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Abstract

This paper presents a filtering model of the housing market which is

similar to Sweeney's (1974b), except that the maintenance technology is such

that housing can be maintained at a constant quality level as well as

downgraded, and population at each income level grows continuously over

time.  In equilibrium, at each moment of time, some housing is allowed to

deteriorate in quality, and other housing is maintained in a steady-state

interval of qualities.
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A Filtering Model with Steady-State Housing

Over the past twenty years, housing economic theorists have been

elaborating a filtering view of the housing market that focuses on quality

differentiation and durability.  There was earlier work on filtering -- Grigsby

(1963), Lowry (1960), papers in the housing services tradition which treated

quality-differentiated submarkets, and an extensive, discursive policy

literature.  But the seminal papers by Sweeney (1974a,b) were the first to

formalize the view and to put it into a general equilibrium context.

In the Sweeney model, housing is constructed over an interval of

higher qualities.  After construction, a housing unit deteriorates in quality at a

rate which depends on the level of maintenance expenditures, until it is

eventually abandoned.  At each point in time, there is a given stock of

housing units by quality, and bidding among households determines the

temporary equilibrium rent function, which gives the rent on a housing unit

as a function of quality.  Based on the current and future anticipated rent

function, as well as the maintenance technology, landlords decide how much

to spend on maintenance of their current units.  A housing unit's market value

equals the present discounted value of rents net of profit-maximizing

maintenance expenditures.  And at each point in time, a landlord spends on

the maintenance of a housing unit up to the point where the last dollar spent

on maintenance increases the unit's value by one dollar.  The volume of

construction over the construction quality interval is such that the market

value of constructed housing equals the corresponding construction cost.

Finally, a housing unit is abandoned when its net rent falls to zero.  For

reasons of tractability, Sweeney (1974a,b) and all subsequent analytical

filtering models have focused on the stationary state, but the models can be

solved numerically to examine the nonstationary dynamics of the housing

market, as is done in the Anas-Arnott simulation models (1991, 1993, and

1994).

There is no dispute concerning the value of Sweeney's broad

conceptualization.  Indeed, most cutting-edge housing policy analysis, such as

O'Flaherty's work on homelessness (1993b) and abandonment (1993a),

Rothenberg et al.'s recent book on urban housing markets (1991), and Anas

and Arnott's policy simulation models, employs the Sweeney framework.  But

there has been dissatisfaction with some of the details of Sweeney's model:  its

specification of the maintenance technology, which assumes that a housing
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unit is doomed to deteriorate in quality and that the rate of deterioration

depends on quality and maintenance expenditures but not on age; its aspatial

nature; and its treatment of floor area and locational differentiation as

attributes of a single quality variable -- is it appropriate to treat a squalid

tenement in a slum and a comfortable house in exurbia, which command the

same rent, as identical in quality?  Unfortunately, any model which were to

address all these criticisms would be analytically intractable.  As a result, the

theoretical literature evolving from Sweeney has explored the implications of

modifying specific assumptions.

One of the principal sources of dissatisfaction with the Sweeney model

is its assumption that housing deteriorates in quality, however much is spent

on maintenance.  Sweeney's assumption may have seemed appropriate for

California in the early seventies.  But in many older cities, in the late seventies

and in the eighties, as much was spent on rehabilitation/upgrading as on new

construction.  Relatedly, the amount of housing abandoned or demolished is

considerably less than that which would be predicted by the Sweeney model.

One explanation is that the maintenance/upgrading technology and the

economic environment are such that holding a housing unit's quality constant

or rehabbing low-quality housing is more profitable than

demolition/abandonment.1

This paper explores a model that is essentially identical to Sweeney's (it

employs Braid's (1984) continuum reformulation of Sweeney's discrete

model), except that the maintenance technology is modified to permit the

possibility that housing may be upgraded or maintained at constant quality.

Sections 2-4 provide a comparison of the economic behavior of the Sweeney

model with that of related models in the literature, including the model of this

paper.  Sections 5 and 6 are more technical, describing precisely how

equilibrium in our model is solved for.  Section 5 describes short-run

equilibrium in the model -- how the temporary equilibrium rent function is

determined.  Section 6 describes the supply side of the model -- the

maintenance and construction technologies -- and provides a complete

characterization of long-run equilibrium.  Section 7 provides an extended

algebraic example.  Section 8 presents a numerical simulation example and a

comparative static example based on Section 7.  Sections 9 and 10 discuss

extensions of the model and make concluding remarks.

1Another explanation, which requires extension of the Sweeney model to include space, is
that rehabilitation was profitable only because of extensive restrictions on redevelopment.
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2. The Arnott-Davidson-Pines Model

Sections 2-4 discuss the economics of the landlord's problem under

alternative specifications of the maintenance technology.  The discussion is

somewhat casual.  A more formal treatment of the model presented in the

paper is presented in Sections 5 and 6.

A useful place to start is a simplified version of the landlord's problem

treated in Arnott, Davidson, and Pines (1983) -- ADP hereafter.  A landlord-

builder constructs a durable housing unit at a particular quality level.  The

housing unit deteriorates at a speed (possibly negative) depending on the

level of maintenance expenditures.  Taking the rent function as given, the

landlord-builder chooses construction quality and maintenance expenditures

over the life of the building so as to maximize the discounted present value of

profit from the unit.  The economic environment is stationary and there is no
space.  Hence, where t  is housing unit age, q  is quality, q0  construction

quality, qT  terminal quality, T  terminal time, p q( ) the rent function, m

maintenance expenditures, r  the discount rate, ρ  the construction price of a

unit of quality, and Π  the discounted present value of profits, the landlord's

problem is

m t( )
q t( )

max
q0 ,qT ,T

Π = p q t( )( ) − m t( )( )e−rtdt − ρq00

T

∫
s.t. i) q 0( ) = q0

ii) q̇ = g q,m( )
(1)

The maintenance technology is characterized by2 q̇ = g q,m( ).  As in Sweeney's

(1974b) paper, it is assumed for simplification that a unit's depreciation does

not depend explicitly on the unit's age.  In contrast to Sweeney's specification,

however, the technology permits both upgrading and downgrading.

This is an optimal control problem with a single control variable, m ,

and a single state variable, q .  Also, time enters the problem directly only via

the discount factor.  The solution procedure for this type of problem is well-

known; see, for example, Kamien and Schwartz (1981, Part II, section 8).  Set

up the current-value Hamiltonian.  From the first-order condition with

respect to the control variable, determine the optimal value of the control

2It is assumed that g  is smooth and that there are positive, diminishing returns to

maintenance ( gm > 0, gmm < 0 ).
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variable as a function of the state and co-state variables.  Then solve for the

equations of motion for the state and co-state variables as functions of only

the state and co-state variables, which permits phase-plane analysis.  The

optimal trajectory satisfies these equations of motion, and must also satisfy

the relevant initial and terminal conditions.

The current-value Hamiltonian is

  Ĥ q,φ ,m( ) = p q( ) − m + φg q,m( ), (2)

where φ  is the current-value co-state variable associated with constraint ii)

and is interpreted as the marginal value of quality.  The first-order condition

with respect to maintenance is

∂H

∂m
= −1 + φgm

= 0 if m > 0

≤ 0 if m = 0.
(3)

This states that the optimal level of maintenance occurs where the marginal

cost equals the marginal revenue, unless marginal cost exceeds marginal

revenue at zero maintenance in which case zero maintenance is optimal.
Since the second-order condition is satisfied, this yields m = m q,φ( ).  The

current-value Hamiltonian with maintenance substituted in, the maximized

current-value Hamiltonian, is

  H q,φ( ) = p q( ) − m q,φ( ) + φg q,m q,φ( )( ) . (4)

The equation of motion for the state variable is

  ̇q = H φ = g q,m q,φ( )( ) , (5)

and for the co-state variable is

  φ̇ = rφ − H q = rφ − ′p − φgq . (6)

Housing unit quality at t = 0  is a choice variable.  On the assumption that

profit-maximizing construction quality is non-zero, the initial condition is

φ 0( ) = ρ , (7)

which states that construction quality should be carried to the point where the

marginal cost of an extra unit of quality via construction, ρ , equals the

marginal revenue -- the marginal value of quality.
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The terminal conditions of the optimal program differ depending on

whether the housing unit is eventually abandoned.  If abandonment occurs,

finite horizon transversality conditions apply.  These are q T( )φ T( ) = 0  and

  H T( ) = 0.  The former indicates the quality at which abandonment occurs --

either zero quality or the quality at which the marginal value of quality equals

zero.  The latter indicates when abandonment occurs.  Since the maximized

current-value Hamiltonian gives the economic return of owning the program

for a unit of time (rent less maintenance expenditures less depreciation, with

maintenance expenditures optimized), this condition indicates that the unit

should be abandoned when operating it optimally generates zero return.  If

abandonment does not occur, the infinite horizon transversality condition,

  
lim
T↑∞

H T( )e−rT = 0 ,

applies, which states that the discounted value of the Hamiltonian approaches

zero as time approaches infinity.

