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Abstract

This paper establishes stochastic equicontinuity for classes of mixingales. Attention
is restricted to Lipschitz-continuous parametric functions. Unlike some other empiri-
cal process theory for dependent data, our results do not require bounded functions,
stationary processes, or restrictive dependence conditions. Applications are given to
martingale difference arrays, strong mixing arrays, and near epoch dependent arrays.
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1 Introduction

In the past few years we have seen many applications of empirical process theory in econo-
metrics and statistics. For recent reviews of this literature see Andrews (1993) and Wellner
(1992). The origin of empirical process theory was in the study of the empirical distribution
function, where the assumption that the summands were bounded and independent across
observations was natural, and therefore the theory of empirical processes was built around
these assumptions. For many recent applications, however, both boundedness and indepen-
dence can be overly restrictive. As a result, we have seen in recent research an effort to
generalize the existing empirical process theory to handle both dependent and unbounded
functions.

Several authors have demonstrated results for bounded functions of strong mixing random
variables. These include Philipp (1982), Massart (1988), and Andrews and Pollard (1994).
In a recent contribution, de Jong (1993) provides a result for unbounded strong mixing
processes.!

Other authors have used alternative dependence conditions. Leventhal (1988) introduced
an empirical process theorem valid for bounded martingale differences.? Andrews (1991)
provided results for smooth classes of near-epoch dependent random functions. Arcones
and Yu (1994) studied bounded V-C classes of functions of stationary absolutely regular
(8—mixing) processes. Perhaps the most impressive results are those of Doukhan, Massart
and Rio (in press), whose results apply to unbounded functions of stationary absolutely
regular processes under weak bracketing conditions.

This paper extends this literature by presenting a proof of stochastic equicontinuity for
classes of mixingale arrays. This is the first paper to do so. The results are shown to apply

to martingale difference arrays, strong mixing arrays, and near epoch dependent arrays.

'While de Jong’s (1993) Theorem 4 allows for unbounded arrays and weak bracketing conditions, one of

his conditions effectively requires that the mixing coeflicients decay exponentially, which is quite restrictive.

2As pointed out by a referee, Leventhals’s result can be extended to handle unbounded martingale

differences.



For each of these applications, the restrictions on moments and mixing decay rates are mild.
The allowable function classes, however, are restrictive, only applying to Lipschitz-continuous
functions. In consequence, these results are complementary to existing results, and are not
a strict improvement.

Interestingly, the proof is not particularly demanding, combining a simple moment in-
equality for mixingales based on Hansen (1991) with the proof technique of Andrews and
Pollard (1994). The paper is organized as follows. Section 2 presents the main results. The
function space of interest and the concept of mixingale classes are defined. The new results
are a moment inequality and stochastic equicontinuity for mixingale classes. Section 3 con-
tains applications to three special cases: martingale difference arrays, mixing arrays, and
near epoch dependent arrays. Section 4 contains a brief conclusion. The proofs are left to

the Appendix.

2 Main Theory

2.1 Function Class and Stochastic Equicontinuity

Let {X,;:7<n; n=1,2,..} be a triangular array of X —valued random vectors defined on
a probability space (Q,F, P). Let {Fy;} be an array of sub o-fields of F, such that for each
n, {Fn:} is nondecreasing in i.

Let G denote the class of real functions on X. Let F' C (G be a class of parametric
functions f(z,0), where z € X, 0 € ©, and O is a bounded subset of R* The elements
f € F satisfy the Lipschitz condition

|f(2.0) = f(x,0)] < b(x) |0 — 0. (1)

for some function b(-) : X — R and some A > 0. We will sometimes index the class of
functions as f € F' and sometimes by 6 € ©, depending on which is more convenient.

Define the empirical process operator v, by

v f = % S (Xu) — EF (X))
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It is well understood that the empirical process v, f converges weakly to a Gaussian pro-
cess over [ € F'if the finite dimensional distributions satisfy a central limit theorem, the
functions f are totally bounded under an appropriate seminorm, and a stochastic equicon-
tinuity condition is satisfied. (For an elegant statement of this result, see Theorem 10.6 of
Pollard (1990).) We are concerned with stochastic equicontinuity over the class F'. Let the
L" norm for a random matrix Z be denoted || 7], = (£ ]Z]T)l/r.

