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1 Introduction

Recently, Andrews (1993) found the asymptotic distribution of a wide class of tests for
structural change in econometric models. In a related paper Andrews and Ploberger (1994)
developed an analogous class of tests with stronger optimality properties. The asymptotic
distributions of the tests are non-standard, and depend upon two parameters: the number
of parameters tested, and the range of the sample which is examined for the break date.

While a selected set of asymptotic critical values have been tabulated, the non-standard
nature of these distributions means that p-values cannot be calculated from previously pub-
lished information. This is a disadvantage in applications, since applied economists are
frequently more interested in p-values than in classical Neyman-Pearson significance tests.

This paper presents computationally convenient approximations p*(z) to the asymptotic
p-value functions p(z) for the Andrews and Andrews-Ploberger asymptotic distributions.
The approximation methods proposed here may find use in a wide range of non-standard
statistical contexts.

Pervious attempts to estimate p-value functions for non-standard test statistics in econo-
metrics were made by Hansen (1992) and MacKinnon (1994). Hansen (1992) set p*(x) to be
a simple polynomial

ay(xz|0) =00+ 01z + - 0,2" (1)

and fitted the coefficients by a least squares polynomial regression of upper percentiles on
quantiles. MacKinnon (1994) improved the approach by setting p*(z) = ®(a,(z | 0)), where
®(-) is a leading distribution function of interest (in his case, the standard normal). He
fitted the coefficients by a least squares polynomial regression of @ !(p) (where p are upper
percentiles) on quantiles.

The methods presented in this paper extend this literature. Similarly to MacKinnon
(1994), we set p*(x) = P(ay(x | 0) | 1), where a,(z | 0) is a polynomial and @(z | ) is a
leading distribution of interest. One difference is that we allow the distribution to depend
on an unknown parameter 7. To fit the approximation, we use a weighted loss function over
the p-value space. We find that our approximations are extremely accurate, even though

our models are quite parsimonious.



In independent and complementary work, Adda and Gonzalo (1995) use the semi-nonparametric
(SNP) approach of Gallant and Nychka (1987) to approximate the asymptotic distribution of
the Dickey-Fuller test. While their approximating p-value function is different, their method
to fit the coefficients is quite similar to ours.

In Section 2, we review the tests and distribution theory of Andrews (1993) and Andrews
and Ploberger (1994). Section 3 presents the methodology used to approximate the p-value
function. Section 4 presents the approximations. A Gauss program which computes the test

statistics and asymptotic p-values is available on request from the author.

2 Tests for Structural Change

An m x 1 parameter (3, describing some aspect of a time series x;, takes the value 3 for
t < k and the value 35 for t > k, where m < k < n — m. Let F},(k) denote a Wald, LM or
LR statistic of the hypothesis of no structural change (51 = (32) for given k. When k (the
date of structural change) is known only to lie in the range [k, k2|, the Quandt or “Sup”
test statistic is
SupF, = sup F,(k).
k1 <k<ks

The Andrews and Ploberger (1994) “Exp” and “Ave” tests are

ExpF, =1
Xp n(k2 1 Zexp( ))

and

AveF , Fo(
k:2 k:l +1 tzkzl

As shown in Andrews (1993) and Andrews-Ploberger (1994), under a wide set of regularity

conditions, these statistics have the asymptotic null distributions

SupF ,, —4 SupF (m9) = sup F(71), (2)
m <7<
1 gp 1
ExpF,, —4 ExpF(m) =1n < / exp <—F(T)> dT) ; (3)
o — 7M1 Jmy 2



AveF ,, —4 AveF (1) = ! /7r2 F(r)dr, (4)

To — T Jmy

where
(W (r) — W) (W(r) — W (1) 5
T(1—7) ’

W (7) is an m x 1 vector Brownian motion, m; = k;/n and 7y = ky/n. These distributions are

F(r)=

non-standard. In addition to m, the distributions depend on m; and 7y through the single

index
1
= ——— 6
AT, w (6)
where
7T2<1 — 7T1)
A pr— _—.
0 7T1<1 — 7T2) <7)

Note that when the range [k, ks is symmetric in the sample, mp = m = 1 — 7.