Phase-plane analysis provides a neat way to combine the optimality

conditions in order to determine the optimal trajectory.  The qualitative

properties of the optimal solution depend on the configuration of the phase

plane.  Here we shall consider only the normal case (we shall explain why this

is the normal case subsequently) in which the q̇ = 0  locus is upward-sloping,

the φ̇ = 0  locus is downward-sloping, and the two curves intersect at S  (the

saddlepoint) above the φ = ρ  line.  This is the configuration depicted in Figure

1.  In this situation, there are two qualitatively different profit-maximizing

strategies for the landlord.  In the first, after construction the landlord lets the

unit's quality deteriorate until eventual abandonment; in the second, after

construction the landlord lets the unit's quality run down until it falls to a

critical quality at which it is maintained forever.

INSERT FIGURE 1

The optimal abandonment trajectory is shown as BCDE  in Figure 1.  It

starts on φ = ρ , satisfies the equations of motion, and ends up where

φ T( )q T( ) = 0  and   H T( ) = 0.  Two points bear note.  The first is that there are

two trajectories satisfying the optimality conditions, BCDE  and DE .  We wish

to demonstrate that BCDE  is the more profitable.  The pre-construction value
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of the program starting at B  is   
H B( )

r − ρqB .  The economic return immediately

after construction is   H B( ).  Hence, the value of the unit immediately after

construction is   
H B( )

r  and immediately before construction,   
H B( )

r − ρqB .

Likewise, the pre-construction value of the program starting at D  is

  
H D( )

r − ρqD .  Thus, we need to show that   
H
r − ρq( )B

> H
r − ρq( )D

.  Let φ q( )  denote

a trajectory and dφ q( )
dq = φ̇

q̇  its slope, and φ a q( )  the optimal abandonment

trajectory.  Along a trajectory,   
dH
dq = H q + H φ

dφ q( )
dq

  
= H q + H φ

φ̇
q̇ = rφ − φ̇ + q̇ φ̇

q̇( ) = rφ .  Integrating   
d
dq

H
r − ρq( )  from D  to B  along the

optimal abandonment trajectory and using this result yields

  
H
r − ρq( )B

− H
r − ρq( )D

 = φ a q( ) − ρ( )
qD

qB

∫ dq > 0 .  The second point is that if   H > 0

where the unstable arm intersects the q - or φ -axis, F , there is no optimal

abandonment trajectory.  The value of the Hamiltonian is greater3 at E  than at

F .  Hence,   H F( ) > 0  implies that   H E( ) > 0 , which is inconsistent with an

optimal abandonment trajectory.

The optimal non-abandonment trajectory is AS .  The proof follows that

in ADP and entails demonstrating that AS  is the most profitable infinite

horizon program.

If the optimal abandonment trajectory exists, it is more profitable than

the optimal non-abandonment trajectory.  To demonstrate this, it needs to be
shown that   

H
r − ρq( )B

> H
r − ρq( )A

.  Now,

  
H
r − ρq( )A

− H
r − ρq( )B

= d
dq

H
r − ρq( )φ =ρqB

qA

∫ dq

  
= H q

r − ρ( )
φ =ρqA

qB

∫ dq = φ − φ̇
r − ρ( )

φ =ρqA

qB

∫ dq = − φ̇
r( )

φ =ρqA

qB

∫ dq < 0.  Thus, if the optimal

abandonment trajectory exists, it is the optimal trajectory, while if the optimal

abandonment trajectory does not exist, the optimal non-abandonment

trajectory is optimal.

We now provide an economic interpretation of the "normal case" and

of the optimal solution.  The q̇ = 0  locus is the landlord's static supply curve.
Consider a point ′q , ′φ( ) on this curve.  Given ′φ , ′q  is that level of quality

such that with profit-maximizing maintenance expenditures, quality remains

constant.  Correspondingly, the φ̇ = 0  locus is the landlord's static demand

3Suppose F  is on the q -axis.  Since E  lies to the right of F  on the q -axis and since

  H q = rφ − φ̇ > 0  between F  and E ,   H E( ) > H F( ).  Suppose F  and E  are on the φ -axis.

Then since   H φ = q̇ , on the φ -axis,   H E( ) > H F( ).  Suppose F  is on the q -axis and E  on the

φ -axis.  Then   H E( ) > H 0( ) > H F( ).
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curve.  Consider a point ′′q , ′′φ( )  on the curve.  Suppose φ  remains constant

over time at ′′φ .  ′′q  is that q  which maximizes the landlord's profit,
p q( ) − r ′′φ q + ′′φ g q,m q, ′′φ( )( ) − m q, ′′φ( ) .  At the point of intersection of φ̇ = 0

and q̇ = 0 , S , the landlord qua supplier will choose maintenance expenditures
such that quality remains constant at qs , and qua demander will choose

quality qs .  φs  has the interpretation as the marginal cost of quality via

maintenance in the stationary state.

The assumption that the q̇ = 0  locus is upward-sloping is technological.
Suppose that gqm = 0.  Then (see Appendix 1) the assumption reduces to the

assumption that the technology is such that more needs to be spent on

maintenance to hold a unit's quality constant, the higher the quality of the
unit.  With gqm ≠ 0, the interpretation is slightly more complicated.  The

assumption that the φ̇ = 0  locus is downward-sloping reflects the

characteristics of both demand and technology.  The assumption holds under

reasonable conditions (see Appendix 1).

The assumption that the q̇ = 0  locus and the φ̇ = 0  locus intersect above

the φ = ρ  locus implies that the marginal cost of quality via maintenance in

the stationary state exceeds the marginal cost of quality via construction.  To

see the import of this assumption, suppose that it does not hold.  Then we

have the situation shown in Figure 2.  After initial construction at zero (the
paths ZS or ′′Z Y ) or positive ′Z S( ) quality, the unit would either be upgraded

to stationary-state quality or upgraded and then downgraded.  Since, in fact,

housing units are almost invariably downgraded immediately after

construction, the configuration shown in Fig. 2 is empirically implausible.

INSERT FIGURE 2

Finally, with the configuration shown in Figure 1, we can provide an

economic interpretation of the condition that the landlord will eventually

abandon the housing unit if   H < 0 where the unstable arm intersects the q - or
φ -axis, and will not abandon it otherwise.  Now,   H = p q( ) − m + φg q,m( ) .  A

parallel upward shift in p q( ) does not affect the phase plane at all, but

increases   H .  Thus, the landlord will eventually maintain his housing unit at

a stationary-state quality level if rent is high relative to stationary-state
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maintenance, and he will eventually abandon his unit if rent is low relative to

stationary-state maintenance, which accords will intuition.4

4Henderson (1977) treats a special case of the simplified version of the ADP model in which
the q̇ = 0  line coincides with the φ = ρ  line.  In this special case, the marginal cost of quality
via construction is the same as the marginal cost of quality via maintenance.  Housing will be
constructed at (or instantaneously maintained up to) saddlepoint quality and then will be
maintained at that quality level forever.
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3. Phase-Plane Representation of the Sweeney Model

The analysis of the previous section was useful in providing an

introduction to phase-plane analysis and in illustrating that, with a general

maintenance technology, whether a housing unit is eventually abandoned or

maintained at a stationary quality depends on economic conditions.  But the

simplified version of the ADP model tells only part of the story since it is

partial equilibrium in nature -- it takes the rent function as given.  In a full
model, p q( ) and ′p q( )  and hence the φ̇ = 0  locus and the configuration of the

phase plane are endogenous, which greatly complicates the analysis.

We now present a phase diagram analysis of Sweeney-type models

(Sweeney (1974), Ohls (1975), Braid (1984)), which has not previously been

done.  There are two essential differences between the Sweeney model and

the simplified version of the ADP model.  First, in the Sweeney model, it is

assumed that housing is doomed to deteriorate, however much is spent on

maintenance.  This assumption implies that q̇ < 0 everywhere in the phase

plane; there is no q̇ = 0  locus.  Second, the rent function is endogenous.  There

is a continuum of households who differ by income but have the same tastes,

with quality a "normal" good.  The latter assumption implies that richer

households live in higher-quality housing.  The rent function is determined as

the upper envelope of the equilibrium bid-rent functions.  Depending on the

distribution of income, tastes, and the construction and maintenance

technologies, construction may occur at a single quality, over a single interval

of qualities, or over several intervals of quality.  The last possibility would

arise if, for instance, there were a few lords and many peasants.  Then a few

castles would be built at high quality, and a lot of peasant cottages of medium

or low quality.  Not all peasants would live in hand-me-down castles.  The

rent function would have to be consistent with this outcome.  Typically,

however, analyses in the Sweeney vein assume that the income distribution

etc. is such that construction occurs at only a single quality or over a single

interval of qualities (an exception is a case in Braid (1986) with two

construction qualities), and these are the only situations we shall analyze in

the paper.

Figure 3a displays the phase plane when construction occurs at only a

single quality level.  We can think of equilibrium being determined
iteratively.  Start with a guess of p q( ), which implies a particular φ̇ = 0  locus.

