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Introduction

In this paper, we test the multivariate model of securities’ excess returns

formulated by Engle et al. (1990) on an expanded set of maturities. By applying their

methodology to the entire Treasury term structure, we consider the applicability of a

parsimonious  common factor approach to the dynamics of short-, medium-, and

long-term interest rates. We extend their methodology to incorporate asymmetric

GARCH representations, in which the slope of the yield curve (and its sign) affects

the evolution of the conditional variance of excess returns in fixed-income and

equity markets. We find this approach quite successful in explaining the

comovements of excess returns on the spectrum of Treasury issues for the 1962-1992

period.

The paper is organized as follows. In the first section, we present some

stylized facts about the postwar term structure, making use of Coleman et al.’s (1993)

estimates of spot yields to construct holding period returns and excess returns vis-à-

vis the return on a one-month security. We then present similar evidence on the

series’ second moments. In contrast to many studies which have focused solely on

money-market yields, we consider the entire Treasury term structure, so that we

may make inferences about the behavior of capital market rates, and the interactions

between short- and long-term fixed income returns and equity returns. Section 2

presents an explicit model of the second moments of excess returns, applying the

Factor GARCH specification of Engle et al.’s no-arbitrage term structure model (1990)

to the entire Treasury term structure and equity returns. In the last section, we make

some summary remarks.

                                                
§  We acknowledge the comments of John Barkoulas and participants at the 1995 Conference of the
Society for Computational Economics. The usual disclaimer applies.
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1. Stylized Facts about the Postwar Term Structure of Treasury Rates

A very large proportion of empirical term structure models have been

applied to the observable spot yields in the U.S. Treasury bill market–that is, yields

for zero to 12 months’ tenor discount bills, which are readily available from CRSP as

the “Fama files.” In this study, we consider the entire Treasury term structure–for

bills, notes, and bonds–so that both money market and capital market returns may

be modeled. We make use of a set of monthly estimates of Treasury market spot

yields constructed from coupon securities’ quotations by Coleman et al. (1993, CFI).

Our work is based on the spot yields for the 14 specific tenors analyzed by CFI

for their sample period of 1955 through 1992,1 transforming them into estimated

one-month holding period returns.2 We model excess return series, created by

subtracting the annualized holding period return on a one-month Treasury from

the holding period return for each longer tenor. Taking the one-month security (the

shortest maturity reported by CFI) as the risk-free rate, the resulting excess return

series show the compensation that has been earned, ex post, by those who have

assumed the risks associated with holding longer maturity bonds. These excess

returns are not necessarily increasing in tenor.  We also consider the variance i n

these excess returns series, and how it is changing over time. A moving-window

estimate of variance (with a window of 12 months’ width) was calculated for each

excess returns series. Analysis of these estimates reveals that the variability of excess

returns increased dramatically in the 1980s when the Federal Reserve deemphasized

interest rate targeting.

The correlations between excess returns on short-term securities and excess

returns on longer-term securities vary considerably over the sample. One-, two- and

five-year securities’ excess returns were quite highly correlated to excess returns on

the three-month security until the mid-1980s. Returns on the long-term (20 year

tenor) security were much more weakly related to those on three-month bills, but

vary from below 0.20 to nearly 0.60 over the period. In Figure 1, we present estimates

of correlations between the three-month excess returns series and those of 12

                                                
1 We do not consider their “long” tenor, as it does not correspond to a fixed maturity.
2 The discrete tenors in CFI’s study do not allow us to derive holding period returns (as one could from
the Fama Treasury bill files). We thus constructed hypothetical spot yields for the missing tenors as
linear interpolations of the CFI spot yields.
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months, 2 years, 5 years, and 20 years.3 These movements suggest that excess returns

are quite strongly interrelated at all tenors, reflecting the comovements of risk

premia on the various tenors’ yields, and lends further support to the concept of a

common-factor-based modelling strategy.

These stylized facts about the postwar Treasury term structure suggest that a

workable term structure model should explicitly consider time variation in the

second moments of residual series as well as capture the interaction among tenors.

