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ABSTRACT AND HEADNOTE

This paper examines the properties of stationary-state general equilibrium in a monocentric

city with durable housing.  On the demand side, identical households choose location, housing

quality and quantity (floor area), and other goods.  On the supply side, developers choose the

structural density and time path of quality (which depends on construction quality and

maintenance) of buildings.  Under a certain set of assumptions, existence and uniqueness of

equilibrium are proved, and its comparative static/dynamic properties are determined.
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1. INTRODUCTION AND OVERVIEW OF THE MODEL

In the last 30 years, considerable progress has been made in modeling competitive housing

markets.  Prior to 1980, there were three broad lines of development.  First, the monocentric city

model of the "new urban economics" (see Alonso (1964)) was extended in many ways, among

others to treat non-durable housing, as in Mills (1967) and Muth (1969).  Second, durable housing

was incorporated into a growing monocentric city (e.g. Fujita (1976) and Anas (1978)end the

value  and indestructible.  Third, Sweeney (1974a, 1974b) and Braid (1979) developed non-spatial,

stationary-state filtering models of the housing market in which the quality deterioration of a

housing unit depends on the endogenous level of maintenance.

An ultimate objective of these lines of research is to develop a general equilibrium, non-

stationary, spatial model of the housing market with the following characteristics.  On the demand

side, heterogeneous households choose location and other goods, as well as housing quality and

quantity.  On the supply side, developers choose (with perfect foresight, for each plot of land)

construction date, initial quality, and structural density of the first building on the site, the time path

of maintenance over the building's life, and the date of demolition (or redevelopment), and so on

for subsequent buildings.

Since 1980, a number of authors have constructed spatial models of growing urban areas

with durable housing.  They all make significant simplifying assumptions.  Models with perfect

foresight (Arnott (1980), Fujita (1982), Hochman and Pines (1982), Wheaton (1982a), Braid

(1988, 1991)) normally assume that housing cannot be demolished and redeveloped, although

Akita and Fujita (1982) allow some limited redevelopment.  Models with demolition and

redevelopment (Brueckner (1980a, 1980b), Wheaton (1982b), Cooke and Hamilton (1984))

normally assume myopic expectations.  Brueckner (1981) assumes a stationary-state city, and

incorporates both perfect foresight and multiple rounds of redevelopment on each plot of land.  All

these papers ignore consumer choice over more than a single housing attribute, ignore endogenous
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maintenance expenditures (except that Brueckner (1981) allows endogenous maintenance

expenditures that are constrained to be constant over time), and assume a single income group

(except Brueckner (1980b), Cooke and Hamilton (1984), and Braid (1991)).

In this paper, each developer chooses construction date, initial quality, structural density,

the time path of maintenance, and the date of demolition and reconstruction for a succession of

buildings on his/her site.  However, the economic environment and the rent gradient (giving rent as

a function of quality and location) remain constant over time, and as a result we may say that the

equilibrium is a stationary state.  We consider only the case with a single income group, and some

additional restrictive assumptions are employed.  Nevertheless, this paper makes a number of

advances over the previous literature.  It is the first paper to treat household choice over both

quality and quantity.1  More significantly, by continuing the line of research of Arnott, Davidson,

and Pines (1983), referred to hereafter as ADP1, and Arnott, Davidson, and Pines (1986), referred

to hereafter as ADP2, it provides the first general equilibrium spatial model of the housing market

to treat quality and endogenous maintenance.  It also provides the first proof of existence and

uniqueness in a monocentric city with internal ownership of land.2

It is worthwhile to place our model in the context of the Arrow-Debreu model of perfect

competition.  Temporarily suppose, to be consistent with Debreu (1959), that time, location,

structural density, and quality are all discrete.  Then housing is a set of commodities indexed by

time, location, structural density, and quality.  Each of these commodities can be produced using a

1One on-going debate in the housing literature concerns how to treat the multi-dimensional heterogeneity of
housing units.  In the classical, Muthian model (1969) all housing characteristics are aggregated into a single
composite index, termed the "quantity of housing services."  At the other extreme, in the hedonic price
literature, demand is expressed in terms of all housing characteristics.  The problem with the Muthian
approach is that it is too coarse for many purposes; policy makers are often interested in the effects of policy
on housing quality and the volume and nature of housing construction, information the Muthian approach
cannot provide.  There are two main problems with the hedonic price approach.  First, it is too complex.
Demand and technological parameters are hard to estimate, particularly in view of the insufficient detail of
most of the housing data that has been collected.  Second, housing units are sparse in characteristics space;
thus, it may be seriously misleading to view the household as able to buy any bundle of housing characteristics
it wishes.  The treatment of housing in this paper lies between these two extremes.
2See Fujita and Smith (1987) for a proof of existence and uniqueness of equilibrium in a monocentric city
model without housing or internal ownership of land, but with multiple income groups.  See also the references
therein.
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variety of Leontief techniques.3   This multiplicity of techniques can render the production set

nonconvex.  On the consumer side, in each time period a household may consume housing of

only one quality and at a single location, which implies nonconvexity of the consumption set.  It is

these structural nonconvexities that distinguish the model from the Arrow-Debreu model of

perfect competition, and which cause the proof of existence of equilibrium to be non-trivial.

The paper incorporates an extended version of a partial equilibrium developer model

introduced in ADP1 and ADP2,  an extended version of a household decision model used in

ADP2, and a market-clearing spatial model.  The extensions include the simultaneous treatment of

structural density, quality, and quantity of housing consumption.  The treatment of structural

density on the producer side is absent in ADP1 (though present in ADP2), and the treatment of

quantity on the consumer side is absent in both.  The market-clearing spatial model connects the

two extended submodels of households and producers and allows comparative statics in the

general equilibrium context.

A building is constructed at a particular structural density and initial quality.  As it ages, its

structural density remains the same, but its quality can change, and so too can the floor area of the

housing units it contains.  Quality deteriorates continuously through time at a rate which depends

on maintenance expenditure per unit floor area, and can be negative.  The floor area of the housing

units can be altered without cost.  These assumptions ensure that, in competitive equilibrium, there

is a well-defined rent per unit floor area for housing as a function of quality and location.

A household derives utility from the quality and floor area of its housing, as well as from

other goods.  It is indifferent to structural density and to location except through the effect of the

3For example, where t  is time, x  location, q  quality, µ  structural density, Q  quantity of housing, C
quantity of composite good (either maintenance or construction),

Qt ,x ,q,µ = min Qt −1,x ,q+1,µ , Ct

β q+1( )
specifies that housing of type t, x, q,µ  can be produced using housing of the same structural density and
location from a period earlier of the next higher quality, when combined with the appropriate amount of
composite good (maintenance expenditures) from period t , where βq+1 is an exogenous parameter.
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latter on transportation costs.  When purchasing housing services of a particular quality and at a

particular location, the household faces a market-determined price and can choose how many units

of floor area to rent at that price.

We consider a stationary state equilibrium in the sense that the market price of a unit of

floor area of a given quality at a given location does not vary with time.

The housing market studied in this paper is that of a monocentric urban area.  Each

household spends on transportation a sum which depends on the distance, denoted x , of its

residential location from the city center (where all the non-residential activities take place).

The interrelationships of the model are described in chart 1.  There are three submodels.

The first is a demand-side model.  From an exogenous utility function for the identical households

are derived a bid-rent function P q, x( )  -- the demand price for one unit of housing of quality q  at

location x  -- and a housing demand function H q, x( )  -- the quantity demanded of housing of

quality q  at x  when prices are given by P q, x( ) .  Exogenous to this submodel are household

income, Y , the household utility level, U , and the level of transport costs, denoted by a shift

parameter α .  Next is a supply-side model, an extension of the spatial intertemporal model

presented in ADP2.  This model takes the rent function P q, x( )  at some location x  as exogenous

and independent of time, and generates the optimal program for a landlord-builder, called a

developer, at x , giving the (structural) density µ  of housing built there, the quality q0  of initial

construction, the program of maintenance over the life of the building, m t( ) , and the timing of

demolitions and reconstructions if these occur.  The discounted value, Π , of the profit stream to

the developer, which can be interpreted as the competitive land value, is also calculated.4

Exogenous to this model are the construction and maintenance technologies, characterized by

functions K q0 ,µ( )  and g q,m( ) to be defined later, and the "agricultural rent," RA , the opportunity

cost of undeveloped land.  Finally comes the equilibrium or market-clearing model, in which two

4Under competition, these profits would be capitalized into land values.  Thus, Π  may be interpreted to be
land value in excess of the land's value in agricultural use (or differential land value).
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more exogenous variables appear, the population, N , of the (closed) city, and the non-rental

income, I , of the (identical) households.  The first two submodels are put together and the

following variables are determined:  the equilibrium rent function over quality and location, total

household income, Y  (consisting of I  plus an equal share of development profits), utility U , the

pattern over the city of housing density, quality levels, demolition rates and so forth, as well as the

total city area.

u(C,q,H)

Households

,Y,Uα

H(q,x)

Market clearing

N, I
_

(x)µ

Developers

RA

K( q0,µ) , g(q,m)

Π P(q,x)

Chart 1:  Relationships between the submodels
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Section 2 describes the household model and the derivation of P q, x( )  and H q, x( ) .  It

includes comparative statics regarding the effects of α , U , and Y  on these functions.  Section 3 is

devoted to the dynamic developer problem and it includes comparative statics regarding the effects

of P q, x( ) , K q0 ,µ( ) , and RA .  Section 4 presents the market-clearing model, and examines issues

of existence and uniqueness.  Section 5 examines its comparative static properties, investigating the

effects of changes in I , N , α , RA , and K q0 ,µ( )  on the structure of the city.5  Concluding

comments are presented in Section 6.

2. DEMAND-SIDE MODEL

The utility of a representative household is given by

U = u C, H,q( ), (1)

where C  is the quantity consumed of a Hicksian composite of non-housing goods; H  is housing

quantity; q  is housing quality; and u ⋅( )  is differentiable strictly, quasiconcave for each q , with

∂u ∂C > 0, ∂u ∂H > 0, and ∂u ∂q > 0.  Quantity, H , as floor area, is a cardinal measure.

Quality, on the other hand, is an ordinal measure, such that q  = 0 denotes the lowest possible

quality.

It is convenient to characterize tastes by the expenditure function dual to the utility function

(1):

E U, P,q( ) = min
C,H

C + PH u C, H,q( ) ≥ U( ) . (2)

P  is here interpreted as the price (or rent) of one unit of floor area of quality q .  If a household

lives in housing of quality q , pays P  for each unit of floor space, and receives a utility level of U ,

5Section 5 derives the comparative static results for I .  The derivation of the other comparative static results
is presented in an unpublished appendix which is available from the authors on request.
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then by Shephard's Lemma the quantity of housing it will choose to consume is

h U, P,q( ) ≡ EP U, P,q( ) ,

the partial derivative of E  with respect to its argument P .  Consequently, the amount of the

composite good consumed will be

c U, P,q( ) ≡ E U, P,q( ) − Ph U, P,q( ).