3 Methodology

Let T, denote one of the three tests SupF,, ExpF,, or AveF, for some 7y and let T’
denote the associated asymptotic distribution (e.g., SupF(7g), ExpF (), or AveF (mp)). Let
p(z) = P(T > z) denote the “p-value function” of T. Define the inverse function of p(z) :
Q(q) = p'(q) which satisfies ¢ = p(Q(q)). Note that Q(1 — q) is the quantile function of the
distribution. For simplicity, we will refer to Q)(g) as the quantile function.

While p(x) may be (in principle) calculable, it may be computationally burdensome in
applications, so we desire a parametric approximation, valid at least for small p-values. In

the following sections we describe how we obtain such an approximation.

3.1 Approximating P-Value Functions

We need a parametric function p(x | #) which can be made close to the true function p(x)
by appropriate selection of the parameter 0. In principle, we would like our functional choice
p(x | 0) to have the standard properties of a distribution function (bounded between 0 and 1
and monotonically decreasing in ), although these properties are not essential if the function

gives good approximations.



A general approach is to pick a flexible function class with known approximation proper-
ties. Let o, (z | 0) be the v’th-order polynomial in x defined in (1). By the Stone-Weierstrass
thereom, any bounded continuous function f(z) can be arbitrarily well approximated on a
compact set by «,(x | 0) for a suitable choice of 6. It thus makes sense to consider setting
p(z | 0) = ap(x | 0), which is the approach of Hansen (1992). An improvement suggested by
MacKinnon (1994) is to set p(z | ) = 1 — ®(c(z | §)), where ®(-) is a distribution function
of leading interest. This retains the approximation properties of the polynomial, but may be
more parsimonious, at least when ®(-) is close to the true distribution function. We extend
this idea one step further and allow ® to depend on an unknown parameter 7, viz., (- | 1),
so that our approximating p-value function is p(z | 0) = 1 — ®(ay,(x | 0) | n).

In our specific applications, we set ®(- | ) = x?(n), the chi-square distribution with 5
degrees of freedom, although other distribution functions could be selected in appropriate

contexts. In summary, our approximating function is

p(x]0)=1-x"(0p + 01z +---0,2" | ) (8)
where
2z /2-1,—y/2
2 y" €
= [ Z———>d
is the cummulative chi-square distribution, and 6 = (6o, 01, ...,0,,7).

Why this particular choice? The asymptotic theory of section 2 shows that when 7y =
1/2, the SupF(m), ExpF (), and AveF (mg) distributions simplify to the x2, distribution.
By continuity, their distributions will be close to the x2, for mg close to 1/2. For other values
of Ty, we can get a sense of the distributions through numerical plots. Figures 1, 2, and 3
display estimated plots of the density functions of the SupF(7), ExpF (7g), and AveF (7o)
distributions, respectively, for m = 1, 5, 10, and 20, and several values of my. The densities
appear to resemble those of the chi-square, but with shifts in location and spread. It therefore

seems reasonable to use the chi-square distribution as our “leading case” distribution.

3.2 Loss Function

Given the function p(x | 0) of (8), we need to select 6 to make p(x | 0) as close as pos-

sible to the true p-value function p(x). Since the object of interest are the p-values them-
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selves, we wish to make the difference |p(z | §) — p(z)| small. This is equivalent to making
Ip(Q(q) | 0) — q| small. In principle, we want all errors, not just the “average” error, to be
small. The natural metric to measure the statement “all errors are small” is the uniform

metric:

dso(0) = max |p(Q(q) | 0) —ql. (9)

0<g<1
The uniform metric is difficult to implement numerically. A close relative is the L™ norm
1/r
[]/ Ip(Q(g) | 0) — q|" dq (10)
for r large. Metric (10) seems inappropriate, however, since it weights all quantiles equally.
It seems reasonable to believe that we are more concerned with precision in p-values when

the p-values are small. This desire can be incorporated by including a weight function in