The following section presents such a model in which we have implemented time

variation in the second moments, as well as asymmetry in the modelled conditional

variances, using the approach of Gourieroux and Monfort (1992).

2. Estimates of Factor-GARCH models for the Treasury term structure

Term structure modelling has followed two broad strands of development:

general equilibrium models, such as those pioneered by Cox, Ingersoll and Ross

(1985), and no-arbitrage partial equilibrium models. In this paper, we consider a

model of the latter genre, developed by Engle et al. (1990), and extend it to the

consideration of the complete Treasury term structure rather than just its short end.

In this framework, we consider whether time-varying volatility in asset returns is a

meaningful determinant of excess returns in the medium and long-term sectors of

the Treasury market. The term structure literature contains scattered evidence that

conclusions drawn from Treasury bill data do not readily extend to the medium and

long term sectors of the Treasury market. For instance, Engsted and Tangaard (1994)

extend the work of Hall, Anderson and Granger (1992) and study the cointegration

properties of the term structure of interest rates, using 2-, 5-, and 10-year yields from

McCulloch and Kwon’s (1993) data. They find that the breakdown in the

cointegrating relationship between short rates that occurs during the 1979-1982

Federal Reserve operating policy shift does not appear in the longer maturity term

structure. This suggests that risk premia behave differently over the maturity

structure, and that the explanation that term premia become nonstationary with a

regime shift may not hold true for longer maturities.

Similar evidence is found in a study by Froot (1989), where survey data on

interest rate expectations are used to study the relative importance of time-varying

term premia and expectational errors in explaining rejections of the pure
                                                
3  The moving correlations are computed annually from 36 monthly observations; the date on the
horizontal axis is the left endpoint of the three-year span.
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expectations theory. He finds that average expected excess holding period returns

increase with maturity, and that term premia on long term bonds are more volatile

than those of shorter tenors. Canova and Marrinan (1995) study excess returns on

five-year securities generated by one- and three-month holding periods, and find

that one- and three-month excess returns series have different statistical properties.

They conclude that there are “nontrivial differences in the risk characteristics i n

agents investing at different maturities” (p. 64) and suggest that a segmented

markets approach may be warranted.

Engle et al. (1990, henceforth ENR) argue that a multivariate approach to the

modelling of asset returns is clearly justified, since even in static asset pricing

models, the full covariance matrix of asset returns is required to derive estimates of

a single asset’s risk premium. The implication for dynamic modeling of the term

structure becomes an empirical challenge, as allowing for temporal

heteroskedasticity in this covariance matrix will imply, for instance, a very high

dimensional multivariate ARCH model. If the number of assets is kept small, the

ability to incorporate these cross-market effects is hindered; yet the number of time-

varying covariances to be modelled grows rapidly with the number of assets. ENR

deal with this dilemma by proposing the use of Engle’s (1987) Factor-ARCH

specification, which provides a parsimonious structure for the conditional

covariance matrix of asset returns, rendering the problem tractable for a sizable

number of assets. In this section, we sketch their approach, which we then apply to

the full term structure of Treasury returns.
ENR model the N-vector yt of asset excess returns as dependent on a mean

vector µt and a time-varying covariance matrix Ht, where H is then expressed (ENR

(1)) as

tH =
k

β
k=1

K

∑ k′β ktλ + Ω  (1)

where K, the number of common factors driving the covariance matrix, is

presumably much smaller than N, and Ω is an NxN positive semi-definite matrix.

They illustrate that this model may be related to Ross’ (1976) arbitrage pricing theory

factor model. To implement the model, it is necessary to replace the unobservable
factors λkt with measures of the conditional variances of some “factor-representing”

portfolios of the assets, θkt, which are by construction perfectly correlated with the

latent variables λ. In ENR’s application to twelve maturities of Treasury bills and a

stockmarket index, they choose two factors–an arbitrarily weighted bond portfolio

and a pure stock portfolio–as sufficient, and apply a recursive representation where
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the stockmarket portfolio’s excess returns are generated in a univariate model, but

the bond portfolio’s excess returns depend as well on the stockmarket portfolio’s

behavior.