We assume that households can neither borrow nor save.  Letting Z  denote household

income net of transportation costs, we can then define the bid rent (see Wheaton (1977)) on

housing of quality q , conditional on U  and Z .  This bid rent is the maximum rent per unit floor

area of quality q  consistent with the attaining of a utility level U  by a utility-maximizing

household with net income Z .  If the bid-rent function is expressed as P q,U, Z( ) , then it is

defined by the identity

E U, P q,U, Z( ),q( ) ≡ Z . (3)

Differentiating (3) with respect to q , U  and Z , and using Shephard's Lemma yields

Pq = −Eq EP = −Eq h U, P,q( ) > 0,

PU = −EU EP = −EU h U, P,q( ) < 0, (4)

PZ = 1 EP = 1 h U, P,q( ) > 0.

In order to establish subsequently the existence of a non-trivial equilibrium on the housing

market, we must impose some restrictions on preferences.  First, we require that utility be defined

on the entire (open) orthant, which would not be the case if, for example, the underlying

preferences entailed a survival bundle or commitment expenditures (e.g. a Stone-Geary utility

function).  Second, we require that, for any given level of utility U , quality q , and rent P , both the

quantity of housing and the quantity of other goods consumed are strictly positive.  Further, as P
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tends to infinity, we require that expenditure on housing also tend to infinity.  Formally, we

assume:

(AS-1a) (i) For every Z  > 0, q  > 0, and P  > 0, there is a solution U Z, P,q( )  to the 

equation E U, P,q( ) = Z .

(ii) For every q  > 0, P  > 0, and U , EP U, P,q( ) = h U, P,q( ) > 0 and 

c U, P,q( ) > 0 .

(iii) For every q  > 0 and U , lim
P↑∞

Ph U, P,q( ) = ∞.

We make the following additional assumptions on preferences:  the composite good is

non-inferior; housing quantity is strictly normal; and housing quality is normal in the sense that the

marginal willingness to pay for quality, Pq q,U, Z( ) , rises with utility.  Thus,

(AS-1b) cU U, P,q( ) ≥ 0 hU U, P,q( ) > 0 PqU q,U, Z( ) > 0.

For net income Z  we take the following specification:

Z = Y − αs x( ), (5)

where: x  is distance from the city center; s x( ) is the transport cost function, with s  continuous, ′s

positive and finite, s 0( ) = 0 , and 0 < s x( ) < ∞  for 0 < x < ∞ ; α  is a shift parameter; and Y  is

gross household income.  Plainly  ZY > 0, Zα < 0 for x > 0, Zx < 0.

It is convenient to define an equilibrium housing quantity demand function by the relation

H q,U, Z( ) ≡ h U, P q,U, Z( ),q( ) = EP U, P q,U, Z( ),q( ) (6)

Total differentiation of (6) under (AS-lb) gives, by use of (4),

HU = hPPU + hU > 0, HZ = hPPZ < 0, (7a,b)
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since hP = EPP < 0  by the concavity of the expenditure function.  Furthermore,

Hq = hPPq + hq
>
=
<

0

is of indeterminate sign since hP < 0, Pq > 0, and hq  is of indeterminate sign.  Also, from (4) and

(6)

H q,U, Z( )PZ q,U, Z( ) = 1. (8)

Total differentiation of this result gives:

PZZ = − HZ

H2 > 0 PZU = − HU

H2 < 0 PZq = −
Hq

H2 , (9)

this last cross partial derivative being of indeterminate sign.  Note that the use of (5) allows us to

obtain all the partial derivatives with respect to the variables Y , α , and x  that we shall need

subsequently.

The following assumption plays a key role in much of our analysis:

(AS-2) Hq = 0 .

The assumption states that, for fixed household net income and utility, the quantity of housing

demanded is independent of the quality of that housing.6,7  An important consequence follows

from (9), namely that

PqZ = 0 . (10)

6An expression for Hq  in terms of the direct utility function may be obtained from total differentiation of

u Z − pH, H, q( ) = U  and −uC p + uH = 0.  The resulting expression implies that Hq  = 0 is equivalent to

H
uH

uC
−uCCuq + uCuCq( ) + uquC − uCuHq H = 0 .  A class of utility functions for which Hq  = 0 is

u C, H, q( ) = min υ C, q( ), H( ).
7A point of disagreement in the literature on urban spatial models with durable housing is whether it is more
reasonable to assume that, over the lifetime of a building, apartment size is fixed or costlessly adjustable.
Under (AS-2) this point of disagreement is immaterial.  As the building deteriorates, the size of apartment
most preferred by households remains fixed.  Consequently, the developer has no incentive to adjust apartment
size as the building ages.
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This implies that the slope of the bid-rent function, Pq , is independent of Z  and therefore of

income and location, for U  fixed.  We use (AS-2) in our proof of existence and also to sign a

number of comparative statics derivatives that are otherwise ambiguous.

In Table 1, we bring together those results of this section on the signs of partial derivatives

that will be used subsequently.

3. SUPPLY-SIDE MODEL

This submodel has been treated in detail in ADP2.  The developer of a particular piece of

land at location x  determines, as a consequence of the rent function P q( ) there, whether to

construct housing, whether eventually to demolish it and reconstruct, and the values of the

following other variables characterizing the building: q0 , quality at time of construction; qT , quality

at time of demolition; T , age at time of demolition; m τ( ), flow of maintenance expenditure at age

τ ; and µ , density , i.e. number of quantity units built per unit area of land.

The developer maximizes profit per unit of land area, defined as

Π q0 ,qT ,T,µ( ) =
µJ q0 ,qT ,T( ) − K q0 ,µ( )

1 − e−rT − RA

r
, (11)

where: r  is the discount rate; RA  = agricultural rent (per unit time); K q0 ,µ( )  is the cost per unit

area of land of constructing a building of quality q0  and density µ ; and J q0 ,qT ,T( )  is the solution

to the following maximization problem over m τ( ):

J q0 ,qT ,T( ) = max
m τ( )

e−rτ

0

T

∫ P q( ) − m( )dτ , (12)

subject to q 0( ) = q0 ,q T( ) = qT , and the maintenance technology linking m  and q , namely

q• = g q,m( ).
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The assumptions made for regularity of the solution to this model are (see ADP2 for discussion

and more details):

(AS-3) lim
m↓0

gm q,m( ) = ∞, lim
m↑∞

gm q,m( ) = 0, gmm < 0, for all q > 0.

(AS-4) There exists a positive q̂  such that for all q ∈ 0, q̂( ), there is an m > 0 for which 

g q,m( ) = 0.  Also, this m  tends to zero as q → 0.

(AS-5) K 0,µ( ) = K q,0( ) = 0 ; Kq , Kµ , Kµµ , Kqµµ > 0 for q ∈ 0, q̂( ) and µ > 0.8

The next two assumptions, which concern the interaction of the utility function u  (and

hence P ) and the technology functions K  and g , require for their formulation the use of the phase

plane for problem (12).  This is depicted in Figure 1, in which φ  denotes the co-state variable of

the problem, the shadow price of quality.  The current-valued Hamiltonian for (12) is found by

maximizing P q( ) − m + φg q,m( ) with respect to m :

  
H q,φ( ) = max

m≥0
P q( ) − m + φg q,m( )( ),

and the locus marked q• = 0  in Figure 1 is the set of points q,φ( ) satisfying   H φ q,φ( ) = 0 .  The

curve CDGF is the optimal path for the particular configuration of the phase plane drawn, and it is

a solution of the canonical equations

  q
• = H φ q,φ( ) (13)

  φ
• = rφ − H q q,φ( ) = rφ − Pq − φgq . (14)

The locus marked φ = Kq µ  is the locus of points satisfying the first-order condition for q0  in the

maximization of (11) for a particular value of µ , and is defined by the equation φ = Kq q,µ( ) µ .

We make the following assumptions about the configuration of the phase plane:

8Note that all the properties are independent of the cardinalization of q , except that q  = 0 is defined to be the
lowest possible quality.
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(AS-6) There exists qS ∈ 0, q̂( )  such that for points on the q• = 0  locus, φ• <=> 0  for q <=> qS  ( φ•

given by (14)).

(AS-7) There is an upper limit µ  such that, for 0 < µ  < µ , the locus φ = Kq µ  lies 

entirely below the locus q• = 0  for 0 < q  < q̂ ; and there exists a critical value q̃  

such that for q  > q̃  the slope of the locus is algebraically greater than that of the 

solution of the canonical equations (13) and (14) through the locus at q , and for q  

< q̃  smaller.

As shown in ADP2, (AS-3) through (AS-7) guarantee the existence of a unique optimal

program, specified by µ , q0 , qT , T , m τ( ), a solution to (13) and (14), and maximized profit Π .

If Area A in Figure 1 exceeds Area B, then T  is finite, and a demolition cycle path such as CDGF

(with Area CDG = Area OHGF -- see discussion below) is followed.  Otherwise, T  is infinite, so

that the building once constructed is never demolished, and the stable arm, WS in Figure 1, is

followed.

The remainder of this section derives results which are used in the comparative static

analysis of Section 5.

To obtain the comparative static properties of the submodel, we follow the general

procedure outlined in the Appendix of ADP2:  Let X  denote the vector of endogenous variables

( q0 , qT , T ), and let ΠX  and ΠXX  denote the gradient and Hessian respectively of Π , as defined by

(11), with respect to X .  If λ  denotes any shift parameter, then

dX

dλ
= ∂X

∂λ
+ ∂X

∂µ
dµ
dλ

, (15)

where ∂ ∂λ  denotes changes in which µ  is held constant, ∂ ∂µ  changes in which λ  is held

constant, and d dλ  changes in which µ  adjusts optimally along with X .  We have, in obvious

notation:
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∂X

∂λ
= −ΠXX

−1 ΠXλ ,
∂X

∂µ
= −ΠXX

−1 ΠXµ  (total differentiation of ΠX = 0 ) (16)

dµ
dλ

= −
Πµλ + ΠµX ∂X ∂λ
Πµµ + ΠµX ∂X ∂µ

 (total differentiation of Πµ = 0) (17)

Πµµ + ΠµX ∂X ∂µ < 0 (second-order condition for optimal µ ) (18)

dΠ
dλ

= Πλ  (envelope theorem). (19)

Further, of the three components of ∂X ∂µ : If T  is finite, the components of ∂X ∂µ  are as

follows: ∂qT ∂µ < 0 but ∂q0 ∂µ  and ∂T ∂µ  cannot in general be signed; while if T  is infinite,

∂q0 ∂µ  < 0 and ∂qT ∂µ = 0.

