing for refugee settlement in Swe-

den as a matching mechanism design problem.45

45See Ahani et al. (2023) and Caria et al. (2023) for further work on refugee resettlement studies from a
market design point of view.
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