2.1 Excess returns for Treasury and stockmarket index portfolios

We use the Coleman et al. (1993, henceforth CFI) yields to construct estimates

of one-month holding period returns. Comparable returns on a diversified stock

portfolio are derived from the CRSP value-weighted index for the NYSE/AMEX,

which is first available in July 1962. Our sample for this section of the paper thus

extends from that date through December 1992, the terminal point of CFI’s study.

The one-month tenor in CFI’s data is taken as an estimate of the riskless

return, and excess return series for all tenors and the stockmarket index are

constructed as the difference between their one-month holding period returns and

the corresponding “riskless” return. Summary statistics for these one-month excess

return series are given in Table 1. Mean excess returns are similar for the short- and

medium-term tenors, but fall off sharply for 15 years, becoming negative at 20 years.

Excess returns for the stockmarket index are almost four times larger, on average,

than for any Treasury security. The variance of excess returns series grows markedly

with maturity, surpassing that of the stockmarket index for the 15- and 20-year

tenors. Treasury excess returns are positively skewed: sizably for the short-term

tenors, but negatively for the stockmarket. All excess return series exhibit excess

kurtosis, generally declining with tenor; the stockmarket series’ kurtosis is smaller

than that of any tenor. Significant serial correlation is found in almost every

Treasury series, but is not present in either the stockmarket series or its square.

The last row of the table presents similar statistics for an equally-weighted

portfolio of Treasury securities. Given the greater number of shorter maturities i n

the CFI data, this portfolio has a duration of 65 months, or almost 5.5 years. Mean

excess returns for the Treasury portfolio are 8 basis points per month higher than

the riskfree rate, which averages 46 basis points per month (5.66 per cent per

annum). The equally-weighted bond portfolio would yield, on average, 6.69 per cent

per annum, with a variance slightly less than that of a 48-month Treasury. The stock

portfolio, by comparison, would yield 11.35 per cent per annum (inclusive of

dividends), with a variance more than five times higher than that of the equally-

weighted bond portfolio.



-6-

A natural question in considering a set of highly correlated assets such as

Treasury securities of different tenors is the extent to which a small number of

common factors are driving their prices and yields. To gauge this commonality, we

followed ENR’s approach and performed principal components analysis on the

sample covariance matrix of the Treasury and stockmarket excess returns series. The

largest eigenvalue explains 77 per cent of the total variance, with the second

explaining 14 per cent and the third an additional five per cent. Almost 97 per cent

of the total variance is explained by the first three principal components. Although

the number of significant eigenvalues does not specifically indicate the number of

dynamic factors appropriate for our model, it would appear that a two-factor model

might be able to capture the behavior of the excess returns series.

2.2 Asymmetric GARCH models of portfolio excess returns

Following Engle et al. (1990, p.223), we do not attempt to determine portfolio

weights within the model, but rather specify weights for two factor-representing

portfolios: an equally-weighted bond portfolio and a portfolio containing only the

stockmarket index. As noted above, the set of tenors for Treasuries in our data imply

that the equally-weighted bond portfolio will have risk characteristics approximately

equal to a 5.5-year tenor security. In fitting a GARCH model to the portfolio excess

returns series, we considered various asymmetric forms of the basic GARCH model.

Other researchers (cf. Gourieroux and Monfort (1992)) have found support for

asymmetries in either the mean equation or the conditional variance equation of

the GARCH formulation. In the context of the factor-representing portfolios’ excess

returns, we might expect the conditional variance to respond differently to increases

and decreases in risk. The estimates presented below are the outcome of a

specification search over various forms of asymmetry.