We consider four comparative statics exercises.  The first is taken from ADP2, and treats a

parallel upward shift of the rent function P q( ).  If we call the shift parameter χ  in this case, then

P q,χ( ) = P q( ) + χ ,

and Pχ = 1 for all q .  Changes in χ  do not affect the canonical equations (13) and (14), and so  we

see from (12) that Jχ q0 ,qT ,T( ) = e−rτ

0

T

∫ dτ = 1
r

1 − e−rT( ).  Thus, from (11), Πχ = µ r ; Πµχ = 1 r ;

and ΠXχ = 0 .  From (16), ∂X ∂χ = 0 ; from (17) and (18),

dµ
dχ

> 0; (20)

from (19),

dΠ
dχ

= µ
r

; (21)

and from (15), dX dχ  has the same signs as ∂X ∂µ .

The next exercise deals with a change in the slope of the function P q( ).  The shift

parameter is called γ , and we put
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  P q,γ( ) = P q( ) + γl q( ),

where   ′l q( ) > 0, and if q* τ( ) denotes the optimal path of quality for γ  = 0, then

  
e−rτ

0

T

∫ l q* τ( )( )dτ = 0. (22)

Condition (22) implies that ∂J ∂γ = 0.  It also implies that   l q0( ) > 0 and   l qT( ) < 0.  From (11),

we obtain

Πγ = 0, Πµγ = 0 . (23)

Instead of using (16) to find ∂X ∂γ , we have the following direct argument.  If T  if finite,

it is known from ADP1 and ADP2 that the first-order condition for T  in the maximization of Π

implies that the areas CDG and OHGF in Figure 1 must be equal for CDGF to be the optimal

path.  The locus φ = Kq µ  is unchanged by shifts in γ  (for given µ ) and so is the canonical

equation (13), and hence the locus q̇ = 0 .  However, for (14) we have ∂φ̇ ∂γ = −Pqγ  =

  − ′l q( ) < 0 .  Thus, the algebraic slope dφ dq  of any solution to (13) and (14) with q̇ < 0 increases

with γ .  Now consider Figure 2, where EF denotes the optimal path for γ  = 0.  In order to satisfy

the equal-area condition, the optimal path, CD, for some γ  > 0, must cut EF, and must do so in

the sense shown if its slope is to be greater than that of EF at their intersection.  We conclude that

∂q0 ∂γ > 0 and ∂qT ∂γ > 0.  ∂T ∂γ  cannot be signed in general.9  To obtain dµ dγ  from (17)

we need the vector ΠµX .  It is shown in ADP2 that Πµq0
< 0 , ΠµqT

= 0 , and ΠµT > 0 .  From (17),

(18), and (23) we see that dµ dγ  has the same sign as ΠµX ∂X ∂γ , which, since ΠµqT
= 0  is the

sum of Πµq0
∂q0 ∂γ < 0 and ΠµT ∂T ∂γ , which is of indeterminate sign.  One may presume that

usually dµ dγ < 0 , but this is not always true.  If it is, then from (15) dqT dγ > 0.  If further

∂q0 ∂µ < 0 (the most likely case according to ADP2), then dq0 dγ > 0.

9All we can say is that if ∂T ∂γ > 0 , the profit per construction-demolition cycle, viz. µJ − K , increases with

γ , and if ∂T ∂γ < 0  it decreases.  This follows since Πγ = 0 and hence dΠ dγ = 0  by (18); since overall

profits remain unchanged, profit per cycle must be larger, the longer the cycle.
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The case of T = ∞  is now considered.  In Figure 3, GS is the optimal path for γ  = 0 and

HS´ the optimal path for γ  > 0.  Since ∂φ̇ ∂γ < 0, then an increase in γ  causes the φ̇ = 0  curve

to shift upwards, and the saddlepoint to move right along the q̇ = 0  line.  Furthermore, since with

S´ to the right of S, an intersection of GS and HS´ would violate the result that the algebraic slopes

of paths increase with γ , HS´ must lie to the right of GS.  Thus ∂q0 ∂γ > 0, and ∂qT ∂γ > 0.

Since Πµq0
< 0 , ΠµqT

= 0 , and ΠµT = 0 (see ADP2), then from (17), (18), and (23), dµ dγ < 0 .

And because ∂q0 ∂µ < 0 and ∂qT ∂µ = 0, it follows from (15) that dq0 dγ  > 0 and dqT dγ > 0.

Note that combinations of the previous two comparative statics exercises allows us to treat

movements of the rent gradient that can be decomposed into a rotation (in the sense above) and a

parallel shift.  This will prove useful when we do the general equilibrium comparative statics.

The third comparative statics exercise treats a shift in the construction technology function

K .  The shift parameter is δ  and we put

K q0 ,µ;δ( ) = δK q0 ,µ δ( ).

It can be seen that if δ  is doubled, then the new cost of constructing a building of a given quality

and structural density equals twice the old cost of a building of the same quality but half the

density.  Since there are increasing marginal construction costs to density, an increase in δ

corresponds to a particular form of technological improvement in construction.  This shift has the

following properties:

K q0 ,µ;1( ) = K q0 ,µ( )

Kδ q0 ,µ;1( ) = K q0 ,µ( ) − µKµ q0 ,µ( ) < 0 (by (AS-5))

K q0 ,µ;1( ) µ = K q0 ,µδ ;δ( ) µδ

Kq q0 ,µ;1( ) µ = Kq q0 ,µδ ;δ( ) µδ
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Kµ q0 ,µ;1( ) = Kµ q0 ,µδ ;δ( )

Thus changes in µ  and δ  that leave µ δ  unchanged leave the φ = Kq µ  locus unchanged.  Since

the canonical equations (13) and (14) are unaffected by δ , the whole phase plane is unchanged,

and the optimal path for all such µ ,δ( )  pairs is the same.  From (11), Πµ = 1
1−erT J − Kµ( ) , and this

too is unchanged if µ δ  is.  Thus, if µ * is optimal for δ  = 1, δµ *  is optimal for other values of

δ .  Hence, dµ dδ = µ * = µ δ ; dX dδ = 0 ; and

dΠ
dδ

= Πδ = − 1 − e−rT( )−1
Kδ > 0. (24)

Finally, consider changes in the agricultural rent RA .  A change in RA  can affect whether a

building will be constructed or not, since ΠRA
= − 1

r < 0, and construction requires Π ≥ 0.  But

otherwise RA  is just a fixed cost, and affects none of q0 , qT , T , µ .

In Table 2, we bring together those results of this section on the signs of partial derivatives

that will be used subsequently.

4. MARKET-CLEARING MODEL AND EXISTENCE AND UNIQUENESS OF

EQUILIBRIUM

The market-clearing model to be constructed employs the demand-side submodel of

section 2 and the supply-side submodel of section 3.  Since an essential feature of the supply-side

model is that the rent function P  does not change over time, conditions must be imposed on the

market-clearing model to ensure that P  is indeed time-invariant.10  It is easy to require that the

exogenous functions -- u , K , g , and s  -- be constant, as well as all the exogenous parameters --

10We do not investigate in this paper the possibility of an equilibrium with non-constant P.  This appears to
be a difficult matter, and its study would necessitate a quite different, and explicitly time-dependent, supply-
side model, complete with a mechanism to generate expectations for future rent profiles.  Thus, later assertions
of uniqueness of equilibrium in this paper mean (or at least are proved to mean) only uniqueness in the class
of equilibria with time-independent rent functions.
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α , δ , RA , N  (city population), and I  (non-rental income of a household).  But P  depends also

on the variables Y  (gross household income) and U  (see (3) and (5)), and so we must be sure that

they too are constant.

To examine the conditions under which Y  and U  are in fact constant, we must consider

the market-clearing condition itself.  For some given time-independent rent function P q, x( ) , we

can derive from the supply-side submodel the optimal density and demolition age as functions of

location; we obtain µ x( ) and T x( ).  If θ x( )dx  denotes the area of land available for development

in the ring contained between x  and x + dx , then the quantity of housing supplied in this ring is

θ x( )µ x( )dx .  Let F τ, x,t( )  denote the distribution of building ages in the ring, the proportion of

buildings at x  of ages ≤ τ  at time t .  Clearly, F T x( ), x,t( ) = 1.  Next let q τ, x( ) be the optimal

quality at x  of a building of age τ , calculated again from the supply-side submodel.  Now

consider the demand side, and let H q, x( )  be the quantity of housing demanded by a household at

x  if the quality is q  with rent function P q, x( ) .  Then in market equilibrium the number of

households in the ring at x  at time t  is

θ x( )µ x( )dx
1

H q τ, x( ), x( )0

T x( )
∫ dF τ, x,t( ). (25)

This expression is, in general, dependent on t , as is, by integration over x , the total number of

households in the city, contrary to the assumption that it is fixed and equal to N .

There are three situations, however, in which (25) is time invariant with a time independent

rent function.  In the first, there is a rectangular distribution of building ages, which ensures that

F τ, x,t( )  is independent of time; specifically,

F τ, x,t( ) = τ T x( ) τ ≤ T x( )( ) . (26)

In the second, the stable-arm path is profit-maximizing and all housing has reached the

corresponding saddlepoint quality, qs x( ); then (25) reduces to θ x( )µ x( ) H qs x( ), x( )( )dx
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independently of t .  In the third, (AS-2) applies, so that Hq = 0 , which implies that

H q τ, x( ), x( ) = H x( ) .  Then (25) becomes 
θ x( )µ x( )

H x( )
dx .

The first situation, a rectangular distribution of building ages, appears reasonable at first

glance.  However, at any location, all developers will have faced the same prices through history,

implying that all buildings at a particular location should be of the same age.  The second  situation,

in which all housing is at saddlepoint quality, is conceptually justifiable, but empirically

implausible.  The stable-arm path could be profit maximizing at all locations if construction costs

were high enough relative to maintenance costs,11 but casual empiricism suggests that with actual

construction and maintenance technologies, construction-downgrading-demolition cycles are to be

expected, at least at some locations.12  The third situation, in which a household’s choice of

housing quantity is invariant to its choice of housing quality (given U  and Z ), appears to us to be

the most plausible.  In consequence, in both this section and the next section on comparative

statics, we shall assume that Hq = 0 , i.e. we shall employ (AS-2).

We now complete the specification of the market-clearing model under (AS-2).  For the

moment we omit explicit reference to the exogenous variables α , δ , and RA , and consider the

endogenous determination of the variables Y  and U  that appear in the rent function, which we

shall now denote as an explicit function of both income and location:

P q,U, Z( ) = P q,U,Y − αs x( )( ) = P q,U,Y, x( ) , (27)

in terms of the old bid-rent function defined by (3) along with (5).  The solutions of the supply-

side submodel with this function are thus also functions of Y  and U   -- and so we write

X U,Y, x( ) (recall that X  denotes the vector q0 ,qT ,T( )), µ U,Y, x( ), and Π U,Y, x( )  for these

solutions.  We define the city boundary, located at x U,Y( ), by the equation

11An increase in construction costs shifts the φ = Kq µ  locus upwards (see Figure 1), which reduces Area A

and increases Area B, increasing the relative profitability of the stable arm.
12In ADP2, under the assumption that housing quantity is fixed, it is shown that the stable-arm path is “more
likely” optimal the closer is housing to the city center.
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Π U,Y, x U,Y( )( ) = 0. (28)

Consequently we can compute the number of households in the city in market equilibrium,

by integrating an expression analogous to (25) over x .