(10): /
0= [ Q@ 10) — ol wla)ia (1)

where w(q) > 0. Beyond the fact that w(q) should be decreasing in ¢, it is not clear exactly

what shape it should take. After some experimentation, I settled on the following choice:

1, 0<¢<0.1
8—q\?
w(g) = (—7q> 01<qg<08 - (12)
| o 08<g¢<10

The weight function w(q) in (12) has the following features. It gives highest weight to to
p-values in the region [0,0.1], and zero weight to those in the region [0.8,1.0]. It is continuous
between these points, with a quadratic decay.

When (g) is not analytic, we can replace the continuous region [0,1] by a discrete set
[q1, ..., qn] to approximate the integral (11). We use the set {.001,.002, ...,.999} in the work
which follows.

Minimization of d,(0) yields the parameter value which best fits the approximation p(x |
0) to the true p-value function p(x). Let the minimum value be denoted by 6* :

0* = Argmind,.(0),

0co
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the loss-minimizing p-value function by p*(z) = p(x | 0*), and the approximate p-values by
Py =p(Tn | 07).

Alternative choices for loss function (11) and weight function (12) may be made. For
example, Hansen (1992) and Gonzalo and Adda (1995) set r = 2. This penalizes large errors
less severely than our choice. Our choice to set r high implies that we are concerned about
large approximation errors, and are not very willing to trade off a few large errors in return
for many other small errors. I think this corresponds to our idea that we want a reported
p-value in any application to be accurate.

One can also view the fitting of p(Q(q) | ¢) to ¢ as a regression, a point made in par-
ticular by MacKinnon (1994). Since this regression has non-classical statistical properties,
MacKinnon (1994) suggests that re-weighting be done to account for heteroskedastic errors.
I do not believe this is appropriate. A correctly specified loss function, such as (11)-(12),
incorporates all information necessary for loss-minimizing curve fitting. I think it is most
constructive to discuss the choice of loss function, rather than the statistical qualities of the

regression fit.

3.3 Approximating the Quantile Function

Minimization of the criterion (11) requires the computation of the true quantile function
Q(q), which is unknown. It may be numerically approximated using analytic techniques.
DeLong (1981) provides expansions for the SupF distribution for m < 4. Anderson and
Darling (1952) provide expansions for the AveF distribution for m = 1 and 79 = 0. It is
possible that these techniques could be generalized to handle our applications. It is not
clear, however, that this is desireable. Such numerical approximations involve considerable
analytic effort, and in the end still produce approximations (such as truncated infinite sums).

Another approach is to use analytic methods to approximate p(z) for large z (i.e., for
small p-values) as in Kim and Siegmund (1989). The downside is that this approach does
not necessarily give good estimates for the entire support of the distribution.

We took the analytically simpler approach of Monte Carlo simulation. The cost is a
relatively heavy use of computer resources. We approximated the distributions (2), (3),

and (4) using using a grid on [0, 1] with 1,000 evenly spaced points. This is equivalent to
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simulating (5) using a sample of size 1,000. We then constructed the empirical quantile
function Q(q) from R = 50,000 independent replications. This should be sufficiently precise
for our purposes. Indeed, let p(z) = Qfl(a:) be the empirical p-value function. By the central
limit theorem,

P (|p(x) — p(z)| > .0044) ~ .05.

Thus at the 95% confidence level, the maximum simulation error is about .0044. Most
simulation errors, of course, are much less than this amount.

To summarize, our p-value approximations involve two separate approximations. First,
we estimate the true p-values p(x) by p(x) using simulation. Second, we use a parametric
function p(xz | 0) to approximate the estimated p-values p(x). These two errors do not
necessarily offset one another. To reduce the total error, we need to make both errors
small, which is possible only by (i) increasing the number of simulation replications; and (ii)

increasing the order v of the polynomial a,(z | 6).