In formulating a model for excess returns of the bond and stockmarket

portfolios, we did not find support in the data for the GARCH-in-mean formulation

used by ENR (p.223), in which the conditional mean of each portfolio’s excess return

series depends only on its conditional variance. Specifications of the conditional

mean that included (current or lagged) excess returns on the alternate portfolio were

more successful. Our results also exhibit the “causality in variance” (ENR, p. 224),

but in a different direction: making use of an asymmetric response coefficient, we

find that the sign of lagged excess returns in the bond equation plays a significant

role in each portfolio’s conditional variance equation.
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For the stockmarket portfolio, we found greatest support for a specification

that includes lagged excess returns on the 20-year maturity “long bond.” There

appears to be meaningful asymmetry in the variance equation’s intercept,

depending on the sign of lagged excess returns on the bond portfolio. This

asymmetry was captured by a dummy, DB240, which takes on a value of unity when

lagged excess returns on the bond portfolio are positive.  Implementation of the

GARCH(1,1) model for the stockmarket index portfolio via RATS’ BHHH algorithm

yields (standard errors in parentheses):

tStockR =
(0.156)
0.447 +  

(0.021)
0.116 

t −1B240R +
tStocku

tStockθ =
(0.034)
1.185 +  

(0.050)
1.918 

t −1B240D  
(0.002)

+0.129
t −1Stock

2u +
(0.009)
0.798 

t −1Stockθ
(2)

where RStock is the excess returns series for the stockmarket portfolio. The
asymmetry in the variance equation suggests that the conditional variance, θStockt

,

increases markedly when bond excess returns have been positive: that is, when the

yield curve is positively sloped. This is appealing, in that it suggests that a higher

(lower) level of risk in the bond market–as reflected in higher (lower) term premia–

will increase (decrease) volatility in the stockmarket, as the markets (and their

respective derivative markets) act to equalize the “market price of risk” across fixed-

income and equity venues.

The estimated model for the stockmarket index exhibits a strong interaction

between lagged bond returns and current returns in the stockmarket. The

persistence of the ARCH effect is quite strong in the variance equation. Ljung-Box Q

statistics for 12 autocorrelations of the residuals and their squares are 9.22 and 19.32,

respectively: both insignificant at the 5 per cent level, indicating that the model

appears to have captured the time-dependent aspects of the excess returns process.

The coefficients of skewness and kurtosis of the residuals of -0.27 and 1.88 are both

significant at the 95 per cent level, suggesting that the variance equation exhibits

some misspecification. The estimated conditional variance series, presented i n

Figure 2, illustrates the pattern in market volatility, with sizable increases in the

mid-70s and at the time of the crash of 1987. With these two exceptions, the

volatility of excess returns appears to have been relatively constant throughout the

sample period.

Examination of a number of alternative specifications for the bond portfolio’s

conditional mean and variance equations led to a model of bond excess returns
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which included the contemporaneous excess returns of the stockmarket index. With

a single lag in the variance equation, this GARCH(1,1) model  yielded:

tBondR = −
(0.047)
0.037 +  

(0.013)
0.064 

tStockR +
tBondu

tBondθ =  
(0.012)
0.034 +  

(0.100)
0.332 

t −1Bond
2u −

(0.073)
0.169 

t −1B240D
t −1Bond

2•u +  
(0.053)
0.787 

t −1Bondθ
(3)

The conditional variance equation for the bond portfolio’s excess returns also

exhibited asymmetry, but the form of the asymmetry links the magnitude of the

ARCH effect to the sign of lagged excess returns on the bond portfolio. The dummy

DB240 is set to unity when lagged excess returns are positive; given the dummy

variable’s interaction with the lagged squared error, this suggests that a negative

error (excess returns falling short of that predicted by the mean equation) will have a

far larger effect on the conditional variance than a positive error (excess returns

larger than that predicted by the mean equation). In short, bad news matters, and the

arrival of bad news will drive up the conditional variance by almost twice as much

as will an element of “good news” of the same algebraic magnitude.

The estimated excess returns of the bond portfolio exhibit a strong interaction

effect with contemporaneous stockmarket returns, with sizable persistence in the

conditional variance series. The conditional variance of the bond portfolio exhibits a

highly asymmetric response to the sign of lagged bond returns. Q statistics for the

residuals and for their squares of 32.36 and 144.69 are both highly significant,

indicating that unexplained time dependence remains in the series. The residual

series exhibits significant skewness (coefficient of 0.36) and kurtosis (coefficient of

4.12). Figure 3 presents the estimated conditional variance series for excess returns of

the bond portfolio. In contrast to the stockmarket portfolio, this series reflects a

marked shift following the Federal Reserve’s move to monetary targeting in October

1979. The conditional variance remains several times higher than its pre-1979 value

throughout the 1979-1982 period, and only in recent years does it drift downward to

levels previously experienced.