N U,Y( ) = θ x( )
0

x U ,Y( )
∫ µ U,Y, x( )

H U,Y, x( )
dx , (29)

where H U,Y, x( ) is just the (now q -independent) function of the demand-side submodel, given

by (6) and with partial derivatives given by (7).  The first equation of the market-clearing model is

thus

N U,Y( ) = N , (30)

for the exogenous number N .

The model could be closed by writing simply

Y = I , (31)

for an exogenous income I .  This would correspond to an assumption of absentee landlords for

the city.  More interesting is to divide the developer's profits equally among the city dwellers -- the

case of internal ownership (see Pines and Sadka (1986)).  Thus define

σ U,Y, N( ) = r

N
θ x( )

0

x U ,Y( )
∫ Π U,Y, x( )dx . (32)

The function σ  is interpreted as each household's share of the interest on the discounted value of

total profits from development in the city and is non-negative by construction.  Then the equation

Y = I + σ U,Y, N( ) (33)

can be adjoined to (30) to close the model.

We now examine the existence and uniqueness of equilibrium with internal ownership.
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The two equations which characterize any equilibrium that may exist are (30) and (33).13  The

functions N  and σ  appearing in these equations are defined by (29) and (32).  The various

functions that appear in these definitions can be obtained as follows.  One starts from the bid-rent

function of the demand-side model, P q,U,Y, x( )  (equations (3), (4), and (27)), and uses this in the

supply-side model to obtain solutions q0 , qT , T , µ , and Π , all functions of U,Y, x( ).  The city

boundary is located at radius x U,Y( ) given by (28).  Next, θ x( ) , the area of usable land per unit

radial displacement at radius x , is given exogenously, and must satisfy

(AS-8) The integral of the function θ x( ), θ y( )dy
0

x

∫ , tends to infinity with x ; in other 

words, there is an infinite amount of land area potentially available for 

development.  Also θ x( ) > 0 at all locations, except that θ 0( ) = 0.

Finally H U,Y, x( ) is derived from the demand-side model (equations (5), (6) and (7)).  Note the

absence of any dependence on q , because of (AS-2).

The natural way to proceed would appear to be to prove that the graphs of (30) and (33)

intersect (existence) only once (uniqueness) in U,Y( )  space.  For reasons that will be explained,

our method of proof of existence and uniqueness of equilibrium proceeds somewhat differently.

Unless noted otherwise, the signs of partial derivatives employed in the proof are obtained from

Tables 1 and 2.

Lemma 1: σY = 1
N

θ x( )
0

x Y ,U( )
∫ µ U,Y, x( )

H U,Y, x( )
dx = N U,Y( )

N
. (34)

Proof: Since Π U,Y, x( ) = 0 (see (28)), from (32)

σY = r

N
θ x( )

0

x U ,Y( )
∫ ΠY U,Y, x( )dx . (i)

Now consider ΠY .  To evaluate it, we must proceed through the function P .  We know that

13One may view (30) as characterizing equilibrium in the housing market, and (33) as an income =
expenditure condition.
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PY = 1 H > 0 , (see (4), (5), and (6)), and PqY = 0 (see (5) and (10)).  Consequently a shift in Y

gives rise to a parallel shift of the function P , as in the first of the comparative statics exercises in

section 3 (increase in χ ).  From that exercise , we know that ΠP = µ r , and consequently,

ΠY = µ rH .  (Also, from Section 3 or Table 2, µY > 0, but this does not provide a useful

expression for the derivative.)  Substitution of this expression for ΠY  into (i) and use of (29) gives

the stated result.À

Next, a lemma concerning σYY .

Lemma 2: NσYY U,Y, N( ) = NY U,Y( ) > 0 .

Proof: The equality in the result is immediate from Lemma 1.  Three facts demonstrate the

inequality.  First, we have seen that µY  is positive (see the proof of Lemma 1), and so the

numerator of the integrand in the expression (29) for N U,Y( )  is increasing in Y .  Second, since

HY < 0 from (5) and (7b), the denominator of the integrand in (29) is decreasing in Y .  Third,

since Πx  has the opposite sign to ΠY , which is positive, Πx  < 0.  But then from the definition of

x  in (28) it follows that xY > 0 , so that the upper limit of integration in (29) is increasing in Y .

This establishes what we wished to show.À

The next result we need is expressed in the following lemma:

Lemma 3: Under (AS-8), for fixed U , N U,Y( )  tends to infinity with Y .

Proof: The idea of the proof is the following.  We show that it is always possible for given

U  to attain a positive level of µ H  at location x = 0 by increasing Y  sufficiently.  Then we see

that this same level of µ H  can be attained, by further increasing Y , at any location x .  Since

µ H  does not decrease with Y , (AS-8) means that N Y,U( )  can be made to exceed any

prespecified bound by choosing Y  large enough.

Choose any q  in the interval 0, q̂( ) (recall (AS-4)) and some P > 0.  Set Y = E U, P,q( )
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for the given value of U .  Then, by the definition (27) of the bid-rent function, P = P q,U,Y,0( ) .

Now let us increase Y  keeping the other arguments of P  fixed at q,U,0( ) .  We know that

PY = 1 H > 0  (from (8) and (5)) and PYY > 0  (from (9) and (5)), which together imply that P

becomes indefinitely large with Y .  But, by part (iii) of (AS-1a), as P  tends to infinity, so does

expenditure on housing, P q,U,Y,0( )H U,Y,0( ) .  Since costs remain constant in this exercise, the

profit Π U,Y,0( )  must also become infinite with Y , at a rate at least as fast as that at which P

becomes infinite.  Now recall that PqY = 0, by (10), so that we are in the presence of a parallel shift

of the rent function.  From (21), therefore, we conclude that, for Y  large enough, the optimal

density µ  must be positive and bounded away from zero in order that Π  tend to infinity at least as

fast as P .  Finally, since H U,Y,0( ) is positive and decreasing in Y  (by (7b)), we see that, for

large enough Y , µ U,Y,0( ) H U,Y,0( )  is bounded away from zero.

To see that the above result holds for any x , it is enough to observe that by our

specification of the transportation cost function s x( ), in particular that it is finite for any finite x ,

there is always a finite increment in Y  which will exactly compensate in net income Z  for any

finite x .  As Y  tends to infinity, x U,Y( ) tends to infinity, and by (AS-8) so too does the land area

of the city.  Since population density is bounded away from zero at all settled locations, population

tends to infinity.À

A fourth lemma:

Lemma 4: For given Y  large enough and for any N > 0, σ Y,U, N( ) can be made to increase

indefinitely by decreasing U  sufficiently.

Proof: This result is a little more tricky than the preceding one, since we cannot use the

same comparative statics exercise with U  as with Y .  But it is still clear from (32) that what we

need is that Π U,Y, ′x( ) be unbounded above as U  decreases, where ′x  is fixed and positive,

satisfying αs ′x( ) < Y  (with the assumed properties of s x( ) (see (5)) this is always possible for

large enough Y ).  The next step is to ensure that there is always a U  small enough that, given Y ,
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construction would take place at ′x , that is, µ U,Y, ′x( ) > 0.  This last condition will be satisfied if

the bid rent at ′x  for housing of quality q̂  is high enough.  To see this, recall that, from (AS-1b),

PqU > 0 , so that decreasing U  makes the slope of the bid-rent curve less steep.  Thus, an increase

in the rent at quality q̂  caused by reducing U  entails greater increases at lower qualities.  Suppose

then that, if P q̂,U,Y, ′x( ) > P , it would be profitable to construct, that is µ U,Y, ′x( ) > 0.  But by

(AS-1a), for fixed q,Y, x( ) , we can always find a U  such that P q,U,Y, x( )  takes on any positive

value, however large.  Thus the entire bid-rent curve, over the full range 0, q̂( ), can be made to lie

above any prespecified value, by choosing U  low enough.  By arguments similar to those used in

the proof of Lemma 3, we find that Π U,Y, ′x( ) can be made indefinitely large, and thus also

σ U,Y, N( ) for Y  large enough and N > 0.À

Lemma 5: σU < 0.

Proof: Since PU < 0  for all q , an increase in U  causes the bid-rent curve to fall for all q ,

which implies that ΠU < 0.  Since Π U,Y, x( ) = 0 (see (28)), it then follows from (32) that

σU < 0.À

A remark is in order.  The assumption (AS-1a) is clearly critical for the proof of Lemma 4.

It is perhaps instructive to give an example in which equilibrium cannot exist in order to see what

the force of the assumption is.  Suppose that there were some minimum positive quantity of

housing that each household had to consume in order to survive.  This supposition is, as we

remarked in Section 2, incompatible with (AS-1a).  Suppose further that exogenous income I  is

so low that, even at the city center, the minimum rent required to make construction possible is

sufficiently high that a household's expenditure on housing would exceed I .  Then evidently no

equilibrium exists.  As we shall see, our proof of existence requires that it be possible to raise rents

arbitrarily high by decreasing utility.  This is not possible in the example, but is guaranteed by

(AS-1a).

Proposition 1: Under (AS-1) to (AS-8), when developers' profits are distributed equally
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among households residents in the city, equilibrium with a time-independent rent function exists

and is unique.14

Proof: Consider Figure 4, in which Y  is plotted as the independent variable and W  as the

dependent variable.  First, the 45¿ line W  = Y  is drawn.  The point on this line for which Y  = I  is

on that member of the family of loci

W = I + σ U,Y, N( ) (35)

for which U = U0 ≡ sup U µ U, I,0( ) > 0{ }, because for utility level U0  there is no construction at

location x = 0, and so none anywhere, so that σ U0 , I, N( ) = 0.  At this point we also have that

σY = N U,Y( ) N = 0 (Lemma 1), and so locus (35) with U = U0  is locally flat at Y  = I .  From

Lemmas 2 and 3, σYY > 0 and σY  increases without limit, and so the locus must cross the 45¿ line

for some finite Y  > I , and can do so only once, as shown in the Figure.

The conditions (30) and (33) for equilibrium will be satisfied if a value of U  can be found,

Ue  say, such that for that value the locus (35) has a point of tangency with the 45¿ line, W  = Y .

At this point of tangency, (33) is clearly satisfied.  For (30), note that the tangency means that the

slope of (35) must be unity.  The slope is just σY U,Y, N( ) , which by Lemma 1 is N Y,U( ) N ,

and so (30) is satisfied.