Condition 1 (Stochastic Equicontinuity) For some q > 1, some seminorm p(-), and each

¢ > 0 there exists a &6 > 0 such thal

sup ’Unf/ - Unf”’
p(f'=f")<6, ['€F, f'€F

limsup < €. (2)

n—0o0

2.2 L?Mixingale Classes

The concept of L? mixingales was introduced by McLeish (1975), and generalized to L9

mixingales by Andrews (1988). We generalize their concept to classes of random variables.

Definition 1 {f(X,;),Fn;, @} is an Li—mizingale class if there erist non-negative finite
functions {cni(f) 1 < n} and constants {1y, : m > 0} such that for alln > 1,1 < n, all

feq, and allm >0

L (f (Xi) [ Fi ) — Ef (Xni)lly < tomni(f), (3)

and

1/ (Xni) = B ((Xni) [ Frssem) |, < mircnilf)- (4)

Note that (4) is satisfied trivially whenever X, is F,,; measurable (which is true in many
applications). The “mixingale numbers” v, control the temporal dependence of the random
variables f(X,;), and the “mixingale norms” ¢,;(f) control their magnitude.

Let F' denote the class of functions formed by linear combinations of the elements of I :
F:{g:g:alfl—l-anQ; fleF, fQEF, CL1€R7 CLQER}, (5)

Assumption 1 For some q > 2, { f(Xy:), Fni, F'} is an Li—mizingale class with



and
2. U =32 1y < oo,
where s > q and 1/2 <y < 1.

Assumption 1 specifies that linear combinations of elements of I’ constitute a mixingale
class. Part 1 states that the mixingale norms equal a power of the L® norm. The use of this
particular norm is not essential to the theory which follows, but it simplifies the analysis and
all our applications satisfy this restriction. Part 2 of Assumption 1 is a standard summability
restriction on the mixingale numbers.

Now define an asymptotic average of the mixingale norms:

n 1/8
) 1
o160 =m0 ) ©)
where 7 > 1 and [ > 1. In particular, consider

pa(f) = ps(f,27) (7)

where s and «y are defined in Assumption 1. Note that p,(f) is defined for all f € (. Let F*

denote the class of functions for which p,(f) is finite:
F* = {f € py(f) < o0}
We assume that /' C " and b € ['™:
Assumption 2 For all f € F, p,(f) < oo. In addition, p,(b) < .

It is easy to verify that p,(:) is a seminorm on F™*, which is important for our theory as

we later set the seminorm p of Condition 1 equal to p,.



2.3 Results

Stochastic equicontinuity (Condition 1) depends on the choice of seminorm. We find p,
convenient as it arises in the following moment bound, whose proof is quite similar to that

of Lemma 2 of Hansen (1991).

Lemma 2 Under Assumptions 1 and 2, for all f € F,

HanHq < Kypa(f)7, (8)

where K, = 72qV.

We now state our main result. The proof is analogous to that of Andrews and Pollard

(1994), except that the moment inequality (8) is used instead of their Lemma 3.1.

Theorem 3 Under Assumptions 1 and 2 with ¢ > a/(N\y), Condition 1 holds with p(-) =

Pq(-)-

Theorem 1 establishes stochastic equicontinuity for the Lipschitz class F'. This is the
first empirical process stochastic equicontinuity result for mixingales. The requirement g >
a/(Ay) implies a trade-off between the smoothness of the functions f(x,¢) with respect to
0, the dimensionality of 0, and the strength of the norm p,.

3 Applications

3.1 Martingale Difference Arrays
Assumption 3 For some ¢ > 2 and each f € F, {f(X,;), Fns} s a martingale difference

array (MDA ), o
s (531 001E) <o ©)

and

1/2
hmsup( ZHb ni) || ) < 00. (10)



Note that linear combinations f(X,;,0) — f(Xp;,¢') are still MDAs, so {f(Xys), Fi, F'}
is a MDA class. (3) holds with 9, = 0 for m > 1 and ¢, (f) = || f( m)Hq, and (4)
holds trivially since X,,; is F,; measurable, so {f(X,;), Fni, F'} is a mixingale class. Indeed,
Assumption 1 holds with s = ¢, v = 1, and ¥ = 1. Assumption 2 with p,(f) = p,(f,2) is
equivalent to (9) and (10), respectively. Hence Assumption 3 implies Assumptions 1 and 2.
We state our findings formally.

Theorem 4 Assumption 3 with ¢ > a/X implies Condition 1 with p(-) = py(-,2).