Landlord-builders, treating the rent function as given, choose the profit-
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maximizing construction quality and time path of maintenance.  This

landlord's problem was analyzed in the Section 2.  The optimal trajectory

starts on φ = ρ  and ends up at   H = 0 on the q - or φ -axis, following a path
such as BCDE .  Its motion is determined by   ̇q = H q  and   φ̇ = rφ − H q , and it

starts at B  rather than D  (recall the argument of Section 2).  Associated with

the solution to the landlord's problem is a particular stationary distribution of

the housing stock by quality, which is scaled up or down proportionally

according to the volume of construction.  For each level of construction

volume, there is a market-clearing rent gradient, with rents and profit

inversely related to construction volume.  Solve for the zero-profit rent

function, and use it as the rent function for the next iteration.  This procedure,

or an adaptation of it, will converge to the equilibrium rent function.

INSERT FIGURE 3A

We now briefly consider the circumstances under which construction

will occur at only one quality level, which under Sweeney's assumptions is

the top-quality housing in the market.  Suppose that we have solved for the

equilibrium per the above procedure.  Associated with this equilibrium is a

housing value function, V q( ) = H q, φ a q( )( )
r . By construction, V q0( ) = ρq0 .  A

necessary and sufficient condition for this equilibrium, which is conditional

on construction at a single quality, to be a full equilibrium is that, at all quality

levels, housing value not exceed construction costs.  Intuitively, if the income

distribution has a right-side tail, a construction interval is to be expected.

Market equilibrium is efficient.  With a right-side tail, it is efficient that the

richest person live in a palace, but not that everyone live in hand-me-down

palaces.  In Section 9, we shall return to this issue.

The phase diagram for the situation where construction occurs over an

interval of qualities is shown in Figure 3b.  We will argue that the optimal

trajectory for a housing unit starts somewhere between ′B  and B , goes to B ,

and then follows the path BCDE .  The construction interval is q0 ,q0( ).  The

landlord-builder must be indifferent concerning the quality at which he

constructs in the interval.  Hence, the optimal trajectory must coincide with

φ = ρ  throughout this interval, which implies that the φ̇ = 0  locus must
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coincide with φ = ρ  throughout this interval.  Thus, along the optimal

trajectory over the construction interval

  

d H
r − ρq( )
dq

=
H q

r
−

H φ

r

dφ a

dq φ =ρ

− ρ

     =
′p + ρgq

r
− ρ = 0  (using (6), 

dφ a

dq
= 0, and φ = ρ)

which implies that

′p q( ) = ρ r − gq q,m q,ρ( )( )( ). (8)

Thus, over the construction interval, the slope of the rent gradient is supply-

determined, depending on the construction and maintenance technologies but

not on tastes or the distribution of income.  Construction volume by quality

over the interval must be such that (8) is satisfied over the construction

interval and zero profits are made.

INSERT FIGURE 3B

To determine the behavior of φ̇ = 0  just below B  and just above ′B

requires more subtle arguments.  First, the value of a housing unit must be

less than construction costs outside the construction interval.  Now, where
V q( ) denotes the value of housing as a function of quality along the optimal

trajectory,

  
′V q( ) = d

dq

H
r





 =

H q

r
+

H φ

r

dφ a

dq

    = 
rφ − φ̇

r
+ q̇

r

φ̇
q̇

= φ , (9)

which confirms the interpretation of φ  as the marginal value of quality.  Thus,
along the optimal trajectory, φ > ρ  for q  immediately below q

0
, and φ < ρ  for

q  immediately above q0 .  This requires that φ̇ > 0 for q  immediately below q
0

and immediately above q0 .  Second, the φ̇ = 0  line is continuous at B  and ′B .

Define MRS q, y − p( ) to be the marginal rate of substitution between quality

and other goods for a household with income net of rent y − p , and let



13

y = y q( ) be the function which matches households by income to housing

units by quality.  Since the rent function is the envelope of the equilibrium

bid-rent functions,

′p q( ) = MRS q, y q( ) − p q( )( ) . (10)

Where G y( )  gives the number of households with income above y  and H q( )
the number of housing units of quality above q , y q( ) is given implicitly by

G y( ) = H q( ) .  G y( )  is continuous, and since all housing deteriorates in quality

at a finite rate, so too is H q( ).  Hence, y q( ) is continuous.  So too is p q( ) since

it is the upper envelope of a family of continuous functions.  Thus, from (10)
′p q( )  is continuous.  Thus, the φ̇ = 0  line, rφ − ′p − φgq = 0 , is continuous too.

These results imply that the φ̇ = 0  line must have the configuration shown in

Figure 3b, which implies that the optimal trajectory must have the shape

shown.

Some derivative of φ̇ = 0   must be discontinuous at B  and at ′B .  We

first explore the implication of a slope discontinuity for φ̇ = 0  at A  under the
simplifying assumption that gqm = 0.  Since

dφ
dq φ̇ =0

=
′′p + φgqq

r − gq

(11)

under this assumption, the discontinuity must enter via ′′p .  Furthermore,
since r − gq > 0  along φ̇ = 0 , ′′p  must discontinuously decrease as q  increases

across q
0
 and again as q  increases across q0 .  Now, define h q( ) ≡ − dH q( )

dq  and

g y( ) ≡ − dG y( )
dy .  Then ′y q( ) = h q( )

g y q( )( ) , and from (10)

′′p q( ) = MRSq + MRSy ′y q( ) − ′p q( )[ ]. (12)

Since MRSq , MRSy , and ′p q( )  are continuous, a discontinuity in ′′p q( ) implies

a discontinuity in ′y q( ) .  Furthermore, since MRSy > 0 under the "normality"

assumption, ′y q( )  must decrease discontinuously as q  increases across q
0
.

Since g y( ) is continuous, this implies that h q( ) must decrease  discontinuously
as q  increases across q

0
.  In stationary state, at any quality q , the amount of

housing added above that quality level per unit time must equal the amount
of housing that filters down below that quality level.  Let c q( )  denote the

cumulative flow of construction at qualities above q , and υ q( ) denote the

speed of downward filtering = −q̇( ).  Then the stationary state condition is

that
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c q( ) = h q( )υ q( )   or   h q( ) = c q( )
υ q( ) . (13)

Since υ q( ) is continuous across q
0
, the only way h q( ) can decrease

discontinuously as q  increases across q
0
 is for c q( )  to decrease

discontinuously as q  increases across q
0
, which requires a "construction

bulge" (a mass point) at q
0
.  Thus, we have demonstrated that, if φ̇ = 0  has a

slope discontinuity at A , there must be a construction bulge at q
0
.  We have

not proved that φ̇ = 0  must have a slope discontinuity at A , though we

suspect this is generally the case.  One item of evidence in support of this

conjecture is that the single paper which has numerically solved the Sweeney

model with a construction interval (Ohls (1975)) found a construction bulge.

The behavior of φ̇ = 0  at ′A  is easier to analyze.  Beyond q0  the rent

function coincides with the equilibrium bid-rent function of the richest

household.  Thus, from (10)

′′p q0
−( ) = MRSq q0 , ymax − p q0( )( ) + MRSy q0 , ymax − p q0( )( ) lim

q↑q0

′y q( ) − ′p q0( )





and

′′p q0
+( ) = MRSq q0 , ymax − p q0( )( ) + MRSy q0 , ymax − p q0( )( ) − ′p q0( )( )  .

Then

′′p q0
−( ) − ′′p q0

+( ) = MRSy q0 , ymax − p q0( )( ) lim
q↑q0

′y q( )



 .           (14)

With a slope discontinuity in φ̇ = 0  at ′A , ′′p  must decrease discontinuously
as q  increases across q0 .  Thus, from (14), lim

q↑q0

′y q( ) > 0 .  Since

′y q( ) = h q( ) / g y q( )( ), if g ymax( ) > 0 , then h q0
−( ) > 0, which from (13) requires a

construction bulge at q0 .

To bring some of the above results together, Fig. 4 plots V q( ), p q( ), and

h q( ) for the special case where g q,m( ) = −δq  -- quality decays exponentially

and there is no maintenance.  A few points are worthy of note.  First, housing

value is less than construction cost at all qualities except those qualities where

construction occurs, for which housing value equals construction costs.
Second, p q( ) is drawn to be consistent with the phase diagram in Figure 3b,

noting that dφ
dq φ̇ =0

= ′′p
r +δ .  Third, h q( )= c q( )

δq , so that below q
0
, where c q( )  is a
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constant, h q( ) is a rectangular hyperbola.  Also, h q( ) falls discontinuously at
q

0
 due to a construction bulge.

INSERT FIGURE 4
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4. Phase-Plane Analysis of Our Model

Here we shall provide only a heuristic presentation of our model.  In

the next section, we provide a thorough analysis.