3.4 Results

I fit p-value functions of the form (8) to the SupF (7o), ExpF (79), and AveF (7g) distributions
for m =1,2,...,40 and 1y = .01,.03, .05, ...,.49. There are thus 3,000 distinct distributions.
For each distribution, I selected the polynomial order v to get a good yet parsimonious
fit. For the SupF distributions, I found that p = 1 was sufficient for all m. For the ExpF
distributions, v = 3 was necessary for m = 1, v = 2 was needed for m = 2 and m = 3, and
v = 1 was sufficient for m > 4. For the AveF distributions, v = 3 was used for m =1, v = 2

for m =2, and v =1 for m > 3.

I

For any distribution, the absolute error from our parametric approximation is

d(z) = |p(x | 0) — p(=)|.

Table 1 reports a summary of the errors for 20 p-values of interest. The column “Median
Error” reports the median of the absolute errors across the 1000 distributions for each test
(SupF, ExpF and AveF. The column “Maximum Error” reports the maximum absolute error
across all 1000 distributions. It appears that the errors are quite small. For example, we see

that for the 1% p-value, the distributions err at most by 0.0017, with a median error of only



0.0004. Interestingly, the numerical approximations are almost as precise for large p-values.
For example, at the 50% p-value, the SupF distribution has a maximal error of 0.0030, and
a median of 0.0006. The accuracy of these approximations is much better than necessary for
empirical applications.

Despite the parsimony of the fitted models, we still have over 9,000 coefficients to report,
which is too many to print in this article. The complete estimates are available in a GAUSS
program available from the JBES WEB site! or upon request from the author. We report in
the paper the coefficients for 79 = .01,.05,.15,.25,.35, and for m = 1,2, ..., 20,25, 30, 35, and
40. Table 2 reports the coefficients for the SupF distributions. Tables 2 and 3 report those
for the ExpF distributions, and Tables 4 and 5 for the AveF distributions.

4 Empirical Illustration

To illustrate the usefulness of these p-value approximations, I report two simple applications
using autoregressive models. The first application is an AR(6) fit to the growth rate (log-
difference) of U.S. monthly total personal income for the period 1946.1-1995.7, extracted
from the Citibase file GMPY. The second is an AR(12) fit to the first-difference of the
monthly three-month U.S. Treasury Bill rate for the period 1947.1-1995.7, extracted from
the Citibase file FYMG3. The results are reported in Table 7. I report the numerical value
of the SupLM, ExpLM, and AveLLM versions of the tests for constancy of all regression
coeflicients, setting 7, = .15 and 7, = .85 (so mp = .15). I also report the asymptotic 10%,
5%, and 1% critical values from Andrews (1993) and Andrews-Ploberger (1994). Finally, I
report the approximate asymptotic p-values.

To compute the p-values, I use formula (8) and the coefficients from Tables 2-6 for
7o = .15. For example, take the SupLM statistic for personal income. From Table 2,
we find that for m = 7 (the number of parameters in the regression) and 7y = .15 that
O = —4.42, 07 = 1.10, and n = 11.0. Thus we take the test value of 12.5, make the
computation —4.42 4 12.5 % 1.10 = 9.33, and use the chi-square distribution with n = 11.0
degrees of freedom evaluated at 9.33 to obtain the p-value of .59. Or consider the AveLM

1(Assuming this paper is accepted.)



statistic for the T-Bill rate. From Table 6, we find that for m = 14 and 7y = .15 that
0o = —6.38, 0, = 1.63 and nn = 14.8. So our approximate p-value for the test value of 18.4 is
1—x?(—6.38+1.63x18.4 | 14.8) = .07.