One application of Theorem 2 is to the asymptotic distribution of test statistics when
nuisance parameters are not present under the null hypothesis. The score functions con-
sidered as a function of the unidentified nuisance parameter (in the context of maximum
likelihood estimation) and regression scores (in non-linear regression), constitute classes of

martingale difference arrays. For recent discussions of this testing problem, see Andrews

(1993), Andrews and Ploberger (1994), and Hansen (1994).

3.2 Mixing Arrays

Set Fri = 0(X,; 1 7 <) and F! = 0(X,; : j > 1). The strong mixing coefficients are defined
as

Oy, = SUpP sup |P(AN B) — P(A)P(B)|.

N Ae Fny, BeFLT™

The array {X,;} is said to be strong mixing if o, — 0 as m — oc.

Assumption 4 For somer > q > 2,

> o/ < oo, (11)

m=1

and all f € I
1. 1/2
li < o0. 12
maup (3 10IE) <o (12)

=1
In addition,

limsup ( Z 16(X )1/2 < . (13)



Since functions of mixing processes are mixing with the same decay rates, f(X,;,0) is
Fn; measurable with strong mixing coefficients «;,. The same holds for linear combinations.

Hence F is a strong mixing class with mixing coefficients ,,. By McLeish’s strong mixing

inequality (McLeish (1975) Lemma 2.1),

1B (f(Xni) | Fri-m) — Ef<Xm)Hq < GO‘in/qil/T 1/ (X |

r?

so (3) is satisfied with 1, = 6a/77 V" and cp;(f) = || f(Xw)|

., and (4) is trivial since X,;
is Fp; measurable. Note that (11) implies that ¥ = 63°°_, al/771/" < 0o so Assumption
1 holds with s = r and v = 1. Assumption 2 with p,(f) = p.(f,2) is equivalent to (12)
and (13). Hence Assumption 4 implies Assumptions 1 and 2. This allows us to state the

following result.

Theorem 5 Assumption 4 with ¢ > a/X implies Condition 1 with p(-) = p,(-,2).

3.3 Near-Epoch Dependent Arrays

Near epoch dependence (NED) in L? (also called functions of mixing processes) was intro-
duced by Ibragimov (1962), and has gained popularity in the recent econometrics literature.
It is often easier to verify that a function of an infinite history of a process is near epoch
dependent than to verify that the function is strong mixing. Andrews (1988) introduced the
concept of L¢ NED arrays.

Let {Y,; : i < n,n > 1} be an a-mixing array of random variables with a-mixing

coefficients «,,. Set .7:,];1- =0(Yor 1<k <j)and Fp; = 0 (Yo : k < i).

Assumption 5 For somer > q > 2,

a1 < oo, (14)
m=1
up sup DX, < o0, (15)
n 1<i<n
and
C =supsup sup | f(X,;,0)|, < oo. (16)

9cO n 1<i<n



(14) is a standard summability condition on the underlying mixing numbers. (15)
and (16) are uniform moment bounds on the bounding functions b(X,;) and the functions
(X0, 0).

We will consider both high-level and primitive conditions regarding the near-epoch de-

pendence.

Assumption 6 For all i,n, there exist finite constants n,, such that for all f € F,

| £ ) = B (£ ()| i) | < i (17)
and for some 1/2 <y < 1,
Y | < 00, (18)
m=1

where q is given in Assumption 5.

(17) states that the class f(X,;) is uniformly L/-NED with respect to Y,;. (18) is a
standard summability condition on the NED and mixing numbers. We can show that these

assumptions are sufficient for the application of Theorem 1.

Theorem 6 Assumptions 5 and 6 with ¢ > a/(vyA) imply Condition 1 with p(-) = p.(-,27).

In some cases, it might be possible to verify Assumption 6 directly. In other cases it may
not be straightforward. It is of interest to find a more primitive condition. We can do so

when f(x,0) is differentiable with respect to x. Let

9 4,0

D0,z ,2") = sup
x

zeR(z',x'")

: (19)

where R(a,b) is the cube containing all points between a and b. Let X" = F (Xm]féﬂnm) .

Assumption 7 For alli,n, there exist finite constants @,, such that for some 1/2 <y < 1,

[ Xni — Xotllag < @m, (20)
D o < oo, (21)
m=1
and
D = supsupsup sup | D(0, X, X1, < oo, (22)

9c® m n 1<i<n

where q is given in Assumption 5.