In our model, the q̇ = 0  locus is horizontal at φ = α  and lies above the

φ = ρ  line.  This corresponds to the assumption that the marginal cost of

quality via maintenance in the stationary state exceeds the marginal cost of

quality via construction.  Our model contains features of both the ADP model

and the Sweeney model.  Like the ADP model, a housing unit may eventually

be abandoned or maintained at a constant quality.  And like the Sweeney

model, there may be construction at only one quality level, over a single

interval of qualities, or over several quality intervals.  Which case obtains

depends on tastes and the distribution of income on the demand side, and

construction cost relative to maintenance cost on the supply side.  We shall

ignore the possibility that construction can occur over more than one quality

interval.  That leaves us with four qualitative cases:

I. abandonment, construction at a single quality

II. abandonment, construction over a quality interval

III. non-abandonment, construction at a single quality

IV. non-abandonment, construction over a quality interval

In cases III and IV, if the environment were stationary, all housing would be

maintained at constant quality, and the analysis would be rather

uninteresting.  To make it more interesting, we assume that the population is

growing at a constant rate which ensures that construction will occur.

The phase planes for the four cases are displayed in Figure 5.  Case I is

essentially the same as Sweeney's model with a single construction quality.  It

is possible to maintain housing at constant quality, in contrast to Sweeney, but

it is unprofitably expensive to do so.  Case II is essentially the same as

Sweeney's model with a single construction interval.  Again, maintaining

housing at constant quality is possible but unprofitably expensive.

Case III is similar to the ADP model where housing is upgraded to a

stationary quality.  There is, however, an important difference.  In ADP, there

was a single stationary quality.  Here, in contrast, there is a range of stationary
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qualities.  Upon reflection, this is not surprising.  The housing market is

efficient, and it is efficient to house households with different incomes in

different qualities of housing, whether that housing is being downgraded or

maintained at constant quality.  In this case, the optimal trajectory for a

housing unit follows the path AS , and the housing unit then spends the rest

of its life in the interval S ′S .

Case IV is similar to Case III except that construction occurs over a

quality interval.  In this case, the optimal trajectory for a housing unit starts

somewhere between ′A  and A , goes to A , follows the path AS , and the

housing unit then spends the rest of its life in the interval S ′S .

INSERT FIGURE 5

In contrast to the continual downgrading assumed in the Sweeney

model, what one tends to observe in European cities and cities in the

northeastern U.S. is downgrading followed by rehabilitation cycles.  In cases

III and IV, landlords are indifferent concerning maintaining their housing

anywhere between qualities q1 and q2..  Thus, the model is consistent with a

rehabilitation cycle, whereby units are downgraded to quality q1 and then

upgraded to quality q2 via rehabilitation.  This is overinterpreting an

indeterminacy, but does suggest that only a slight perturbation of the model

can generate a rehabilitation cycle.  Let us suppose that it is possible to rehab

upwards from quality ′q  to ′′q  at a cost of χ  per unit of quality, where

α > χ > ρ .  This possibility is shown in Figure 6, which is drawn so that

eventually following a rehab-downgrading cycle is more profitable than

either eventually abandoning the unit or eventually holding its quality
constant.  The optimal program entails running down the building from q0  to

′q , along the path WXY , then rehabbing from ′q  to ′′q , then following the

path ZXY , rehabbing again, etc.  The optimal path entails the equal areas

condition that Area R ′R ′U U = χ ′′q − ′q( )  equals Area UZXYR = φ r q( )dq
′′q

′q

∫  with

φ r q( ) denoting φ  as a function of q  along the optimal rehabilitation

trajectory.  The solution is based on the solution for a more general

rehabilitation problem treated in section 3.2 of ADP.  The value of the

program equals   
H W( )

r − ρqW , which by an earlier argument exceeds that of the



18

optimal abandonment program and the optimal program leading to

stationary quality.

INSERT FIGURE 6

In the subsequent sections, we shall focus on case III, which entails

construction at a single quality, downgrading to the steady-state quality

interval, and then maintaining the housing in that interval.  We shall solve for

the equilibrium by providing a solution algorithm, on the assumption that

equilibrium is of this form.

We have given only brief thought to issues of existence and uniqueness

of equilibrium.  The model differs in five essential ways from the Arrow-

Debreu model.  First, there is a continuum of households.  Second, there is a

continuum of housing goods, differentiated by quality.  Third, households are

constrained to choosing a single housing good; one can say that either tastes

or the consumption-possibility set is nonconvex.  Fourth, households are

constrained to choosing a single unit of the housing good, which introduces

indivisibilities into the consumption set.  And fifth, there are two technologies

for the production of quality -- construction and maintenance.  While each of

the technologies by itself is convex, the two in combination may lead to a

nonconvex production set.  There are general existence theorems for models

which contain some of these ingredients, but none for models which contain

all these departures from the Arrow-Debreu model.  Since the model's

structure is so particular, the most promising approach is probably to develop

an ad hoc, constructive proof of existence of equilibrium.  Our intuition

suggests to us that equilibrium always exists and, with reasonable restrictions

on tastes, is unique.

5. Short-Run Demand-Side Equilibrium

In this section and in Section 6, we solve for equilibrium in our housing

model.  Recall that our model is very similar to a continuum version of the

Sweeney model, except that, instead of being downgraded and then

abandoned, housing is downgraded to an interval of qualities where it is

maintained forever.  To simplify, we focus on the case where construction

occurs at a single quality level.
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This section describes short-run demand-side equilibrium in the model

-- how the rent function is determined, given a distribution of households by

income and housing units by quality.  The next section constructively solves

for long-run equilibrium in the model.

The problem here, and its solution, are familiar from Braid (1981).

Housing units differ only in quality (one may imagine floor area to be fixed)

and households vary only in income.  There is a given distribution of

households by income, and a given distribution of housing units by quality.

The market matches households to housing units via adjustment of the rent

function.  Tastes are such that higher-income households obtain higher-

quality units.

The cumulative distribution function of income (measured backwards),
G y( ) , represents the number of households with income greater than or equal

to y  at time 0.  Minimum income and maximum income are y0  and ym ,

respectively.  The number of households at time 0 is N .  The density function
of income, g y( ) = − ′G y( ) , is positive and smooth over y0 , ym( ).  Throughout the

paper g y( ), G y( ), y0 , and ym  are exogenous.  The cumulative distribution

function of housing quality (measured backwards), H q( ), gives the number of

housing units with quality greater than or equal to q  at time 0.  The maximum
quality of housing is q3  and the quality of the Nth highest quality unit is q1.

The density function of housing quality, h q( ) = − ′H q( ), is finite and positive,

but not necessarily continuous, over ( q1, q3).  In this subsection, h q( ), H q( ), q1,

and q3  are exogenous; in later sections, they will be endogenous.

Households are perfectly matched to housing units in rank order.

Thus the ith highest income household lives in the ith highest quality housing

unit, down to the poorest (Nth richest) household which lives in the Nth

highest quality housing unit.  We define y q( ) to represent occupant income as

a function of housing quality. The perfect matching condition can be written

G y q( )( ) = H q( ). (15)

Differentiating (15), it is seen that

g y q( )( ) ′y q( ) = h q( ). (16)

Then

H q3( ) = G ym( ) = 0 y q3( ) = ym (17a,b)
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and

H q1( ) = G y0( ) = N y q1( ) = y0 (18a,b)

The utility function common to all consumers, U x,q( ), depends on

housing quality, q , and a numeraire non-housing good, x .  Tastes are such

that 
∂ Uq Ux( )

dx > 0  -- the marginal valuation of quality increases with income --

which ensures that higher-income households consume higher-quality

housing in equilibrium.  We term this the "normality condition."  A consumer
of income y  maximizes utility subject to his budget constraint, y = x + p q( ),

where p q( ) is the rent function relating rent to housing quality.  The first-
order condition is −Ux ′p + Uq = 0 , which states that the marginal rate of

substitution between quality and other goods equals the marginal rent of
quality.  Equilibrium requires that p q( ) adjust so that this condition hold for

all households.  Thus,

′p q( ) =
Uq y q( ) − p q( ),q( )
Ux y q( ) − p q( ),q( ) ≡ MRS y q( ) − p q( ),q( ) . (19)

Eq. (15) matches households to housing units, and (19) specifies that the slope

of the rent function at each q  equals the marginal rate of substitution between

housing quality and other goods for the household occupying housing of that

quality.

Equations (15) and (19) determine equilibrium only up to a constant of

integration.  In many Sweeney-type housing models without land, such as

Braid (1981, 1984, 1986), Ohls (1975), Robson (1982), and Sweeney (1974),

competition from unoccupied units just below the minimum occupied
quality, q1, forces p q1( )  = 0 (assuming operating costs to be zero).  Like those

models, the model of this paper has no land, but unlike those models there

are no unoccupied housing units.  The constant of integration is determined

from the condition that the value of housing at the construction quality equals

the corresponding construction cost, as shown in Section 6.

6. Long-Run Supply-Side Equilibrium Conditions

Since no housing is demolished, in a stationary state there would be no

construction.  And without construction, construction costs do not tie down

rents.  Thus, we assume a steady state in which population and all other
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quantities are growing at a constant rate n  and prices remain constant over
time.  In the remainder of this paper, G y( ) , g y( ), H q( ), h q( ), b q( ), and N  are

understood to be the values at time 0.  We normalize such that today's    ( t  =

0) population and housing stock equals N .