In this model, the interactions between returns in the bond markets and the

stockmarket capture investors’ portfolio substitution behavior between these sectors

of the capital markets. While ENR essentially modelled shifts between stocks and

“cash,” or very short-term Treasuries, we are able to consider longer-term fixed-

income investments which possess substantial market risk.
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2.3 A dynamic model of Treasury term structure volatility

Estimation of the models presented above for excess returns of the equally-

weighted Treasury portfolio and the stockmarket portfolio has yielded two series for

each of those portfolios: the predicted excess returns and the estimated conditional

variances. Following Engle et al.’s methodology, these estimated series are used as

predetermined variables in our models for individual maturities of Treasury

securities’ excess returns and conditional variances. The structure of the model

implies that the individual securities’ excess returns should be driven by the returns

and conditional variances of a small number of common factors. In a first

application, we model the security excess returns as a linear function of the two

portfolios’ excess return series, with a conditional variance given by a linear

function of the two portfolios’ conditional variances. This model (analogous to

Engle et al., (1990, p.226)) may be written as:

i,tR =
iλ +

iBond
β

tBondR̂ +
iStock

β
tStockR̂ + i,tυ

i,tυ t−1ℑ ~ N 0, i,th( )

i,th = iσ +
iBond

2β
tBondθ̂ +

iStock

2β
tStockθ̂ (4)

This model incorporates a constant, λ, in the mean equation, to capture non-

time-varying components of the individual security’s risk premium (for instance,

the “on-the-run” effect that newly auctioned Treasury securities exhibit, in which

their yield is driven down by demand for that specific issue). The model is estimated

for each of the thirteen maturities. While the β coefficients are highly significant for

all tenors, examination of their asymptotic standard errors indicate that the direct

effect of the stockmarket portfolio’s excess returns and conditional variance is of

considerable importance for short-term Treasury returns, but never meaningful for

tenors greater than two years. In contrast to Engle et al. (1990, p.226), we found that

the stockmarket index has significant direct effects on the 3-12 month segment of the

yield curve.

Since the stockmarket factor does not appear to play a direct role in the

individual securities’ excess returns and conditional variances for medium or long

tenors, we respecify the model as a single-factor model in which the estimated excess

return and conditional variance of the equally-weighted bond portfolio is the only
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direct effect. This still incorporates the movements of the stockmarket portfolio,

since the recursive structure of the portfolio models imply that the bond portfolio’s

excess returns and conditional variance estimates are derived from both the bond

and stockmarket portfolios. The single-factor model estimated for individual

Treasury maturities is thus:

i,tR =
iλ +

iBond
β

tBondR̂ + i,tυ

i,tυ t−1ℑ ~ N 0, i,th( )

i,th = iσ +
iBond

2β
tBondθ̂ (5)

Results for this single-factor model, estimated for each of the thirteen

maturities via the BHHH algorithm, are presented in Table 2.4 The constant term, λ,

is insignificant for most tenors longer than one year. The constant in the

conditional variance equation is insignificant, although a negative point estimate

appears for longer tenors. The β coefficient is highly significant for all tenors, which

given the structure of the model is an indication that the restrictions embodied in a

static model of excess returns as a random series with homoskedastic errors may be

rejected by the GARCH alternative. For the 3-, 6-, and 9-month tenors, the restriction

that the square of the β coefficient in the mean equation appears in the conditional

variance equation can be rejected. For all longer tenors, the specification of the

model for individual maturities’ excess returns and their conditional variance

appears appropriate. It is quite apparent from the magnitude of these coefficient

estimates that Treasury securities of longer maturities possess greater sensitivity to

the conditional variance of the Treasury portfolio, and, given the recursive nature

of the model, to the conditional variance of the stockmarket portfolio.