As U  varies for fixed N , (35) generates a one-parameter family of curves in the Y,W( )

plane, to the northeast of I, I( ), as depicted in the Figure.  Each of these curves has positive slope

(since σY > 0 ) and is convex (since σYY > 0).  Further, since σU < 0 (Lemma 5), for any pair of

loci the one corresponding to the lower utility level must lie strictly to the left of the other.  Also,

since by Lemma 4 σ  can be increased without limit by reducing U , there must exist some Û

14The reader may check that if we set µ  = 1 in the model and interpret H U,Y , x( )  as lot size, and Π U,Y , x( )
as the profit derived from land, then the proposition goes through with minor variations in the proof.  Such a
modified proposition provides a proof of existence and uniqueness of equilibrium in the classical Alonso model
extended to incorporate equal ownership of land by city residents.
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such that (35) with U  = Û  lies entirely above the 45¿-line.15  Finally, on account of continuity

considerations and the convexity of the loci, there must exist a unique Ue  such that (35) with U  =

Ue  is tangent to the 45¿-line.16À

We now derive an equation that is important for comparative static analysis, and briefly

investigate existence and uniqueness for the absentee landlord case.  From (4), (5), (6), (10)

(which incorporates (AS-2)), and Section 3, an increase in x  causes a change in P  that can be

characterized by a value of the shift parameter χ  equal to −α ′s x( ) H .  From (21), we have

Πx = −µα ′s x( ) rH . (36)

Substituting (36) into (29) yields

N U,Y( ) = −r
θ x( )

α ′s x( )








0

x U ,Y( )
∫ Πxdx . (37)

Integrating (37) by parts, as in Wheaton (1974), yields

N U,Y( ) = r ′Ω x( )
0

x U ,Y( )
∫ Π U,Y, x( )dx , (38)

where we have denoted θ x( ) α ′s x( )  by Ω x( ) , and used the facts that θ 0( ) = 0 and

Π U,Y, x U,Y( )( ) = 0 (see (28)).  Differentiating (38) with respect to U  gives

NU (U,Y) = r ′Ω x( )
0

x U ,Y( )
∫ ΠU U,Y, x( )dx , (39)

where we have again used Π U,Y, x U,Y( )( ) = 0.

It is very reasonable to make the following assumption:

(AS-9) ′Ω x( ) > 0, where Ω x( ) ≡ θ x( ) α ′s x( ).

15This is where (AS-1a) is crucial, since it is necessary to prove Lemma 4.
16It should now be apparent why we proved existence and uniqueness of equilibrium in Y ,W( )  space rather

than in Y ,U( ) space.  The proof used the result σYY > 0, which cannot be portrayed in Y ,U( ) space.
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For example, this assumption is clearly satisfied under the standard assumptions that θ x( ) = 2πx

(two-dimensional city with no gaps) and ′′s x( ) = 0 (linear transportation costs).  We now have

Lemma 6:  With (AS-1) to (AS-9), NU < 0 and σYU < 0 .  Further, N U,Y( )  and σY U,Y, N( )
can be made indefinitely large by decreasing U .

Proof:  The first statement follows immediately from (39), (AS-9), ΠU < 0, and Lemma

1.  The proof of the remainder is exactly analogous to the proofs of Lemmas 3 and 4.À

Proposition 2: Under (AS-1) to (AS-9), when profits go to absentee landlords, equilibrium

with a time-dependent rent function exists and is unique.

Proof: The equilibrium conditions are (30) and (31), and are satisfied at a point in the

Y,W( )  plane that lies on the vertical line Y = I  at which the slope of the locus (35) passing through

that point is unity (see Lemma 1).  That such a point exists and is unique follows from the

observations that at I, I( ) the slope is zero, and that as one decreases U  and moves up the line

Y = I  the slope increases without limit, since σYU < 0  and σY  tends to infinity as U  decreases, by

Lemma 6.À

5. COMPARATIVE STATICS IN THE MARKET-CLEARING MODEL

This section illustrates the derivation of comparative static results by treating the effects of

an increase in one of the shift parameters, non-rental income I .  An Appendix which is available

upon request treats shifts in four other shift parameters, N , α , δ , and RA .  All results are

summarized in Table 3 at the end of this section.

Wheaton (1974) presented the first comparative static analysis of a monocentric urban area

that used general functional forms.  He used the simplest urban model, in which household utility

depends on a composite good and land, addressed both open cities (utility fixed, population
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endogenous) and closed cities (population fixed, utility endogenous).  Brueckner (1987) added

housing and structural density to the model, thereby analyzing the comparative statics of the Muth

(1969) - Mills (1967, 1972) model, and generalizing their comparative static results, which

assumed particular functional forms.  Household utility depended on a composite good and

housing quantity.  Pines and Sadka (1986) extended Wheaton's work by examining a fully closed

city, in which land rents accrue to urban area residents rather than to absentee landlords, so that per

capita income is endogenous.  Our comparative static analysis incorporates all of these extensions.

In addition, it differs from the static models cited above by treating housing quality as well as

quantity, and incorporating a dynamic model in which maintenance and quality deterioration are

important elements.

A change in a shift parameter affects the solution Y,U( )  of the market-clearing model

(section 4).  We already know, from the demand-side and supply-side submodels, the changes in

other endogenous variables induced by changes in Y  and U , which are exogenous to these

submodels.  In general, as might be expected, most results are indeterminate.  However, assuming

(AS-2) and dµ
dγ < 0  for demolition-cycle paths (as described below) removes the indeterminacy of

many comparative-static results of the overall model (see Table 3).

In the remainder of this section comparative static derivatives with U  and Y  held constant

are designated by subscripts.  Comparative static derivatives with U  and Y  allowed to vary are

written in ordinary d dλ( ) notation, even though other shift parameters, and in some cases x  and

q , are being held constant.  The exception is that comparative static derivatives of P , with U  and

Y  allowed to vary in response to changes in shift parameters, are designated by partial derivatives,

so as to enable us to write mixed partial derivatives of P  with respect to x , q , and a shift

parameter.

Consider now an increase in I , with the other shift parameters  (N ,α,δ , and RA ) held

constant.  We first determine the effect of the increase in I  on the equilibrium values of U  and Y .
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We then consider how these changes in U  and Y  alter the rent function.  And finally we examine

how the perturbation of the rent function affects the developer's decision.

Lemma 7: Under (AS-1) to (AS-9), dU dI > 0 and dY dI > 0.

Proof: Equilibrium is characterized by the pair of equations (30) and (33).  Using Lemma

1, (30) can be rewritten as

σY U,Y;N( ) −1 = 0 (i)

Total differentiation of (i) and (33) gives

σYU

dU

dI
+ σYY

dY

dI
= 0 (40a)

dY

dI
= 1 + σU

dU

dI
+ σY

dY

dI
(40b)

Since σY −1 = 0 , from (40b) dU
dI = − 1

σU
> 0 (Lemma 5).  Then from (40a),

dY
dI = − σ YU

σ YY
( ) dU

dI = σ YU

σ YY σU
> 0 (Lemmas 2, 5, 6).À

The next lemma characterizes the perturbation in the rent function induced by the increases

in U  and Y .

Lemma 8: Under (AS-1) to (AS-9):

a) There exists an x1 ∈ 0, x( ) for which dΠ
dI = 0 , and a q1 ∈ qT x1( ),q0 x1( )( ) such that ∂P

∂I = 0 at

x1,q1( ).

b) There exists a function ϕ x,q( ) = 0 for which

i)  
∂P

∂I ϕ =0

= 0,
dx

dq ϕ =0

< 0, ϕ x1,q1( ) = 0

ii)  Below this function in x − q  space, 
∂P

∂I
< 0, 

∂ ∂P dI( )
∂x

> 0, 
∂ ∂P ∂I( )

∂q
> 0, 
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∂ 2 ∂P ∂I( )
∂x∂q

= 0.

iii)  Above this function, 
∂P

∂I
> 0, 

∂ ∂P ∂I( )
∂q

> 0, 
∂ 2 ∂P ∂I( )

∂x∂q
= 0, but 

∂ ∂P dI( )
∂x

 is of 

uncertain sign.

Proof: a)  From (38) and (30), we have

r ′Ω x( )
0

x U ,Y( )
∫ Π U,Y, x( )dx = N . (41)

Differentiating (41) with respect to I  and recalling (28) gives

r ′Ω x( )
0

x U ,Y( )
∫ dΠ U,Y, x( )

dI
dx = 0 . (42)

Since ′Ω x( ) > 0 by (AS-9), (42) implies that Π  must increase for some values of x  and decrease

for other values of x , or else be unchanged for all values of x .  Since dΠ ⋅( )
dI  is continuous in x ,

there must exist an x1 ∈ 0, x( ) such that dΠ U ,Y ,x1( )
dI = 0.  But then, since P q, x; I( )  is continuous in

q , there must exist a q1 ∈ qT x1( ),q0 x1( )( ) such that ∂P q1 ,x1 ;I( )
∂I = 0 .

b)  From (5), (6), and (8),

∂P q, x; I( )
∂x

= − α ′s x( )
h

. (43)

Consequently,

∂ ∂P q, x; I( ) ∂x( )
∂I

= α ′s x( )
h2







dh U, P,q( )
dI

.

Using the equality of mixed partials on the left-hand side and expanding the right-hand side,

∂ ∂P ∂I( )
∂x

= α ′s x( )
h2







hU

dU

dI
+ hP

∂P

∂I




 . (44)

From Table 1, hU > 0 and hP < 0; from Lemma 7, dU
dI > 0; and from above ∂P

∂I = 0 at x1,q1( ).
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Thus, viewing (44) as an ordinary differential equation with dependent variable ∂P ∂I  and

independent variable x , we have that

∂ ∂P ∂I( )
∂x

> 0 for x,q( ) such that 
∂P

∂I
≤ 0. (45)

Remembering that P q, x, I( )  can be expressed as the bid rent function P q,U, Z( ) , and using (5),

we see that

∂ ∂P q, x; I( ) ∂I( )
∂q

=
∂ ∂P q, x; I( ) ∂q( )

∂I
= PqU

dU

dI
+ PqZ

dZ

dI
. (46)

From Lemma 7 and the Pqλ  row of Table 1, it follows that under (AS-2)

∂ ∂P q, x; I( ) ∂I( )
∂q

> 0 for all x,q. (47)

Eqs. (45) and (47) establish that the locus of x,q( ) for which dP
dI = 0 , ϕ x,q( ) = 0, is negatively-

sloped in x − q  space.  This establishes i).

From (47), ∂P
∂I < 0  below ϕ x,q( ) = 0 in x − q  space and ∂P

∂I > 0  above the locus.  The

former result, along with (45), implies that ∂ ∂P ∂I( )
∂x > 0 below ϕ x,q( ) = 0.  Furthermore, since

Pqx = 0 under (AS-2),

∂ 2 ∂P ∂I( )
∂x∂q

=
∂Pqx

∂I
= 0. (48)

These results together with (47) itself establish ii).  For x,q( ) above ϕ x,q( ) = 0 an analogous

argument -- except that (45) does not apply since ∂P
∂I > 0  in this region -- establishes iii) À

Among the consequences of Lemma 8 is the following corollary.