Determining long-run equilibrium is something of a jigsaw puzzle.  It

will therefore be useful to set out the solution procedure before turning to

detail.

6.1 The general solution procedure

As noted in the introduction, there are three relevant qualities or
quality intervals, with q1 < q2 < q3 .  Construction occurs at the endogenous

construction quality q3 .  Steady-state housing occurs in the lowest quality

interval q1,q2[ ].  Housing is downgraded with zero maintenance from

construction to steady-state quality in the intermediate interval q2 ,q3( ) .

Our solution procedure entails a constructive, algorithmic approach.
We fix q3 , solve for equilibrium conditional on q3 , and then check whether the

solution satisfies a remaining equilibrium condition.  If it does not, we adjust
q3  and try again.

While the determination of equilibrium entails the simultaneous

solution of a system of equations, it aids conceptualization to think of the

solution proceeding recursively.  The solution steps are as follows:

1.  The rent at the construction quality q3  is solved for on the basis of the

construction technology.

The characterization of equilibrium in the downgrading interval is the

most difficult part of the solution.  Today there must be N  housing units of
quality less than q3 .  And the quantity of such housing units must be

increasing at the rate n .  Since no housing is demolished, and since no
housing of quality below q3  is constructed, the rate of housing construction at

q3 , which is also the rate at which housing filters down from the construction

quality into the downgrading interval, must be nNent , for any value of t ,

including negative values.

2.  Knowing this and the rate of deterioration of housing, solve for H q( ) in the

downgrading interval, and then solve for h q( ) and y q( ).
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3.  Since p q3( ) is known, one can then solve for p q( ) in the downgrading

interval from (19).

The slope of the rent function in the steady-state interval is determined

by the maintenance technology.

4.  Using this and the boundary condition that ′p q( )  must be continuous at q2,

solve for q2.

5.  Using the boundary condition that p q( ) must be continuous at q2, solve for

p q( ) in the steady-state interval, and subsequently solve for y q( ) and h q( ) in
this interval, as well as q1.

The remaining equilibrium condition is that zero profits must be made.
The construction quality q3  is adjusted until this condition is satisfied.

6.2 The maintenance and construction technologies

A simple maintenance technology is used that leads to bang-bang

control.  The rate of quality deterioration of a housing unit is given by

q̇ = g q,m( ) = m

α
− δq , (20)

where α  and δ  are constant parameters and m  represents maintenance
expenditures per unit of time.  Thus, gm = 1

α  and gq = −δ .  If m  = 0, the quality

of a housing unit deteriorates exogenously over time at a constant exponential

rate, δ .  If m  = αδq , the quality of a housing unit remains constant over time,

and if m  > αδq , quality upgrading occurs.  Note also that, with this

technology, an instantaneous spike of maintenance costing α  increases

quality by one unit.  Thus, α  is the marginal maintenance cost of quality.

Construction costs for a new housing unit are assumed proportional to

construction quality.  Thus, the construction cost function is

K q( ) = ρq , (21)

where ρ , the marginal construction cost of quality, is a constant parameter.

It is assumed throughout the paper that

α  > ρ . (22)
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This parameter restriction assures that it is cheaper to build a new housing

unit at quality q  than to build a new unit at quality 0 and instantly upgrade it

to quality q  through maintenance expenditures; the construction technology

is cheaper than the maintenance technology.  This can be compared to the

housing technology of Henderson (1977), which has α  = ρ , as discussed in

the Appendix of Arnott, Davidson, and Pines (1983) and fn. 4.

6.3 The phase diagram

Consider now panel III of Figure 5.  Substituting (20) into (2), it is seen

that

  
Ĥ q,φ ,m( ) = p q( ) − m + φ n

α
− δq




.

Maximizing this with respect to n  shows that

m q,φ( ) = ∞ if φ > α ,

m q,φ( ) = 0 if φ < α ,

m q,φ( ) is indeterminate if φ = α ,

which can be compared to (3).  This is an example of bang-bang control.

The q̇ = 0  locus, which is found by substituting these values of m q,φ( )
into (20) and (5), is thus the horizontal line φ = α .  Above this locus, m  is

infinite, and q̇  is positive and infinite.  Below this locus, m  is 0 and q̇ = −δq.

Along this locus, m  is indeterminate, and q̇  is also indeterminate (perhaps 0).

From (20) and (6), it is clear that

φ̇ = r + δ( )φ − ′p q( ) . (22a)

Thus the q̇ = 0  locus has the equation

φ = ′p q( )
r + δ

, (22b)

where ′p q( )  is endogenously determined by the interaction between the

demand side of the market (Section 5) and the supply side of the market (this

section).  Above this locus φ̇ > 0, and below this locus φ̇ < 0.  From panel III of
Figure 5, it is clear that ′p q( )  is r + δ( )α  between q1 and q2, and decreases

above q2, dropping below r + δ( )ρ  before reaching q3 .  The analysis in the

following subsections (and the examples in Sections 7 and 8) provide a direct



24

derivation of a number of properties of p q( ), thus supporting the shape of the

φ̇ = 0  locus as drawn in panel III of Figure 5.

Recall (from Section 4) that the optimal trajectory for a housing unit

follows the path AS , and the housing unit then spends the rest of its life in the

interval S ′S .

6.4 Rents at construction quality and in the steady-state interval

Recall the analysis above and the phase diagram for the model in Fig.

5, panel III. Since the marginal cost of quality via maintenance exceeds the

marginal value of quality in the downgrading interval, the landlord-builder

spends nothing on maintenance until she has run her unit down to its steady-

state quality, at which point she spends that amount on maintenance required

to keep her housing unit's quality constant.

Consider a landlord who builds a housing unit at quality q3  (at time 0),

lets it deteriorate without maintenance to quality q2, and then maintains the

unit at quality q2 forever afterwards.  This corresponds to the trajectory AS  in

Figure 5, panel III.  Then, using (20),

q t( ) = q3e
−δt  for 0 ≤ t ≤ 1

δ




 ln

q3

q2







, (23a)

m t( ) = 0       for 0 ≤ t < 1
δ





 ln

q3

q2







(23b)

q t( ) = q2        for t ≥ 1
δ





 ln

q3

q2







(24a)

m t( ) = αδq2  for t > 1
δ





 ln

q3

q2







. (24b)

The present discounted value of the landowner's profits are therefore (using

(21) and (23a) - (24b))

π q3,q2( ) = −ρq3 + p q t( )( ) − m t( )[ ]e−rtdt
0

∞

∫

= −ρq3 + p q3e
−δt( )e−rtdt + 1

r






q2

q3







r δ

p q2( ) − αδq2[ ]
0

1 δ( ) ln q3 q2( )
∫ . (25)
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Maximizing π  with respect to q3  shows, after some tedious algebra

and calculus, that

0 = ∂π
∂q3

= −ρ + 1
δq3







p q3( ) − r

δ




ρ + rπ

δq3

. (26)

Competition from other landlords forces π  down to 0.  After incorporation of

this condition, (26) reduces to

p q3( ) = r + δ( )ρq3 , (27)

which states that, at construction quality, since maintenance expenditures are

zero, rent should cover amortized construction costs plus depreciation.  Thus,

as claimed earlier, rent at construction quality depends on the construction

technology.  Maximizing π  with respect to q2 shows that

0 = ∂π
∂q2

= q2

q3







r δ
′p q2( )
r

− αδ
r





 − α









 .

Rearranging slightly yields

′p q2( ) = r + δ( )α . (28)

The following argument provides an intuitive derivation of (28).  At q2,

the landlord is indifferent between letting the unit deteriorate without

maintenance for an interval dt  and then holding its quality constant, or

holding its quality constant.  The former strategy results in an immediate

saving of αδqdt , but during the time interval the housing depreciates by δqdt

units of quality, which reduces the present value of rents by δq
r ′p q2( )dt  and

the present value of maintenance by αδ δqdt( )
r .  Adding these savings and losses

yields (28).

This argument5 and thus (28) apply for all qualities in the steady-state
interval q1,q2[ ], and hence the individual landlord is indifferent to where in

the interval S ′S his housing ends up.  Thus, as claimed earlier, the slope of the

rent function in the steady-state interval depends on the maintenance

technology.

6.5 Equilibrium in the downgrading interval

5Eq. (28) also follows directly from the phase diagram analysis since for q ∈ q1, q2[ ] the

optimal trajectory coincides with the φ̇ = 0  line.
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We have completed step 1, which is determination of rent at the

construction quality (see (27)).

We have noted previously that the rate of housing filtering from the

construction quality to the downgrading interval at time t , designated by

B t( ), is

B t( ) = nNent , (29)

for any value of t , including negative values.  Since housing in the

downgrading interval deteriorates exponentially at the rate δ , the housing at
some quality q ∈ q2 ,q3[ ] at time 0 filtered down from the construction interval

at t  = 1 δ( ) ln q q3( ) < 0 .  Thus, using (29), the quantity of housing at time 0

between q  and q3  in this interval is

H q( ) = B t( )dt
1 δ( ) ln q q3( )

0

∫ = N 1 − q

q3







n δ










. (30)

Hence

h q( ) = − ′H q( ) = nN

δq







q

q3







n δ

  for  q2 ≤ q < q3 . (31)

Then y q( ) for the downgrading interval is determined from (15), or from (16)

and the boundary condition (17b).  This completes step 2 of the procedure.