Assumption (20) states that X, is 27 NED with respect to Y,; with NED numbers
¢m. This replaces (17) which directly assumed that the functions f(X,;) were L? NED with
respect to Yy;. (22) is a uniform bound on the derivative function 8% f(z,0). The following
theorem is proved by showing that (16), (20), and (22) imply (17) with 7, = 2D¢,, and
thus F is an L? NED class.

Theorem 7 Assumptions 5 and 7 with ¢ > a /() imply Condition 1 with p(-) = p.(-,27).

In Theorems 4 and 5, the choice of v implies a trade-off between the NED decay rate
((18) or (21)) and the moment requirement g > a/(yA). If 7 = 1/2, the decay rate for @, is
quite mild, but we need ¢ > 2a/\. On the other hand, if ¢, | 0 exponentially fast, then we
can let v be arbitrarily close to 1, and only require that ¢ > a/A.

4 Conclusion

This paper has presented empirical process limit theory applicable to dependent random
functions. The conditions are weak in two dimensions: the functions are not required to
be bounded; and the dependence restrictions are mild. The cost is that the results are
restricted to Lipschitz-continuous function classes. Many applications involve differentiable
functions, and thus can satisfy the conditions. Other applications involve discontinuous
functions (such as threshold models, see Hansen (1993)) for which the results of this paper

are not appropriate.
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5 Appendix

Proof of Lemma 1.
Take any f € I' and let f,,; = f(X,;). Without loss of generality, assume that the v, are
(weakly) decreasing, and assume that F f,; = 0. Following McLeish (1975), define

so that for each m, {Y,mi, Frni-m} is @ MDA. We can express f,; as the infinite sum
> Yomi,
m=—oco
which converges almost surely since for each i, {E (fn; | Fri—m) , Fni—m} is a reverse martin-
gale in m which converges to zero almost surely as m — oo, and {E (fu; | Frirm) , Frivm}
is a martingale which converges a.s. to f,; — Ff.; as m — oo. Hence we can rewrite the

empirical process as

1 & > 1
= e = Y Y= 3 Y 25)
We now show that
1Yomill, < 200 (1 £(Xno)ll5 - (24)

Indeed, for m > 0, using Minkowski’s inequality, (3), and Assumption 1, part 1,
IYomilly VE (fai | Fricm)lly + 1B (frs | Fricen-1)llg < 20meni(f) = 200m || £ (Xni) |17 -
Similarly for m < 0, using (4) and Assumption 1,
Yamilly < 1 fns = E (i | Frsm)lly + 1fni = B (foi | Fasm-1)lly < 200m | f(Xaa) I3 -

From (23), Minkowski’s inequality, Burkholder’s inequality (see, e.g., Hall and Heyde
(1980) Theorem 2.10), again Minkowski’s inequality, (24), (6), and (7), we have

% 18q3/z ( q/z) e

11

o0

I flly <

m=0

1 n
TEZ: nms

=1

: : nmsi




o 1 m 1/2 50 1/2
<a0 3 (S l?) <3605 (3002 012 )

1/2
— 72q¥ ( Z I (X H”) < Kops(f527)7 = Kqpa(f)7,

as required. O

Proof of Theorem 1.

For each k = 1,2,..., set & = 2 ¥ and N(k) = 6, = 2% Let ©, = {6",...,68N®)}
denote a set of elements of © with the property that for all § € ©, there exists some 67 € 6,
such that |§ — 67] < Q2% where () < oo. This is possible since © is a bounded subset of R“.
Let 0, be the function of 0 which selects 67 € O, so that

00 < 2. (25)

By (1) and (25),
| f (X, 0) — f(Xns, Or)| < b(Xni) |0 — Ok ] < QM (Xni) 6k,

and p,(Q0(X,;)0%) = Q*py(b)6x, which show that N(k) are proportional to the brack-
eting numbers for F' with respect to the metric p,(-). Let F} denote the class F) =
{f(-,0) : 0 € ©} . Observe that F} has N(k) distinct elements and the sets can be con-
structed in such a way that Fj_1 C Fj. Let fy(-,0) = f(-,0x), and note that fi € Fj.