Corollary 1:    Suppose that x1  and q1 are defined as in part a of Lemma 8.  It follows directly

from part b of Lemma 8 that
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a)  
∂P

∂I
< 0 at any point q, x( ) which satisfies q ≤ q1 and x ≤ x1, with at least one of the 

inequalities being strict.

b)  
∂P

∂I
> 0 at any point q, x( ) which satisfies q ≥ q1 and x ≥ x1, with at least one of the 

inequalities being strict.

We now consider how this perturbation of the rent function affects housing demand.

Lemma 9: Under (AS-1) to (AS-9), dH
dI > 0 for all x  for which ∂P

∂I < 0  for some quality level.

Proof:  From (6)

dH

dI
= dh

dI
= hU

dU

dI
+ hP

dP

dI
. (49)

Using (AS-2), if dH
dI > 0 at x  for some q , then dH

dI > 0 at x  for all q .  And from Lemmas 7 and 8,

as well as hU > 0 and hP < 0, and dH
dI > 0 if ∂P

∂I < 0 . À

We now turn to the supply-side submodel.  From (47), at each location the increase in I

steepens the rent function with respect to quality.  This implies that if dΠ
dI = 0  at x , then the

perturbation in the rent function corresponds to χ = 0 and γ > 0; if dΠ
dI < 0 at x , then χ < 0  and

γ > 0; and if dΠ
dI > 0 at x , then χ > 0  and γ > 0.  Then we can apply the supply-side comparative

static results given in Table 2.  Thus, a crucial step is to characterize dΠ
dI  as a function of x .

Unfortunately, except for a couple of situations which we shall identify, the spatial pattern of dΠ
dI

appears to be ambiguous.

Lemma 10: Under (AS-1) to (AS-9), if there is an x1  for which dΠ
dI = 0 , and for which a stable-

arm path is profit-maximizing, and if a stable-arm path is profit-maximizing at all locations

between x  and x1 :

a)  If x= x1 , then at x : 
dΠ
dI

= 0, 
dµ
dI

< 0, 
dq0

dI
> 0, and 

dqT

dI
> 0
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b)  If x< x1 , then at x : 
dΠ
dI

< 0 , 
dµ
dI

< 0, 
dq0

dI
> 0, and 

dqT

dI
> 0

c)  If x> x1 , then at x : 
dΠ
dI

> 0 , 
dµ
dI

?, 
dq0

dI
?, and 

dqT

dI
> 0

Proof: a) The change in P q( ) at x  can be characterized by a shift in the rent function

γ > 0.  The stated result then follows from Table 2.

b) c) Now

d dΠ dI( )
dx

=
d Πx( )

dI

      = − α ′s x( )
r

1
H

dµ
dI

− µ
H2

dH

dI




 , (50)

where (36) is used to obtain the second equality.  At any x  for which dΠ
dI = 0 , dµ

dI < 0  (proof to part

a)), and dH
dI > 0 (Lemma 9, noting that dP

dI < 0 at some quality level).  Thus, at any such x ,

d dΠ dI( )
dx > 0.  This establishes that dΠ

dI < 0 for x< x1  and dΠ
dI  > 0 for x> x1 .  The rest of the lemma

follows from the changes in P q( ) implied by the sign of dΠ
dI , as noted above, and γ > 0, along

with the results from Table 2.  À

The principal difficulty in establishing more general results stems from the ambiguity in

the sign of dµ
dγ  for the demolition cycle trajectory -- in the normal case, dµ

dγ < 0 , but it can be

positive.  To obtain more general results, we assume the normal case to apply:17

17Another way to obtain more general results is to assume that structural density is fixed and constant over
location.  With this assumption:

¯ There is a unique x , x1 ∈ 0, x( ), for which dΠ
dI = 0  and dΠ

dI
>=< 0  as x >=< x1  (same line of argument used to

prove Lemma 10).

¯ dX
dλ = ∂X

∂λ  for X = q0 , qT ,T( ) and λ = χ, γ  (the signs of ∂X
∂λ  are given in Table 2).

To obtain the comparative static derivatives, proceed in the by-now-familiar way.  For example, in the

calculation of 
dq0

dI  for x < x1:  The rent gradient changes  in a way characterized by γ > 0 and χ < 0 .  Since
∂q0

∂χ = 0 and 
∂q0

∂γ > 0 , whether the optimal path is a stable-arm path or a demolition-cycle path, 
dq0

dI > 0 .
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(AS-10) When a demolition-cycle path is profit-maximizing, dµ
dγ < 0 .

Lemma 11: Under (AS-1) to (AS-10):

a) There is a unique x , x1 ∈ 0, x( ), for which dΠ
dI  = 0 and dΠ

dI
>=< 0  as x >=< x1 .

b) If there is a stable-arm trajectory at x :

¯ if x≤ x1 , 
dµ
dI

< 0, 
dq0

dI
> 0, 

dqT

dI
> 0

¯ if x> x1 , 
dµ
dI

?, 
dq0

dI
?, 

dqT

dI
> 0

c) If there is a demolition-cycle trajectory at x :

¯ if x≤ x1 , 
dµ
dI

< 0 (by (AS-10), 
dq0

dI
?, 

dqT

dI
> 0

¯ if x> x1 , 
dµ
dI

?, 
dq0

dI
?, 

dqT

dI
?

d)
dx

dI
> 0

Proof:  a)  Follows from Lemma 8a and the same line of argument used to prove Lemma 10.

b)  Follows from the same line of argument used to prove Lemma 10.

c)  Follows from the same line of argument used to prove Lemma 10, except that the relevant

comparative static derivatives drawn from Table 2 are those for a demolition-cycle path.

d)  dx
dI  has the same sign as dΠ

dI x
 which is positive by a) since x > x1 .  À

Table 3 summarizes the comparative statics of the model, with respect to changes in I

(derived above) and changes in N ,α,δ , and RA  (derived in an Appendix, which is available on
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request).18  Throughout the table, (AS-1) to (AS-9) is assumed.  Many results are ambiguous in

general, though more may be signed if (AS-10) is employed.

6. SUMMARY AND CONCLUDING COMMENTS

In this paper we have investigated the properties of stationary-state general equilibrium in a

monocentric city in which, on the demand side, identical households choose location, housing

quality and quantity, and other goods, while on the supply side, developers choose the structural

density and time path of quality of buildings.  Employing a restrictive assumption on preferences,

we proved existence and uniqueness of equilibrium, and determined its comparative static

properties.

Most comparative static derivatives were ambiguous (most of those that are signed in

Table 3 are signed on the basis of restrictive assumptions).  This paucity of unambiguous

comparative static results indicates that the conceptual framework is consistent with a wide range

of market behavior.  That the qualitative behavior of the housing market depends on the form of

the technology and of tastes is to be expected.

One lesson from the paper is that, with depreciation of durable housing in a spatial model,

some restrictive assumption is needed to prove the existence of a stationary-state equilibrium.

Such a restrictive assumption is necessary to ensure stationary behavior, as opposed to cycles, for

instance, in a stationary environment.  Put alternatively, restrictive assumptions are needed to

18Pines and Sadka (1986) used a static model in which households demand land rather than housing.  We
could reformulate our model to allow households to construct their own housing using the composite good and
land.  We could then define a reduced-form utility function over the composite good, land, and location, where
the location variable captures the spatial variation in the cost of producing structure on the land.  (See a
related discussion in footnote 10 of Brueckner (1983).)  Under (AS-2), and with µ  fixed and independent of

location, the cost of producing structure is independent of location (since q0 , qT , T , m t( )  and µ  are

independent of location), and so the reduced form of our model is equivalent to the model of Pines and Sadka.
In fact, the comparative static results in our Table 3 concerning U , Y , and x  are identical to those in Table 1
of Pines and Sadka concerning u , Y , and x .  Arnott, Pines and Sadka (1986) used the same model as Pines
and Sadka (1986) and focused on the comparative static effects of an increase in α .
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convert the problem, which is essentially dynamic, into one that is amenable to static equilibrium

analysis.  This suggests to us that the model has been developed to the point at which non-

stationary-state dynamic analysis is appropriate.

Since the qualitative properties of the stationary model depend on the form of the

technology and tastes, the range of qualitative behavior of any dynamic extension is likely to be

very wide.  Thus, quantitative analysis with careful estimation of the model's parameters will be

necessary in any practical policy application.  Furthermore, since a descriptively satisfactory model

(with tenure choice, moving costs, multiple household groups, etc.) will be complex, simulation

supplemented with partial analysis of the model's components would seem the most promising

approach.  Work along these lines is in progress (e.g. Anas and Arnott (1991)).

Finally, we should emphasize that our model assumes the housing market to be perfectly

competitive.  However, many features of housing markets (vacancy rate adjustment, search and

moving costs, imperfect capital markets, etc.) are inconsistent with perfect competition.

Consequently, some housing economists and many housing experts who are not economists argue

that policy analysis based on competitive models of the housing market may be seriously

misleading.  We are agnostic, but believe that there is value to constructing sophisticated

competitive models whose performance can be tested against non-competitive models as they are

developed.19

19The development of non-competitive models of the housing market is in its infancy.  For a review of the
relevant literature, see Arnott (1987).
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Notational Glossary

(in alphabetical order with Roman symbols preceding Greek)

C,c Hicksian composite  of non-housing goods

E expenditure function

F cumulative distribution of building ages

g depreciation function

H floor space

  H Hamiltonian

I exogenous non-rental income

J present value of rent minus maintenance cost from a building

K construction costs

  l rent shift function

m maintenance

N population

N exogenous population

P housing rent

q quality

q̂ given quality level

q0 construction quality

qT terminal quality

Q quantity of housing

r interest rate

RA opportunity rent on land

s transport cost

t time
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T maximum building age

U,u utility

x distance from city center

x outer boundary of residential settlement

W artificial variable

X = q0 ,qT ,T( )
Y total income

Z income net of transportation costs

α transportation cost shift parameter

β parameter

γ housing rent shift parameter

δ construction cost shift parameter

θ residential area

λ generic exogenous parameter

µ floor area ratio, structural density

Π profit per unit area of land (differential land value)

σ amortized differential land value per household

τ building age

φ co-state variable in developer’s problem

χ housing rent shift parameter
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For H q,U, Z( )  and P q,U, Z( ) :

λ q U Z ≡ Y − αs x( ) Y x

Hλ

?

(0 with (AS-

2))

+ - - +

Pλ + - + + -

PZλ

?

(0 with (AS-

2))

- + + -

Pqλ ?
+

(by (AS-1b))

?

(0 with (AS-2))

?

(0 with (AS-2))

?

(0 with (AS-2))

and for h U, P,q( ): hU > 0, hP < 0, and hq  ?