Simple correlations of the predicted values of our one-factor model are quite

high for adjacent tenors, and decline notably as the difference in tenors increases–a

quite realistic outcome, given the workings of the Treasury market. For instance,

one-year and three-year securities’ returns are correlated at 0.91, but the correlation

declines to 0.74 for ten year securities and 0.60 for twenty years’ tenor. This feature of

                                                
4 Conceptually, the estimation of this model should take into account the “generated regressor” nature
of the predicted expected return series to deal with Pagan’s (1984) critique. In our context, this would
necessitate maximum likelihood estimation of the full system of 13 single-factor models joint with
models (2) and (3). We are investigating the feasibility of this approach, which is computationally
burdensome.
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the model should be contrasted with the general equilibrium models of the term

structure, such as that of Cox, Ingersoll and Ross (1985), which generate perfect

correlations among rates at all tenors. The correlations of these predicted values are

quite consistent with the original excess return series to which they are fit; for

instance, the correlations between 3-month securities’ excess returns and those of 1-,

2-, 5- and 20-year securities are 0.768, 0.685, 0.550, and 0.381 over the full sample,

whereas the correlations among the respective predicted values are 0.76, 0.67, 0.54

and 0.36. Thus, this aspect of the data–the observed comovements of the excess

returns series across tenors–seems to be faithfully reflected in the one-factor model’s

estimates.

3. Summary remarks

We have implemented a variation on Engle et al.’s (1990) Factor-ARCH

model for the full term structure of Treasury securities over the postwar era. The

implications of their model–that a small number of common factors can

successfully capture the joint behavior of securities prices over a wide range of

tenors–are clearly supported by the data for short-, medium-, and long-term

Treasuries. Individual tenors’ returns are well explained by the innovations in a

bond portfolio’s returns, and their conditional variance is successfully represented

as a transformation of the portfolio’s conditional variance series. The interactions

between volatility in the bond markets and the stockmarket are more precisely

modelled in our analysis, in which we use an asymmetric GARCH approach to

allow “good news” and “bad news” to have differing effects on the evolution of

volatility. Despite the massive increase in Treasury rates’ variance engendered by

the Federal Reserve’s 1979 shift in operating policy, the Factor-ARCH model

captures the dynamics of the process, and is capable of dealing with the very sizable

changes in bond returns generated at the long end of the term structure in response

to parallel shifts in the yield curve.



-12-

References

Canova, Fabio and Jane Marrinan, 1995. Predicting excess returns in financial

markets. European Economic Review 39:1, 35-70.

Coleman, T.S., Fisher, L.  Ibbotson, 1993. Historical U.S. Treasury yield curves, 1926-

1992. New York:Moody’s Investors Services.

Cox, J., J. Ingersoll and S. Ross, 1985, A theory of the term structure of interest rates,

Econometrica 53, 385-467.

Engle, R.F., 1987. Multivariate ARCH with factor structures: cointegration in

variance. Unpublished working paper, University of California at San Diego.

Engle, R.F., Ng, V. and M. Rothschild, 1990. Asset pricing with a Factor-ARCH

covariance structure: Empirical estimates for Treasury bills. Journal of Econometrics

45, 213-237.

Engsted, T. and C. Tangaard, 1994. Cointegration and the U.S. term structure, Journal

of Banking and Finance 18, 167-181.

Froot, K.A., 1989. New hope for the expectations hypothesis, Journal of Finance 44,

283-305.

Gourieroux, C. and A. Monfort, 1992. Qualitative threshold ARCH models. Journal

of Econometrics 52, 159-199.

Hall, A.D., H.M. Anderson, and C.W.J. Granger, 1992. A cointegration analysis of

Treasury bill yields, Review of Economics and Statistics 74, 116-126.

McCulloch, J. H. and H. Kwon, 1993. U.S. term structure data, 1947-1991.

Unpublished working paper #93-6, Ohio State University.

Pagan, A., 1984. Econometric issues in the analysis of regressions with generated

regressors. International Economic Review 25:1, 221-247.

Ross, S., 1976. Arbitrage theory of capital asset pricing. Journal of Economic Theory

13:341-360.