Consider now the rent function p q( ).  Recall that the first-order

condition of the individual's maximization problem is given by (19).  Equation
(19) holds for all q , and y q( ) is known for the downgrading interval.  Thus

p q( ) can be solved by using (19), which is a first-order ordinary differential

equation, plus the boundary condition (27).  Thus, apart from the boundary

condition, rents in the downgrading interval are demand-determined,

depending on tastes and the distribution of income.  We have now
determined p q( ) over the downgrading interval.  This completes step 3 of the

procedure.

6.6 Equilibrium in the steady-state interval

Step 4 is to solve for q2.  Since the argument below (28) applies for both

q2
+  and q2

− , we have
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′p q2
+( ) = ′p q2

−( ) = r + δ( )α . (32)

Thus, q2 occurs where the slope of the rent function in the downgrading
interval is r + δ( )α .  It is quite possible that, solving (19) backwards with

boundary condition (27), there would be more than one quality for which
′p q( ) = r + δ( )α .  When this occurs, only the highest quality satisfying the

equation is relevant.  Otherwise, there would be qualities for which the

marginal value of quality exceeds the marginal maintenance cost of quality

and for which there was no maintenance, which is inconsistent with profit

maximization.

Step 5 is straightforward.  Since p q( ) is continuous for all values of q ,

p q2
+( ) = p q2

−( ). (33)

Since ′p q( ) = r + δ( )α  in the steady-state interval, and since p q2
+( ) is known,

p q( ) in the steady-state interval can be solved for.  Using (19) and (16) yields

y q( ) and h q( ) for this interval, and q1 is simply determined using (18b) as

q1 = y−1 y0( ). (34)

Even though the individual landlord is indifferent as to where in the steady-
state interval his unit ends up, h q( ) is determinate at the level of the market.

6.7 The final equilibrium condition

Thus far in this section, we have solved for equilibrium conditional on
q3 .  The construction quality q3  is determined by the final equilibrium

condition that zero profits be made on housing constructed at quality q3 .

Since housing deteriorates at the rate δ  in the downgrading interval, the
present value of revenue from the period it is downgraded from q3  to q2,

discounted to the construction date, is

p q3e
−δt( )e−rt

0

1 δ( ) ln q3 q2( )
∫ dt .

And (see (25)) since the discounted net revenue received from a housing unit

after it falls to quality q2 is 1
r

q2

q3
( )r δ

p q2( ) − αδq2[ ], the zero-profit condition

(after changing the variable of integration) is

0 = −ρq3 + p q( ) q

q3







r δ
1

δq







dq + 1
r





q2

q3

∫ q2

q3







r δ

p q2( ) − αδq2[ ], (35)
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where q2 and p q( ) are functions of q3  through the above procedure.6

7. Algebraic Example

In this section, we develop an explicit algebraic example.  In Section 8

we use this example for numerical simulation.

First, we assume a uniform distribution of income between the
minimum income, y0 , and the maximum income, ym .  The function G y,t( ),
which represents the number of households with income greater than or

equal to y  at time t , is therefore

G y,t( ) =
ym − y( )
ym − y0( )









Nent .

At time 0, the G y( )  function of Section 5 is consequently

G y( ) =
ym − y( )
ym − y0( )









N . (36)

Second, we assume the Cobb-Douglas utility function

U x,q( ) = xq .

Thus, equation (5) becomes

′p q( ) = 1
q







y q( ) − p q( )( ), (37)

which is a simple ordinary differential equation that can be used to determine
p q( ) once y q( ) is known, or can be used to determine y q( ) once p q( ) is
known.

Consider now the solution process outlined in Section 6.  Suppose that
the construction quality is q3 .  Then, from (27), the rent at this quality is

p q3( ) = r + δ( )ρq3 . (38)

This completes step 1.

6A proof that this equation has a unique solution, subject to the existence of the type of
equilibrium described in this section, is available from the authors.
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Consider the downgrading interval.  We assume that n = δ .  Equations

(30) and (31) become

H q( ) = N 1 − q

q3









   for  q2 ≤ q ≤ q3 , (39)

h q( ) = N q3   for  q2 < q ≤ q3 . (40)

Thus, there is a uniform distribution of the housing stock over the

downgrading interval.  From (36) and (39), it is seen that

y q( ) = ym − ym − y0( ) 1 − q

q3









  for  q2 ≤ q ≤ q3 . (41)

Hence, there is a linear relationship between income and housing quality over

the downgrading interval.  This completes step 2.

The rent function p q( ) can now be determined over the downgrading

interval.  Equation (37) can be rewritten

d

dq







qp q( )[ ] = y q( ) .

This can be integrated as follows

q3 p q3( ) − qp q( ) = y ′q( )d ′q
q

q3

∫ .

Substituting (27), using (41), integrating the right-hand side, and rearranging,

it is found that

p q( ) = 1
q







q3 p q3( ) − ym q3 − q( ) + 1
2q3







ym − y0( ) q3 − q( )2







, (42)

for q2 ≤ q ≤ q3 , where p q3( ) is given by (38).  This completes step 3.

Consider the determination of q2.  Differentiating (42), it is found that

′p q( ) = 1
q2







ymq3 − q3 p q3( ) − 1
2q3







ym − y0( ) q3 + q( ) q3 − q( )







, (43)

for q2 ≤ q ≤ q3 , where p q3( ) is given by (38).  It is known from (28) that

′p q2( ) = r + δ( )α . (44)
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Substituting q  = q2 into (43) and combining it with (44) allows the

determination of q2, which can be done through an iterative procedure
(holding q3  fixed and iterating over q2).  This completes step 4.

Consider now the rent function and the other endogenous variables in

the steady-state range.  From (28) and the following discussion,

′p q( ) = r + δ( )α   for  q1 ≤ q ≤ q2 . (44a)

Consequently

p q( ) = p q2( ) + r + δ( )α q − q2( )  for  q1 ≤ q ≤ q2 , (45)

where q2 is known from immediately above and p q2( )  is found from (42).

From (37),

y q( ) = p q( ) + q ′p q( ). (46)

Substituting (45) into (46), it is seen that

y q( ) = p q2( ) + r + δ( )α 2q − q2( )  for  q1 ≤ q ≤ q2 . (47)

Thus, there is a linear relationship between income and housing quality over
the steady-state interval.  Using (16), (36), (47), and g y( ) = − ′G y( ) , it is seen

that

h q( ) = 2 r + δ( )α 1
ym − y0









N   for q1 ≤ q ≤ q2 . (48)

Hence, there is a uniform distribution of the housing stock over the steady-

state interval.  In order to determine the minimum quality, q1, it is necessary

to use (18b) and (47), yielding

y0 = p q2( ) + r + δ( )α 2q1 − q2( ) . (49)

Equation (49) is easily solved for q1.  This completes step 5.

The final step is to iterate over q3  until the zero profit condition (35) is

satisfied with (42) substituted into the integral for p q( ).  Eq. (35) is most easily

integrated if we assume that r = 2δ .

Housing value as a function of quality can also be calculated
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    V q( ) =
p ′q( ) ′q

q( )r δ
1

δ ′q( )d ′q + 1
r

q2

q( )r δ
p q2( ) − αδq2( )

q2

q

∫ for q ∈ q2 ,q3[ ]
1
r p q( ) − αδq( ) for q ∈ q1,q2[ ]






    (50)

Figure 7 provides a graphical depiction of the solution, with y q( ) in
panel I, h q( ) in panel II, p q( ) in panel III, and V q( ) in panel IV.  The function

y q( ) consists of a relatively steep, positively-sloped line segment from the

point q1, y0( )  to the point q2 , y q2( )( ) (see (47)), and a less steep, positively-

sloped line segment from the point q2 , y q2( )( ) to the point q3, ym( ) (see (41)).

The function h q( ) consists of a relatively high horizontal line segment from q1

to q2 (see (48)), and a lower horizontal line segment from q2 to q3  (see (40)).

The function p q( ) consists of a relatively steep positively-sloped line segment

from the point q1, p q1( )( ) to the point q2 , p q2( )( ) (see (45)), followed by a

curved segment from the point q2 , p q2( )( ) to the point q3, p q3( )( )  (see (42)).

The marginal rent function ′p q( )  is constant at the level r + δ( )α  from q1 to q2,

and monotonically decreasing from q2 to q3 .  The average rent function

p q( ) q , which represents rent per unit of quality, is monotonically increasing

from q1 to q2, reaches its maximum somewhat above q2, and is monotonically
decreasing thereafter, reaching the value r + δ( )ρ  at q3 .  The value function,

V q( ), is linearly increasing from q1 to q2, with slope α , and when the phase

plane has the configuration shown in Fig. 5, panel III, increasing and concave
from q2 to q3 .