Table 1:  Signs of partial derivatives from the demand-side submodel
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T  finite T  infinite

λ χ γ δ RA χ γ δ RA

∂q0

∂λ 0 + ? 0 0 + + 0

∂qT

∂λ 0 + + 0 0 + 0 0

∂T

∂λ 0 ? ? 0 n.a. n.a. n.a. n.a.

dq0

dλ ? ? 0 0 - + 0 0

dqT

dλ - (+) 0 0 0 + 0 0

dT

dλ ? ? 0 0 n.a. n.a. n.a. n.a.

dµ
dλ + (-) + 0 + - + 0

dΠ
dλ + 0 + - + 0 + -

Notes:  1.  ∂q0

∂λ  denotes the change in q0  corresponding to a change in λ , holding µ  fixed.  dq0

dλ

denotes the same change, but with µ  changing endogenously.  Etc.

2.  (-) indicates that the derivative is negative under the assumption that dµ
dγ < 0  for a

demolition-cycle path (AS-10) but is ambiguous in sign when this assumption is relaxed.

Table 2:  Signs of derivatives from the supply-side submodel
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I N f α δ RA

1.    U + - - + -

2.    Y + ? ? ? ?

3.    x (+) ? (-) ? (-)

4.    π x1( )b
0 n.a. (0) 0 0

5.    π 0( ) (-) (+) (+) ? (+)

6.    π x( ) (+) ? (-) ? (-)

7.    P q1, x1( )c
0 n.a. (0) - +

8.    P q3, x3( )d
- n.a. (+) - +

9.    P q4 , x4( )e
+ n.a. (-) ? ?

10.   µ 0( ) (-) (+) (+) ? (+)

11.   µ x( ) ? ? ? ? ?

12.   H q, x1( ) + n.a. (-) + -

13.   H q,0( ) (+) (-) (-) ? (-)

14.   H q, x( ) ? ? ? ? ?

15.   qT 0( ) (+) (-) (-) ? (-)

16.   qT x( ) ? ? ? ? ?

Table 3: Comparative Statics Results

Notes:

a.  Throughout the table, + indicates that the comparative static derivative of the variable in the left

margin with respect to the parameter in the top margin is always positive under (AS-1) through
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(AS-9), whereas (+) indicates that the derivative is ambiguous but is always positive if (AS-10) is

imposed as well.  The symbols -, (-), 0, and (0) are defined analogously.

b.  In row 4, the entry 0 means that there is a value of x  between 0 and x , designated x1 , for

which Π  is unchanged.  In each column, the value of x1  (which generally differs among

columns), depends on all of the exogenous parameters and functions of the model.  Whenever

there is ambiguity in rows 5 and 6, such as in the I  column when (AS-10) is not imposed, it is

possible that there is more than one value of x  for which Π is unchanged.

c.  In row 7, the entry 0 means that at x1  (or at each value of x1  if it is not unique), there is a unique

value of q , designated q1, for which P  is unchanged.  The entry + means that at x1 , there are

values of q , one of which is designated q1, for which P  increases.  Analogously for the entry -.

d.  In row 8, the entry + means that P  increases at any point q3, x3( ) which satisfies q3 ≤ q1 and

x3 ≤ x1, with at least one of the inequalities strict.  Analogously for the entry -.

e.  In row 9, the entry + means that P  increases at any point q4 , x4( ) which satisfies q4 ≥ q1 and

x4 ≥ x1 , with at least one of the inequalities strict.  Analogously for the entry -.

f.  In the N  column of the table, rows 4, 7-9, and 12 are marked n.a. (not applicable) since it is not

necessarily possible to find a value of x , designated x1 , for which Π  is unchanged.  There are

always values for x  for which Π  increases, under (AS-1) through (AS-9), and it is possible that

Π  may increase for all values of x .  Also, there are always values of q  and x  for which P

increases, under (AS-1) through (AS-9).

g.  The comparative static derivatives of T , q0 0( ) , and q0 x( )  are not recorded since they are all

ambiguous.

h.  Additional comparative static derivatives can be signed if additional assumptions are made,

such as (i) at all settled locations the optimal trajectory is a stable arm, or (ii) structural density is

fixed.  The paper contains all of the information needed to sign the derivatives under these

alternative assumptions.
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φ
φ̇ = 0

φ = Kq µ

B

q

q̇ = 0

A

S

D

G

O F qS ′C

C
W

H

Figure 1:   Phase plane for the developer’s problem
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∂qO ∂γ > 0,  ∂qT ∂γ > 0

φ
φ = Kq µ

qO F D qo
E qo

C

E 

C 

Figure 2:   Demonstration that                                          on a 
construction-demolition cycle 
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Figure 3:   Demonstration that                                                on
a stable arm path

∂qO ∂γ > 0  and ∂qT ∂γ > 0

φ

φ = Kq µ

qO

S

S’

G

H

q̇ = 0
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W

YO

W = Y

W = I + σ U0 ,Y, N( )

W = I + σ Ue ,Y, N( )

W = I + σ Û,Y, N( )

U0 > Ue > Û

Figure 4:   Proof of existence and uniqueness of equilibrium
with internal ownership

I
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NOT FOR PUBLICATION

APPENDIX

The comparative static analysis for N ,α,δ , and RA  proceeds in much the same way as for

I .

1.  N

Lemma A1: Under (AS-1) to (AS-9), dU
dN

< 0  and dY
dN

?

Proof: Equilibrium is characterized by the pair of equations (30) and (33).  Using Lemma

1, (30) can be rewritten as

σY U,Y, N( ) −1 = 0 (i)

Total differentiation of (i) and (33) gives

σYU

dU

dN
+ σYY

dY

dN
+ σ

YN
= 0 (A.1a)

dY

dN
= σU

dU

dN
+ σY

dY

dN
+ σ

N
(A.1b)

From Lemma 1, σ
YN

= − σ Y

N
 which equals − 1

N
 at equilibrium.  From (32), σ

N
= − σ

N
.  From

(A.1b) and (i), dU
dN

= − σ
N

σU
< 0 (using Lemma 5).  Then from (A.1a)

dY

dN
= − 1

σYY

σ
YN

−
σYUσ

N

σU







        = 1
NσYY

1 − σYU

σU







(A.2)

which is of ambiguous sign ( σYY > 0 (Lemma 2), σYU < 0  (Lemma 6), σU < 0 (Lemma 5)).  À

These results are intuitive.  A rise in population makes land more expensive, causing
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differential land rents to rise.  But whether differential land rents rise more or less than

proportionally to the rise in population depends on the elasticities of substitution between land and

capital in the production of housing, and between housing and other goods in consumption.

Lemma A2: Under (AS-1) to (AS-9):

a)  If dY
dN

> 0 , then ∂P
∂N

> 0  for all values of x  and q .  Consequently, dΠ
dN

> 0  for all x ∈ 0, x[ ) and x

increases.

b)  If dY
dN

< 0 , there are two possibilities.  Either dΠ
dN

> 0  for all x ∈ 0, x[ ) and x  increases.  Or there

is an x1 ∈ 0, x[ )  for which dΠ
dN

= 0 and a pair x1,q1( ) for which ∂P
∂N

= 0.  Under the latter possibility,

there exists a function ϕ x,q( ) = 0 for which

i)
∂P

∂N ϕ =0

= 0, 
dx

dq ϕ =0

< 0, ϕ x1,q1( ) = 0

ii) Below the function in x − q  space, 
∂P

∂N
> 0, 

∂ ∂P ∂N( )
∂x

< 0, 
∂ ∂P ∂N( )

∂q
< 0, 

∂ 2 ∂P ∂N( )
∂x∂q

= 0

iii) Above ϕ x,q( ) = 0, 
∂P

∂N
< 0, 

∂ ∂P ∂N( )
∂q

< 0, 
∂ 2 ∂P ∂N( )

∂x∂q
= 0 but 

∂ ∂P ∂N( )
∂x

 is of 

uncertain sign.

Proof:

a)  ∂P q,U ,Z( )
∂N

= PU
dU
dN

+ PZ
dY
dN

> 0 (using Lemma A1 and the results from Table 1).  Then dΠ
dN

> 0  for

all x ∈ 0, x[ ) since the developer can do at least as well as pursue the program that was optimal

prior to the population increase.  Since Πx < 0 and Π x( ) = 0, x  must increase.

b)  Differentiating (41) with respect to N  gives

r ′Ω x( )
0

x U ,Y( )
∫ dΠ U,Y, x( )

dN
dx = 1 ` (A.3)
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Then either dΠ
dN

 increases for all x ∈ 0, x[ ) and x  increases.  Or dΠ
dN

 increases for some values of x

and decreases for others.  Then by continuity, there is an x1 ∈ 0, x[ )  for which dΠ
dN

= 0 and a pair

x1,q1( ) for which ∂P
∂N

= 0.  Proceeding as in Lemma 8

∂ ∂P ∂N( )
∂x

= α ′s x( )
h2 hU

dU

dN
+ hP

∂P

∂N




 . (A.4)

From Table 1, hU > 0 and hP < 0; and from Lemma A1, dU
dN

< 0 .  Thus,

∂ ∂P ∂N( )
∂x

< 0 for x,q( ) such that 
∂P

∂N
≥ 0. (A.5)

Analogously to (46)

∂ ∂P ∂N( )
∂q

=
∂ ∂P ∂q( )

∂N
= PqU

dU

dN
+ PqZ

dZ

dN
. (A.6)

From Lemma 7 and the Pqλ  row of Table 1, it follows that under (AS-2)

∂ ∂P ∂N( )
∂q

< 0 for all x , q . (A.7)

Eqs. (A.5) and (A.7) together imply that the locus of x,q( ) for which ∂P
∂N

= 0, ϕ x,q( ) = 0, is

negatively-sloped in x - q  space.  This establishes bi) of the Lemma.

From (A.7), ∂P
∂N

> 0  below ϕ x,q( ) = 0 in x - q  space; and ∂P
∂N

< 0  above the locus.  The

former result, along with (A.5), implies that 
∂ ∂P ∂N( )

∂x < 0 below ϕ x,q( ) = 0.  But above the locus,
∂ ∂P ∂N( )

∂x  cannot be signed.  Finally, since Pqx = 0 by (AS-2), 
∂ 2 ∂P ∂N( )

∂x∂q = ∂Pqx

∂N
= 0 .  À

Lemma A3: Under (AS-1) to (AS-9), dH
dN

< 0  for all x  for which ∂P
∂N

> 0  for some quality level.

Proof: Same structure as the proof to Lemma 9.  À

We now turn to the supply-side submodel.  There are two cases to consider.  In the first,
dΠ
dN

> 0  for all x ∈ 0, x[ ).  Along with (A.7), this implies that the perturbation in the rent gradient
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can be decomposed into shifts χ  > 0 and γ  < 0.  In the second, dΠ
dN

 is negative for some x ∈ 0, x[ )

and positive for others.  Applying an analogous argument to that which was employed to prove

Lemma 10, it can be shown that under (AS-10) dΠ
dN

>=< 0 as x <=> x1 , where x1  is the sole location at

which dΠ
dN

= 0.  Thus, the perturbation in the rent gradient entails γ  < 0 and χ >=< 0 as x <=> x1 .