-13-

Table 1: Descriptive Statistics of Excess Returns Series

Series Mean Variance Skewness Kurtosis Q(12) QSQR(12)
3 Month 0.081 0.016 2.165 11.159 95.512 103.433
6 Month 0.091 0.078 1.590 10.733 51.387 144.593
9 Month 0.101 0.188 1.188 9.558 45.415 145.273
12 Month 0.097 0.350 0.956 9.373 43.431 146.538
18 Month 0.119 0.737 0.668 8.954 45.069 132.509
2 Year 0.112 1.258 0.589 9.161 40.898 123.192
3 Year 0.130 2.296 0.128 7.527 32.807 115.507
4 Year 0.115 3.746 0.012 6.741 24.013 110.691
5 Year 0.124 4.823 0.010 5.272 22.547 123.290
7 Year 0.107 7.720 0.054 3.379 18.064 151.013
10 Year 0.073 12.633 0.274 2.954 24.061 174.612
15 Year 0.007 26.737 0.476 3.161 28.163 147.441
20 Year -0.103 41.007 0.041 2.969 23.879 107.062
VW Stock 0.453 19.793 -0.330 2.269 12.304 14.069
EW Bond 0.081 3.697 0.343 3.817 32.316 150.908
Notes: Q(12) is the Ljung-Box statistic for 12th order serial correlation in the excess returns series.
QSQR(12) is the equivalent statistic for the squares of the excess return series. VW Stock is the value-
weighted index of NYSE/AMEX equities. EWB is an equal-weighted portfolio of the Treasury tenors.
Statistics are calculated over the monthly observations 1962:7–1992:12.

Table 2: One-Factor Model for Individual Treasury Maturities

i,tR =
iλ +

iBond
β

tBondR̂ + i,tυ ,   i,tυ t −1ℑ ~ N 0, i,th( ),   i,th = iσ +
iBond

2β
tBondθ̂

Tenor 3 mo 6 mo 9 mo 12 mo 18 mo 2 yr 3 yr 4 yr 5 yr 7 yr 10 yr 15 yr 20 yr

λ 0.040 0.050 0.043 0.033 0.027 0.008 0.008 -0.015 -0.001 -0.021 -0.061 -0.122 -0.309

se(λ) 0.004 0.009 0.013 0.018 0.026 0.035 0.043 0.054 0.063 0.084 0.104 0.150 0.242

β bond 0.067 0.139 0.214 0.292 0.435 0.571 0.808 1.044 1.183 1.505 1.884 2.691 3.692

se(β) 0.002 0.005 0.009 0.012 0.017 0.022 0.028 0.034 0.037 0.047 0.058 0.082 0.141

σ 0.000 0.001 0.005 0.011 0.016 0.032 -0.005 -0.049 -0.066 -0.093 -0.199 -0.453 0.063

se(σ) 0.000 0.002 0.004 0.008 0.015 0.026 0.033 0.041 0.051 0.088 0.114 0.167 0.721
Var 0.016 0.076 0.180 0.334 0.699 1.194 2.174 3.556 4.565 7.303 11.825 24.818 37.948
Skew 2.171 1.661 1.239 0.986 0.679 0.592 0.119 0.003 0.012 0.070 0.279 0.487 0.080
Kurt 11.079 10.931 9.860 9.704 9.363 9.591 7.917 7.061 5.508 3.443 3.026 3.355 3.396
Q(12) 90.11 52.57 47.07 44.88 45.47 41.27 32.45 23.30 21.89 17.47 23.94 27.70 22.51
signif 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.025 0.039 0.133 0.021 0.006 0.032
QS(12) 93.41 149.22 150.32 149.22 134.13 122.97 113.84 107.39 120.15 148.55 165.88 125.69 93.45
signif 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: asymptotic standard errors are given below the coefficient estimates. Var, Skew and Kurt are
the variance, skewness, and kurtosis of the residuals. Q(12) is the Ljung-Box statistic for 12th order
serial correlation in the residuals.  QS(12) is the equivalent statistic for the squares of the residual
series.
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Figure 1: Moving Correlations among Excess Returns on Treasury Securities

Note: simple correlations computed annually from 36 observations.
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Figure 2: Estimated Conditional Variance of Stock Portfolio
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Figure 3: Estimated Conditional Variance of Equally-Weighted Treasury Portfolio
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