A reading of the table shows that the p-values yield much more information than simply
the critical values. Take, for example, the SupLLM test applied to the T-Bill series. The test
statistic of 25.0 appears to be quite “close” to the 10% critical value of 29.1, so on the basis
of the critical values alone a researcher might conclude that the test is “close” to significant.
But the asymptotic p-value turns out to be only .27. Similarly, the ExpLM statistic is
10.2, which appears close to the 10% critical value of 11.1, yet has a p-value of only .18.
In summary, the p-values are relatively simple to calculate, given the tables provided, yet
enable a researcher to come to more informed conclusions than simply on the basis of the

asymptotic critical values.
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Table 1: Absolute Error in Fitted Distributions

SupF Distributions ExpF Distributions AveF Distributions
P-Value | Median Error Maximum Error | Median Error = Maximum Error | Median Error  Maximum Error
0.00 0.0001 0.0006 0.0001 0.0013 0.0001 0.0009
0.01 0.0004 0.0015 0.0004 0.0017 0.0004 0.0014
0.02 0.0005 0.0019 0.0005 0.0021 0.0005 0.0018
0.03 0.0006 0.0023 0.0006 0.0023 0.0006 0.0018
0.04 0.0006 0.0025 0.0006 0.0021 0.0006 0.0018
0.05 0.0006 0.0021 0.0006 0.0019 0.0006 0.0021
0.06 0.0006 0.0021 0.0006 0.0019 0.0005 0.0021
0.07 0.0005 0.0019 0.0005 0.0020 0.0006 0.0020
0.08 0.0005 0.0019 0.0006 0.0024 0.0005 0.0019
0.09 0.0005 0.0018 0.0005 0.0024 0.0005 0.0020
0.10 0.0005 0.0018 0.0005 0.0019 0.0005 0.0018
0.15 0.0005 0.0024 0.0005 0.0020 0.0005 0.0017
0.20 0.0005 0.0020 0.0006 0.0021 0.0005 0.0024
0.25 0.0006 0.0024 0.0006 0.0025 0.0005 0.0019
0.30 0.0005 0.0020 0.0006 0.0027 0.0006 0.0023
0.40 0.0006 0.0024 0.0006 0.0025 0.0006 0.0025
0.50 0.0006 0.0030 0.0006 0.0025 0.0006 0.0023
0.60 0.0006 0.0027 0.0006 0.0027 0.0006 0.0026
0.70 0.0008 0.0024 0.0008 0.0032 0.0008 0.0028
0.80 0.0017 0.0058 0.0019 0.0068 0.0015 0.0066
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Table 2: SupF Distribution, m > 1