Fix ¢ > 0. Take a sequence of integers k(n) which satisfies V12 WA 0. Then

‘:sup
g 8cO

- Zn: [(ﬂXmﬁ 0) — f(Xus, ek(n))) — L (f(Xm'; 0) — f(Xns, Qk(n)))}

Slf]-p ‘an - ank(n)‘ \/ﬁ £ )
1

A

2 & A Q
7 2 bl sup = ekm)\ < 2p,(b, 1)V (26)
The first inequality is Minkowski’s, the second uses (1), and the third uses definition (6) and

property (25). Since 1 < 27y and ¢ < s under Assumption 1, by the monotonicity properties

of norms,
Pa(b,1) < pg(b, 27) < ps(b,27) < o0

12



where the final inequality is from Assumption 2. Thus (26) tends to 0 as n — oo, and so for

n sufficiently large,

Slflp ‘I/nf — I/nfk(n)‘ <e (27)
q

Next, let g, = fy — fx_1 and let Gy = {f(-,0') — f(-,0") : 0' € ©;,0" € ©;,_;} C . Note
that (G, has N (k) distinct elements (the same as F) since the sets Fj, are nested. Lemma
1, (1), and (25) yield

n

1/2
. 1
[ngill, < Kqpelgr)” = Ky limsup (E S (Xns, 0r) — f (X, 9k1)H§7>

| 1/2
< Ktimsu (23100 POGIET) < A2 (29)

=1
where A = (4@)M pqa(b)Y < oo by Assumption 2. By Pisier’s inequality (Pisier, 1983) and
(28),
< N(l{:)l/q max ||Vngkll, < ApB* (29)
9r€Gy a

sup |Vngi| H max |Vngs|
f 9r€G

q q
where 3 = 2(%/7727)_ Note that 3 < 1 since A > a/(gY) by assumption.
Now let M = M(¢) be an integer large enough to satisfy
A i gF <. (30)
k=M+1

Let n be sufficiently large so that (27) holds and k(n) > M. We now apply a chaining
argument. Since frpm) — fu = ZZ(:??/[H gx, we have by Minkowski’s inequality, (29) and (30)
k(n)

<y

g k=M+1

< i AdF <e. (31)

g k=M+1

sup |Vngk|

Slf]-p ‘ank(n) - anM‘
(27) and (31) together imply that

< 2. (32)

q

sup ’an - anM’
f

The proof is completed by an argument identical to that of “Comparison of pairs” of Andrews

and Pollard (1994) and is omitted. O
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Proof of Theorem 4.

Minkowski’s inequality and the Rao-Blackwell theorem yield

[ £ ) = B (£ )| Fii )| < 2015 ()l - (33)

Inequalities (17) and (33) can be combined?® to yield

[£(Xn) = B (PGl Fiim) | < 2 1 ()7 < 20 T 1A G, (34)

where the final inequality uses the assumption that g < r and the monotonicity of the L"

norm.

Andrews (1988, equation (2)) showed that under (34)

1B (f (Xni) | Fri-am) = Ef (i)l < 200, 7 || (XG4 6t V7 L (i)l
< (28, 7+ BT VT | F ()
where (' is defined in (16). He also showed that under (34)
1f (Xni) = B (f (Xna) | Fusim)lly < 27 LA (X1
This shows that (3) and (4) are satisfied with
o = 2T | gl 1 /10

and
Thus {f(X,:), Fni, F) is an Li-mixingale class. Assumption 1 holds with s = r and

U =2 (2”7 i ne Y +6CT7 i oz}r{qm) < o0

m=1 m=1
under (18) and (14). Assumption 2 is trivially satisfied under (15) and (16). Thus Assump-

tions 5 and 6 are sufficient for Assumptions 1 and 2. Hence Theorem 1 holds. a

31 owe this suggestion to an anonymous referee.
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Proof of Theorem 5.
We show below that (17) holds with 7., = 2D,,. Thus Assumption 6 holds and Theorem
4 yields the result. The differentiability of f (or any linear combination of two elements of
F') implies that
1(0) = [(",0)) < D0,27,4") - |a' — 7. (35)

By Minkowski’s inequality, the fact that f(X/?,0) is F:/™ -measurable, the Rao-Blackwell
Theorem, (35), Holder’s inequality, (22) and (20),

| £C) = B (£l Fiima) | < 1 () = S, + (| B (Pl i) — £

< 2 (Xni, 0) = S (X5, 0)

< 2||D(0, X, X03) | Xi — X2,

< 2(|D(0, Xs, Xi) o 1 X — < 2D1)m,

2 Xillgg <

as required. O
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