INSERT FIGURE 7

The above procedure was based on the assumption that the

equilibrium entails construction at a single quality, followed by downgrading

to a steady-state interval.  We need to check that our solution is indeed an

equilibrium.  Our solution procedure ensures that households are maximizing

utility, taking the rent function as given.  Thus, we need to show that with our

solution procedure, at least for a restricted set of parameter values, landlords

are maximizing profits, taking the rent function as given.  To do this, we shall

demonstrate that, for a subset of parameter values, the phase plane

corresponding  to our solution has the same configuration as that displayed in

Figure 5, panel III.

We need to demonstrate that: i) the φ̇ = 0  line is negatively sloped for
q > q2  and for q < q1, and is flat for q ∈ q1,q2( ); ii) φ̇ > 0 at the point
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A q,φ( ) = q3,ρ( )( ); and iii)   H > 0 where the unstable arm meets the q - or φ -

axis.

i)  From (22b), dφ
dq φ̇ =0

= ′′p
r +δ .  In the downgrading interval, from (38) and the

derivative of (43), dφ
dq φ̇ =0

< 0  provided  q3 < y0 + ym

2 r +δ( )ρ .  In the steady-state interval,

from (44a), the φ̇ = 0  line is flat.  For q < q1, dφ
dq φ̇ =0

< 0 since the rent function

coincides with the equilibrium bid-rent function of the household with y = y0

so that from (37) ′′p = − 2 ′p
q < 0 .  Likewise, for q > q3 , dφ

dq φ̇ =0
< 0 since the rent

function coincides with the equilibrium bid-rent function of the household
with y = ym .

ii) Using (22a), φ̇ > 0 at A  if and only if r + δ( )ρ − ′p q3( ) > 0 .  From (43),

′p q3( ) =  ym − p q3( )
q3( ) = ym − r +δ( )ρq3

q3
 (using (38)).  Thus, the inequality reduces to

q3 > ym

2 r +δ( )ρ .  Hence, the q3  determined according to our solution must lie in
ym

2 r +δ( )ρ , ym + y0

2 r +δ( )ρ( ).
iii)  Next, we need to demonstrate that downgrading to the steady-state

interval is more profitable than downgrading and abandonment.  We have

shown that this requires that   H > 0 where the unstable arm meets either the
q - or φ -axis, F .  Now, p q( ) for q < q1 is the equilibrium bid-rent function for

the household with income y0 :

p q( ) = y0 −
y0 − p q1( )( )q1

q
. (51)

Also, where the unstable arm intersects the q -axis, qF  solves

q1 − qF =
dqu φ( )

dφ0

α

∫ dφ ,

where qu φ( ) , the lower unstable arm, is given implicitly by

dqu φ( )
dφ

= q̇

φ̇
= δq

′p − r + δ( )φ ,

along with the boundary condition qu α( ) = q1.  Unfortunately, this differential
equation (with ′p q( )  obtained from (51)) does not have a closed-form

solution.  Thus, we calculate qF  and    H F( ) numerically.
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8. Numerical Simulation

In this section, we perform a numerical simulation based on the

algebraic example and the procedures discussed in Section 7, and a sample

comparative static example based on the numerical simulation.

We assume the following parameter values:  ym  = 10.0, y0  = 2.0, ρ  =

1.0, α  = 1.2, n = δ = 1 2( )r = 1 60 .  The money unit may be taken to be $10000

and the time unit one year.  The value of N  makes no difference to the rent
function p q( ), to the income matching function y q( ), or to q1, q2, and q3 .  It is

found that q3  = 111.00, q2 = 45.66, and q1 = 18.23.  The values of the average

rent function p q( ) q , the marginal rent function ′p q( ) , and the income

matching function y q( ) for different value of q  are given in the following

table.

Table 1:  Numerical Solution

q p q( ) q ′p q( ) y q( )
110 .05009 .04016 9.9279

105 .05055 .04057 9.5676

100 .05104 .04103 9.2072

95 .05155 .04157 8.8468

90 .05209 .04220 8.4865

85 .05265 .04295 8.1261

80 .05323 .04384 7.7657

75 .05382 .04492 7.4054

70 .05441 .04623 7.0450

65 .05498 .04786 6.6847

60 .05549 .04992 6.3243

55 .05589 .05255 5.9640

50 .05606 .05602 5.6036

45 .05582 .06000 5.2118
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40 .05530 .06000 4.6118

35 .05462 .06000 4.0118

30 .05373 .06000 3.4118

25 .05247 .06000 2.8118

20 .05059 .06000 2.2118

As a comparative static exercise, consider an increase in the
maintenance cost parameter α  from 1.2 to 1.3.  q3  increases slightly to 111.37,

q2 decreases to 40.65, and q1 decreases very slightly to 18.19.  The rent
function p q( ) increases for all qualities between 36 and 111, and decreases for

all qualities between 18 and 35.  Thus households at the low end of the income

spectrum benefit from an increase in maintenance costs.  The income
matching function y q( ) decreases for all qualities between 50 and 111, and

increases for all qualities between 18 and 49.  An increase in occupant income

at a given quality means that households of a given income are living in

housing of lower quality.  Thus households at the low end of the income

spectrum live in housing of lower quality as the result of an increase in

maintenance costs.

These results can be explained through a combination of Figure 5,

panel III, and Figure 7.  Consider first the effect of the increase in α , with no
change in q3 .  From (38) and (42), the increase in α  has no effect on the upper

portion of p q( ) in Figure 7, panel III.  But it causes q2 to fall (see (44)).  This

effect plus the direct effect of the increase of α  on the rent gradient in the

steady-state interval cause the rent function to fall everywhere in the steady-

state interval and by more at lower qualities (since it now costs more to

maintain a medium-quality house relative to a low-quality house).  The effect

on q1 is ambiguous.  This can be seen from Panel I.  If q2 falls a lot, q1 must fall

to restore equilibrium; if q2 falls only a little, then q1 rises due to the rise in α .
All these changes were considered assuming no change in q3  or p q3( ).  The

increase in α  reduces the profitability of the program.  To restore zero profits,
the rent gradient must shift up, which implies an increase in q3  and p q3( ).
Putting these results together explains the rise in rent at higher qualities, the

fall in rent at lower qualities, as well as the expansion of the downgrading

interval and the contraction of the steady-state interval.
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Suppose that the government gives a subsidy to all maintenance

expenditures.  This corresponds to a decrease in α , which is the reverse of the

paragraph immediately above.  This has the desirable effect of increasing the

housing quality consumption of low-income households, but the somewhat

paradoxical effect of increasing the rent that they have to pay at any given

quality.

Suppose that α  increases to a significantly larger value, such as 1.5.

Then the sort of equilibrium described in Sections 5-7 breaks down, since it

becomes more profitable to let a housing unit deteriorate until its rent is 0

(and then abandon it) than to maintain it forever somewhere in the steady-

state range between q1 and q2.

9. Extensions

In this section, we consider one extension in detail -- the treatment of a

construction interval -- and then discuss a variety of other extensions as topics

for future research.

9.1 A construction interval

In the previous section, we focused on the case where there is a single

construction quality, and we chose our example so that this is the equilibrium

outcome.  But, as noted earlier, depending particularly on the distribution of

income, but also on the characteristics of the maintenance and construction

technologies, construction may occur over a quality interval or over a set of

quality intervals.  In this subsection, we extend the analysis to the situation

where there is a single construction interval.

Equilibrium in the class of models we are considering is efficient.

Intuition suggests that there should be construction over a single quality

interval, at the top end of the market, when the income distribution is

unimodal and has an attenuating right tail.  In this situation, it would be

inefficient to construct only luxury housing since only a small proportion of

households would be willing to pay the premium for luxury housing required

to make its construction profitable.  At the same time, it would be inefficient

to construct no luxury housing since there would be some rich households

willing to pay the premium for it.
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The extension to treat a single construction interval is, in fact, quite

straightforward.  Suppose that the construction interval extends from quality
level q3  to q4 .  Let b q( ) denote the volume of construction at quality q  for

q ∈ q3,q4( )  per unit time.  Over the interval, since φ = ρ < α  (recall the phase

diagram in panel IV of Figure 5), housing deteriorates without maintenance.

Eq. (27) applies for all qualities at which construction occurs.  Hence,

p q( ) = r + δ( )ρq   for  q ∈ q3,q4( ) .

Since (19) holds for the richest household which resides in housing of quality

q4 ,

′p q4( ) = r + δ( )ρ = MRS ymax − r + δ( )ρq4 ,q4( ) , (52)

which gives an implicit equation for q4 .  Then over the construction interval,
y q( ) is solved from (19):

′p q( ) = r + δ( )ρ = MRS y q( ) − r + δ( )ρq,q( ) (53)

And from (16), h q( ) over the construction interval can be solved for.