o = .01 o = .05 o = .15 o = .25 o = .35

m ) 01 n fo 01 n fo 01 n fo 01 n fo 01 n

1 -1.79 1.17 4.5 -1.39 1.07 3.6 -0.99 1.02 3.0 -0.73 0.98 2.5 -0.50 0.96 2.1
2 -3.06 1.18 6.1 -2.38 1.11 5.4 -1.65 1.06 4.7 -1.16 1.02 4.1 -0.78 0.97 3.5
3 -4.09 1.21 7.8 -3.31 1.10 6.5 -2.05 1.13 6.8 -1.61 1.03 5.5 -1.06 1.01 4.9
4 -5.33 1.21 8.9 -4.08 1.14 8.2 -2.52 1.11 8.0 -1.91 1.04 7.0 -1.45 0.97 5.7
5 -6.39 1.18 9.4 -4.84 1.15 9.3 -3.46 1.07 8.3 -2.63 1.02 7.5 -1.82 1.00 7.0
6 -7.08 1.26 11.8 -5.37 1.19  11.2 -4.05 1.08 9.5 -2.94 1.05 9.0 -1.79 1.03 8.6
7 -8.49 117 111 -6.21 1.21 126 -4.42 1.10 11.0 -3.23 1.05 10.1 -2.21 1.01 9.3
8 -9.20 117 122 -7.24 113 11.9 -5.36 1.08  11.3 -3.65 1.06 11.4 -1.69 1.10  12.2
9 -10.22  1.14 12.3 -8.07 111 124 -5.43 1.10  13.1 -4.38 1.01  11.3 -2.83 1.00 11.1
10 | -11.001  1.14 13.3 -8.84 111 13.2 -6.47 1.06 12.8 -4.97 1.01  12.0 -2.92 1.05 13.0
11 | -11.90 1.11 134 -9.56 1.06 13.1 -6.79 1.04 135 -4.62 1.05 144 -3.26 1.01 134
12 | -12.88 1.06 12.8 | -10.35 1.09 145 -7.80 1.02 136 -5.32 1.05 15.1 -3.91 1.00 13.8
13 | -13.88  1.09 141 | -11.07 1.07 14.8 -7.93 1.07 159 -5.80 1.04 15.8 -4.14 1.00 149
14 | -1461 1.15 166 | -11.52 1.11 16.8 -8.54 1.05 16.1 -5.90 1.05 17.2 -4.06 1.02 165
15 | -1549 1.04 141 | -12.44 1.08 16.6 -9.05 1.05 17.2 -6.59 1.04 176 -3.10 1.08 20.0
16 | -16.34 1.15 17.8 | -12.27 1.20 21.4 -9.13 1.09 19.3 -7.00 1.04 185 -4.79 0.99 17.6
17 | -17.20 1.15 188 | -13.73 1.15 20.1 | -10.45 1.05 18.3 -7.23 1.05 19.8 -5.01 1.02  19.1
18 | -1810 1.17 20.0 | -14.15 114 21.2 | -10.63 1.05 19.5 -7.76 1.04 20.2 -5.11 1.02  20.2
19 | -1819 1.04 17.2 | -1494 097 16.3 | -12.14 090 14.9 -9.84 0.890 15.3 -7.09 091 16.8
20 | -1899 1.02 170 ]| -16.09 0.99 17.0 | -12.14 0.97 18.3 -8.87 1.00 20.5 -5.94 1.00 21.3
25 | -23.42 1.06 21.0 ] -19.06 1.06 23.4 | -14.16 1.05 25.0 | -10.65 1.03 25.7 -6.57 1.02 27.1
30 | -27.30 1.03 225 | -2291 1.04 251 | -17.06 1.03 27.8 | -11.51 1.07 32.8 -6.79 1.05 34.1
35 | -30.01 0.92 20.0 | -25.88 0.97 25.2 | -20.09 098 284 | -15.78 097 30.2 | -1044 0.98 33.1
40 | -34.24 097 24.8 | -29.24 098 28.0 | -21.65 1.05 36.7 | -14.18 1.07 42.7 | -11.95 094 35.0
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Table 3:

ExpF, m=123

m=1 m=2 m—=3

) 0o 01 02 03 n fo 01 02 n o 01 02 n

0.01 | -0.74 5.23 -1.16 017 23| -134 332 -014 31| -2.10 354 -0.13 49

0.05 | -0.61 4.66 -1.01 016 21 | -1.07 3.05 -0.11 29| -1.66 329 -0.11 4.6

0.15 | -042 3.75 -0.65 0.10 1.7 | -0.77 266 -0.07 26 | -1.16 291 -0.08 4.2

0.25 | -0.30 3.33 -0.54 0.09 15| -055 232 -0.03 23| -0.67 274 -0.07 4.1

0.35 | -0.19 2.81 -0.41 0.08 1.2 | -038 213 -0.02 21 | -056 208 -0.01 3.0

Table 4: ExpF Distribution, m > 4
g = .01 g = .05 o9 = .15 o = .25 9 = .35

m o 01 Ui o 01 Ui o 01 Ui o 01 Ui 6o 01 ”
4 -2.48 2.41 4.5 -2.05 2.34 4.5 -1.47 2.26 4.4 -1.09 2.12 4.1 -0.72  2.03 4.0
5 -3.19 2.34 5.2 -2.66 2.29 5.2 -1.95 2.20 5.2 -1.49 2.08 4.9 -0.89 2.05 5.0
6 -3.94 2.20 5.5 -3.34 2.17 5.6 -2.45 2.13 5.8 -1.77 2.09 5.9 -1.18  2.00 5.8
7 -4.67 2.23 6.3 -3.88 2.20 6.6 -2.73 2.19 7.1 -1.90 2.12 7.1 -1.26  2.05 7.0
8 -5.26 2.20 7.1 -4.37 2.19 7.5 -2.91 2.22 8.5 -1.86 2.23 9.0 -0.80 2.20 9.3
9 -6.08 2.17 7.6 -5.07 2.20 8.3 -3.58 2.20 9.1 -2.58 2.12 9.0 -1.46  2.10 9.4
10 -6.74 2.17 8.4 -5.56 2.16 9.0 -4.03 2.11 9.4 -3.08 2.00 9.0 -1.78  2.03 9.8
11 -7.49 2.25 9.6 -6.21 2.23  10.1 -4.66 2.15  10.3 -3.13 215  11.1 | -1.44 218 12.2
12 -8.19 2.10 9.2 -6.86 2.11 10.0 -5.20 2.07  10.5 -3.79 2.01 10.7 | -2.24  2.00 114
13 -8.89 2.07 9.6 -7.39 2.12 109 -5.49 2.04 11.3 -4.16 2.00 11.5 | -255 2.01 123
14 -9.65 2.16  11.0 -7.79 2.25 13.0 -5.56 2.17 135 -3.68 217 145 | -215  2.11  14.6
15 | -10.51  2.07 10.6 -8.97 2.13 12.0 -6.66 2.11 13.1 -5.27 2.00 12.7 | -357 198 13.3
16 | -11.26  2.00 10.5 -9.63 2.01 11.5 -6.92 2.11 14.2 -4.82 2.13 156 | -248 211 16.7
17 | -11.89 2.13 12,5 | -10.07 2.11 13.4 -7.58 2.08 144 -5.34 2.09 15.8 | -253 2.15 182
18 | -1257 1.98 115 | -10.62 2.00 129 -8.15 1.94 135 -5.96 2.00 155 | -405 196 159
19 | -13.17 2.01 12.6 | -11.26 1.98 13.2 -8.78 1.93 14.0 -6.51 199 16.0 | -447 196 16.5
20 | -13.84 2.03 134 | -11.91 2.00 14.1 -8.96 2.02 16.1 -6.43 2.06 18.0 | -417 2.01 186
25 | -17.50 197 15.0 | -15.05 1.92 15.8 | -12.18 1.88 16.7 -9.27 1.91 189 | -6.04 1.97 21.7
30 | -20.92 1.90 16.4 | -1816 1.91 18.3 | -1419 193 21.0 | -11.25 1.89 21.9 | -847 1.85 22.6
35 | -23.97 1.80 16.9 | -20.86 1.87 20.2 | -16.50 195 24.7 | -12.00 2.01 288 | -7.10 2.07 33.3
40 | -27.29 1.84 199 | -23.96 197 251 | -1864 193 278 | -14.44 1.92 30.2 | -5.07 2.20 438
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Table 5: AveF, m =1,2)

m=1 m=2

) o 01 02 02 n o 01 02 n

0.01 | -1.02 5.39 -0.95 011 32| -1.78 312 -0.10 4.0

0.05 | -0.74 4.95 -0.84 0.09 32| -142 280 -0.08 3.8

0.15 | -047 3.63 -0.51 0.05 25| -094 221 -0.05 3.2

0.25 | -0.35 2.56 -0.30 0.03 18| -0.62 1.70 -0.02 2.7

0.35 | -0.22 1.79 -0.16 0.02 13| -041 1.21 0.00 2.0

Table 6: AveF Distribution, m > 3
o = .01 o = .05 o = .15 o = .25 o = .35

m ) 01 n fo 01 n fo 01 n fo 01 n o 01 n
3 -2.41 2.24 4.3 -2.03 2.06 4.2 -1.41 1.70 3.7 -1.01 1.40 3.2 -0.59 1.22 3.1
4 -3.28 2.20 5.5 -2.76 2.02 5.3 -1.94 1.68 4.8 -1.29 1.45 4.5 -0.72  1.26 4.3
5 -3.91 2.24 7.3 -3.27 2.07 7.1 -2.23 1.72 6.4 -1.59 1.44 5.6 -0.89 1.24 5.3
6 -4.85 2.26 8.7 -4.09 2.07 8.4 -2.87 1.71 7.4 -1.86 1.48 7.0 -1.05 1.28 6.6
7 -5.30 2.21 10.2 -4.45 2.02 9.7 -3.24 1.63 8.2 -2.41 1.34 7.0 -1.50 1.17 6.7
8 -6.24 217 111 -5.27 1.99 10.7 -3.84 1.60 9.0 -2.95 1.32 7.6 -1.84 1.16 7.5
9 -7.39 2.07  11.3 -6.17 1.94 11.3 -4.34 1.62 10.2 -2.80 1.41 9.9 -177 0 1.21 9.1
10 -7.88 2.11 13.3 -6.65 1.94 128 -4.65 1.61 11.5 -3.20 1.38 106 | -1.77  1.22 104
11 -8.45 2.17 155 -7.25 1.98 146 -4.74 1.70 14.0 -3.72 1.39 116 | -237 1.21 109
12 -9.41 2.15  16.4 -7.94 1.98 159 -5.48 1.66 14.4 -3.45 145 14.0 | -1.44 131 14.2
13 | -1043 2.16 17.7 -8.93 1.97 16.7 -6.38 1.63 14.8 -4.47 140 13.7 | -2.69 1.22 13.2
14 | -11.32  2.02 17.0 -9.89 1.82 156 -6.90 1.568 15.2 -4.35 143 156 | -3.18 1.17 13.3
15 | -12.01 2.17 204 | -10.36 197 19.1 -7.19 1.67 179 -5.21 142 16.1 | -298 1.26 15.9
16 | -10.48 247 289 -8.66 2.25  27.3 -5.34 1.87 245 -3.24 1.57 21.8 | -1.88 1.31 19.1
17 | -12.92  2.22 249 | -10.95 2.03 235 -7.44 1.71  21.5 -4.39 1562 213 | -1.75 134 21.0
18 | -13.31  2.25 271 | -10.94 2.09 26.6 -8.82 1.568 19.6 -5.92 1.39 19.1 | -352 1.21 183
19 | -13.02 236 319 | -10.53 217 308 -8.30 1.68 236 -5.69 143 215 | -437 117 179
20 | -14.41  2.23  30.1 | -12.65 1.97 26.8 -9.69 1.54 21.2 -6.95 1.33 196 | -5.05 1.13 17.6
25 | -19.33 210 33.2 | -16.14 1.95 32.6 | -11.79 1.60 28.1 -9.03 1.33 24.1 | -5.88 1.17 233
30 | -24.32 211 39.1 | -19.98 2.01 404 | -1453 164 34.7 | -10.24 1.39 31.5 | -2.41 1.36 384
35 | -26.94 2.19 49.8 | -22.85 2.01 473 | -16.38 1.66 41.6 -8.60 1.5 454 | -4.38 1.33 420
40 | -31.58 2.04 50.0 | -27.55 1.83 458 | -19.54 157 43.0 | -12.15 1.42 445 | -3.76 1.33 495
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Table 7: Empirical Applications

Personal Income (m = 7)

T-Bill Rate (m = 13)

Test Critical Value  Approximate Test Critical Value  Approximate
Statistic 10% 5% 1% P-Value Statistic 10% 5% 1% P-Value
SupLM 12.5 19.7 21.8 26.3 .59 25.0 29.1 31.8 37.0 27
ExpLM 4.6 6.7 7.7 95 41 10.2 11.1 12.3 14.6 18
AveLM 7.4 10.3 11.5 14.3 37 18.4 17.2 18.8 225 .07
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