Let b q( ) denote the volume of construction at time 0 and at quality

q ∈ q3,q4( ) .  We wish to solve for b q( ) knowing h q( ).  Now, the quantity of

housing above quality q  that was constructed at quality ′q  equals all the

housing constructed at ′q  that has not yet filtered below q , and which
therefore was constructed between time 1

δ ln q
′q < 0  and time 0.  The number of

such housing units is

b ′q( )entdt = b ′q( )
n1

δ ln q
′q( )

0

∫ 1 − q

′q







n δ







 , (54)

which can be compared to (29) and (30).

Thus,

H q( ) = b ′q( )
nq

q4

∫ 1 − q

′q







n δ







 d ′q + B4 , (55a)

where B4 ≥ 0  is a construction bulge at q4  (recall the discussion in Section 3).

Differentiation of (55a) yields
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h q( ) = − ′H q( ) = b ′q( )
δqq

q4

∫ q

′q







n δ

d ′q . (55b)

Differentiation of this equation with respect to q  yields

b q( ) = n − δ( )h q( ) − δq ′h q( ) . (55c)

We have assumed that construction occurs throughout the interval
q3,q4( ) .  From (55c), it follows that a necessary condition for this assumption

to be valid is that the right hand side of (55c) be positive throughout this

interval, which translates into a messy primitive condition on tastes, the

distribution of income, n,δ ,r  and ρ .7

Since δq  is filtering velocity, the amount of housing that filters from
q3,q4( )  into the downgrading interval per unit time is h q3( )δq3.  Equilibrium

requires that the amount of housing that filters from the construction interval

to the downgrading interval per unit time is n 1 − H q3( )( ).  Since q3  is

determined from (35), it would seem that the only way for these two
conditions to be reconciled is for there to be a construction bulge at q3  with

mass

B3 = n 1 − H q3( )( ) − h q3( )δq3. (42)

In Section 3, we argued that this construction bulge is always positive.

Observe that the method of construction of equilibrium, conditional on
q3 , which was outlined in Section 6, holds when there is a construction

interval, except that the determination of y q( ) is different (in particular,

y q4( ) = ym  with a construction interval, while y q3( ) = ym   with a single

construction quality).  Since profit is the same (zero) at all qualities within the

construction interval, (35) applies.  This suggests a procedure that can be

employed which determines endogenously whether there is construction at a
single quality or over a single interval.  Solve for q3  per Section 6.  Solve for q4

7This condition does not hold for the numerical example of Section 8.  Suppose, to the
contrary, that in that example there is an equilibrium with a construction interval.  Then

′y q( ) = g y( )
h q( ) = 1

ym − y0( )h q( ) , and so h q( ) = 1
′y q( ) ym − y0( ) .  Also, from (37) and (53), over the

construction interval r + δ( )ρ = 1
q y q( ) − r + δ( )ρq( ) , implying that

y q( ) = 2 r + δ( )ρq, ′y q( ) = 2 r + δ( )ρ , and h q( ) = 1
2 r +δ( )ρ ym − y0( ) .  Thus, ′h q( ) = 0 , and from

(55c), b q( ) = n−δ
2 r +δ( )ρ ym − y0( ) .  In the numerical example, n = δ , so that b q( ) = 0 , contrary to

supposition.
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per (52).  If the q4  so-computed exceeds the so-computed q3 , proceed as

outlined above.  Otherwise, proceed as outlined in Section 6.

9.2 Directions for future research

In an earlier version of the paper we showed how the perturbation

procedure used in Section 4 of Braid (1984) can be employed to derive the

comparative static properties of the model.  We chose to omit that analysis

here for reasons of space, but it merits detailed treatment in a separate paper.

We conjecture, but have not proved, that it is possible to derive a

constructive proof of the existence and uniqueness of equilibrium.  One of the

difficulties in constructing such a proof is the possibility that there is more

than one construction interval.  Another difficulty is the possibility that

downgrading and then abandoning a unit may be more profitable than

downgrading to a stationary quality.

The model could be extended analytically to provide a richer treatment

of rehabilitation and maintenance, and of housing demand -- for instance,

distinguishing between housing quality and quantity.  But, most interesting

extensions would result in analytical intractability and would require

numerical solution.  For example, if land were incorporated into the model,

the resulting equilibrium would not entail a steady state except in the

fortuitous circumstance that the supply of land were to grow at the same rate

as population.  Thus, it appears that most subsequent work on models in the

Sweeney tradition will require numerical solution.  And any model that is

sufficiently rich for practical policy analysis will certainly require numerical

solution.

For policy analysis purposes, the concept of quality will have to be

made operational.  Should quality include location, unit size, neighborhood

quality, public services, etc. or should these be treated as separate attributes of

a housing unit?  Once quality is defined in an operational way, housing

quality will have to be measured, and the model will have to be

parameterized.  The most difficult aspect will be the parameterization of the

maintenance and rehabilitation technologies,8 since there are few data, very

8The functional form of the income distribution is typically taken to be log normal and Pareto
in the tail.
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few studies which have attempted to estimate these technologies, and no

studies which have employed a Sweeney-type model as the basis for

estimation.

10. Conclusion

This paper has provided quite a thorough analysis of a model of a

steady-state housing market similar to the Sweeney model except that it

employs a particular maintenance technology which permits upgrading.  In

the Sweeney model, a housing unit is constructed, and then is continuously

downgraded until eventual abandonment.  In our model, a housing unit may

follow such a path.  But, depending on the characteristics of supply and

demand, it may instead be held at a constant quality after being downgraded

from its construction quality.  Our model is of interest since, for some housing

markets and submarkets at least, it provides a more realistic description of the

market than does Sweeney's.
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Appendix 1

Derivation of 
dφ
dq

q̇=0

 and 
dφ
dq φ̇ =0

1.
  

dφ
dq

q̇=0

= −
H φq

H φφ

 (from (4)) = −
gq + gmmq

gmmφ

. (i)

Assume that a positive level of maintenance expenditures is necessary to hold

quality constant.  Then the first-order condition for maintenance expenditures

along q̇ = 0  is

−1 + φgm = 0 , (ii)

from which one obtains

mq = −
φgmq

φgmm

= −
gmq

gmm

(iii)

and

mφ = − gm

φgmm

. (iv)

Substitution of (iii) and (iv) into (i) yields

dφ
dq

q̇=0

 = −
gq − gm gmq

gmm

− gm( )2

φgmm

= 
φ gqgmm − gmgmq( )

gm
2

. (v)

Note that

dm

dq
q̇=0

= ∂m

∂q
+ ∂m

∂φ
dφ
dq

q̇=0

= mq + mφ
dφ
dq

q̇=0

, (vi)
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from which it follows that if gmq = 0 ( gmm < 0  by assumption),

sgn dm
dq q̇=0( ) = sgn dφ

dq q̇=0( ) .  Thus, if gmq = 0, the q̇ = 0  locus is upward-sloping iff

more has to be spent on maintenance to hold constant the quality of a higher-

quality unit.

2.
dφ
dq φ̇ =0

= −
Ωq

Ωφ

 with Ω q,φ( ) = rφ − ′p − φgq   (from (5))

= −
− ′′p − φ gqq + gqmmq( )

r − gq − φgqmmφ

= −
− ′′p − φ gqq − gqm

2

gmm( )
r − gq + gqm

gmm

  (using (iii) and (iv)). (vii)

Hence, a set of sufficient conditions for 
dφ
dq φ̇ =0

< 0 is that gqm = 0, ′′p < 0 , gq < 0 ,

and gqq < 0.
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Notational Glossary

A, B, ′B ,C, D, E, F

R, ′R ,U, ′U ,W, Z, ′Z , ′′Z
} points in the phase plane

B3, B4 construction bulges at q3,q4

B t( ) rate of housing filtering from the construction to

the downgrading interval

b q( ) volume of construction at quality q

c q( ) cumulative flow of construction at qualities above

q

G y( ) number of households with income above y

g y( ) ≡ ′G y( )

g q,m( ) depreciation function

  Ĥ current-value Hamiltonian

  H maximized current-value Hamiltonian

H q( ) number of housing units of quality above q

h q( ) ≡ ′H q( )

K q( ) construction cost function

m maintenance expenditures

MRS marginal willingness to pay (in rent) for quality

N number of households

n population growth rate

p q( ) rent function

q quality
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q0 construction quality

q1 minimum quality

q2 maximum steady-state quality

q3 (minimum) construction quality

q4 maximum construction quality (when there is a 

construction interval)

qT terminal quality

qu φ( ) lower unstable arm

r discount rate

S, ′S saddlepoints in the phase plane

T terminal time

t time, housing unit age

U x,q( ) utility function

V q( ) housing value function

v q( ) speed of downward filtering ≡ −q̇( )

x quantity of other goods

y income

y0 , ym minimum and maximum income

y q( ) function relating household income to quality

α maintenance cost of a unit of quality

δ exponential rate of depreciation with zero

maintenance

Π,π discounted present value of profits

ρ construction cost of a unit of quality
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φ co-state variable, marginal value of quality

φ a q( ) optimal abandonment trajectory

φ r q( ) optimal rehabilitation trajectory

χ rehabilitation cost per unit of quality

Ω q,φ( )  = 0 the φ̇ = 0  locus