Combining the results for the two cases establishes that at x  = 0, γ  < 0 and χ  > 0, while at

x = x , γ  < 0 and χ ?.  Computing the corresponding signs for dµ
dN

, dq0

dN
, and dqT

dN
 for the stable-arm

and demolition-cycle cases is left to the reader.

2.  α

Lemma A4: Under (AS-1) to (AS-9), dU
dα < 0 and dY

dα ?

Proof: Equilibrium is characterized by σY U,Y;α( ) −1 = 0 and Y = I + σ U,Y;α( ) .  Total

differentiation yields

σYU

dU

dα
+ σYY

dY

dα
+ σYα = 0 (A.8a)

σU

dU

dα
+ σY −1( ) dY

dα
+ σα = 0 (A.8b)

Thus, dU
dα = − σ α

σU
= sgn σα( )  since σU < 0 (Lemma 5), and dY

dα = − 1
σ YY

σYα + σYU
dU
dα( )

= − 1
σ YY

σYα − σ YU σ α
σU

( ).  To determine the signs of dU
dα  and dY

dα , we need to obtain expressions for σα

and σYα .  It will prove convenient to make a transformation of variables from x  to υ , where

υ = αs x( ) is transport cost distance.  Then

x = s−1 υ
α





 ≡ ŝ

υ
α





 , where ˆ′s > 0. (A.9a)

Since Φ x( ) = Φ ŝ υ
α( )( ) ,

θ x( )dx = 1
α

ˆ′s θ ŝ
υ
α













dυ . (A.9b)
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Also since Π U,Y, x;α( ) = Π U,Y − αs x( )( ) = Π̂ U,Y − υ( ),

Π̂υ = −ΠY . (A.9c)

And the boundary, υ U,Y( ) , is given implicitly by

Π̂ U,Y − υ U,Y( )( ) = RA . (A.9d)

Note that α  enters neither Π̂ ⋅( ) nor υ ⋅( ).  Now, from (32),

σ = r

N
θ x( )Π U,Y, x;α( )

0

x U ,Y ;α( )
∫ dx

    = r

N

1
α0

υ U ,Y( )
∫ ˆ′s

υ
α





θ ŝ

υ
α













Π̂ U,Y − υ( )dυ (A.10)

after making the transformation of variables.  Integration of (A.10) by parts yields

σ = r

N
Φ ŝ

υ
α













Π̂





0

υ

− Φ ŝ
υ
α













Π̂υdυ
0

υ

∫












    = − r

N
Φ ŝ

υ
α













Π̂υ0

υ

∫ dυ . (A.11)

Recalling that α  enters neither Π̂  nor υ , and that −Π̂υ = ΠY = µ
rH ,

σα = − r

N
ˆ′s

υ
α 20

υ

∫ θ υ
α







µ
rH

dυ < 0 (A.12)

σαY = − r

N
ˆ′s

υ
α 2 θ υ

α






µ
rH





 υ

υY

           − r

N
ˆ′s

υ
α 20

υ

∫ θ υ
α







d µ
rH( )

dY
dυ < 0 (A.13)

since υY > 0 and 
d µ

rH( )
dY = µ Y

rH − µ
rH 2 HY > 0  (Tables 1 and 2).  Thus, dU

dα < 0 and dY
dα = − 1

σ YY

σYα − σ YU σ α
σU

( ) is of uncertain sign (using Lemmas 2,5, and 6).  À
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This result too accords with intuition.  Land effectively becomes scarcer (the amount of

land within any transport cost distance falls) and whether differential land rents rise or fall depends

on the relevant elasticities of substitution.

Intuitively, one expects an equiproportional increase in transport costs in a closed city to

increase the profitability of housing at more central locations and to lower its profitability at more

distant locations.  However, we have been unable to rule out the curious possibility that the

profitability of housing increase at all locations.  The mechanism which generates this curiosum is

as follows:  Because of the fall in utility, the rent gradient as a function of quality flattens (γ  < 0).

In the normal demolition-cycle case, this effect by itself causes structural density to rise.  But if,

abnormally, it causes structural density to fall and by sufficiently much to offset the reduced

housing demand caused by higher rents and transport costs, the city area has to expand to

accommodate the population, requiring that the profitability of housing increase at the city's

boundary.  This curiosum can be circumvented by assuming (AS-10).

Lemma A5: Under (AS-1) to (AS-10):

a)  There exists an x1 ∈ 0, x[ )  for which dΠ
dα = 0 , and a pair x1,q1( ) for which dP

dI = 0 .

b)  There exists a function ϕ α ,q( ) = 0 for which

i)  
∂P

∂I ϕ =0

= 0,
dx

dq ϕ =0

< 0, ϕ x1,q1( ) = 0

ii)  Below this function, 
∂P

∂α
> 0,

∂ ∂P ∂α( )
∂q

< 0,
∂ ∂P ∂α( )

∂x
< 0, and 

∂ 2 ∂P ∂α( )
∂x∂q

= 0.

iii)  Above the function, 
∂P

∂α
< 0,

∂ ∂P ∂α( )
∂q

< 0,
∂ 2 ∂P ∂α( )

∂x∂q
= 0, while 

∂ ∂P ∂α( )
∂x

 is

of uncertain sign.

Proof:
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a)  From (41),

r ′Ω x( )
0

x U ,Y( )
∫ Π U,Y, x( )dx = N .

Differentiation with respect to α , recalling that Ω x( ) = θ x( )
α ′s x( )  and ′Ω x( ) = 1

α
′θ
′s − θ ′′s

′s( )2( ) > 0 by

(AS-9), yields

r ′Ω dΠ
dα0

x U ,Y( )
∫ dx − N

α
= 0, (A.14)

which implies that dΠ
dα > 0 for some x ∈ 0, x[ ).

Next we prove that dΠ
dα  is not positive for all x ∈ 0, x[ ).  Suppose the contrary.  Then since

∂ ∂P ∂q( )
∂α = PqU

dU
dα < 0 (using PqU > 0  and dU

dα < 0), the increase in α  causes a perturbation of the rent

gradient characterized by χ  > 0 and γ  < 0.  Then by the results of Table 2, augmented by (AS-

10), dµ
dα > 0 for x ∈ 0, x[ ), whether the optimal path is a stable-arm path or a demolition-cycle path.

Also, dH
dα < 0 for x ∈ 0, x[ ).  To establish this, recall (49), dH

dα = hU
dU
dα + hP

dP
dα  with hU > 0, dU

dα > 0,

hP < 0, and dP
dα > 0 for at least some q  (since dΠ

dα  > 0).  Thus, dH
dα < 0 for at least some q  for

x ∈ 0, x[ ), which implies dH
dα < 0 for all q  for x ∈ 0, x[ ) by (AS-2).  Thus, we have a situation

where, relative to the initial situation, housing supply expands (housing supply at each location

increases and the area of the city expands since dΠ
dα > 0 elsewhere) but housing consumption

contracts, which is inconsistent with equilibrium.  This establishes part a) of the Lemma.

The proof to part b) follows from:  ∂P
∂x = − α ′s x( )

h ; ∂ ∂P ∂α( )
∂x = ∂ ∂P ∂x( )

∂α = − ′s x( )
h + α ′s

h2
dh
dα

= − ′s
h + α ′s

h2  hUUα + hPPα( ) which is negative if Pα > 0 and of ambiguous sign otherwise;

∂ ∂P ∂α( )
∂q = ∂ ∂P ∂q( )

∂α = PqU
dU
dα < 0; and ∂ 2 ∂P ∂x( )

∂x∂q = ∂ ∂ 2 P ∂x∂q( )
∂α = 0 .  À

Lemma A6: Under (AS-1) to (AS-10):

a) There is a unique x , x1 ∈ 0, x[ )  for which dΠ
dα  = 0 and dΠ

dα
>=< 0  as x <=> x1 .

b) If there is a stable-arm trajectory at x :
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¯  if x ≤ x1, 
dµ
dα

> 0,
dq0

dα
< 0,

dqT

dα
< 0

¯  if x > x1, 
dµ
dα

?,
dq0

dα
?,

dqT

dα
< 0

c) If there is a demolition-cycle trajectory at x :

¯  if x ≤ x1, 
dµ
dα

> 0 (by AS-10), 
dq0

dα
?,

dqT

dα
< 0

¯  if x > x1, 
dµ
dα

?,
dq0

dα
?,

dqT

dα
?

d)
dx

dα
< 0

Proof:

a)  Now

d dΠ dα( )
dx

= dΠx

dα
= − ′s x( )µ

rH
− α ′s x( )

r

1
H

dµ
dα

− µ
H2

dH

dα






At any x  for which dΠ
dα  = 0, dµ

dα  > 0 (since χ  = 0 and γ  < 0, and using (AS-10), dH
dα  < 0 (proof of

Lemma A5).  Thus, at any such x , d dΠ dα( )
dx  < 0, which establishes that dΠ

dα  > 0 for x < x1 and dΠ
dα  <

0 for x > x1.

b) c) d)  The rest of the lemma follows from the changes in P q, x( )  implied by the sign of dΠ
dα , as

noted above, and  γ  < 0, along with the results from Table 2.  À

Finally, note that ∂H
∂α  < 0 for all x  for which ∂P

∂α  > 0 for some quality level.

3. δ

Lemma A7: Under (AS-1) to (AS-9), dU
dδ > 0 and dY

dδ ?
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Proof: Proceeding as in the other comparative static derivations, sign dU
dδ( ) = sign σδ( ),

while dY
dδ = −1

σ YY
σYδ − σ YU σ δ

σU( ) .

Now, from (32)

σ = r

N
θ x( )

0

x U ,Y ;δ( )
∫ Π U,Y, x;δ( )dx .

Thus

σδ = r

N
θ x( )

0

x U ,Y ;δ( )
∫ Πδ U,Y, x;δ( )dx > 0 (Table 2). (A.15)

Also, since ΠY = µ
rH ,

σYδ = 1
N

θ x( ) µ
H x

xδ + θ x( ) µδ

H
− µ

H2 Hδ




0

x U ,Y ;δ( )
∫








> 0. (A.16)

xδ > 0  since with utility and income fixed, rent remains the same so that a decrease in construction

costs causes profits to rise; with U , Y , and x  fixed, H  is unaffected by δ , and µδ > 0 from

Table 2.  Combining these results with σYY > 0 (Lemma 2), σU < 0 (Lemma 5), and σYU < 0

(Lemma 6) completes the proof.  À

Again the result is intuitive.  Since all "profits" accrue to residents, an improvement in the

construction technology makes them better off.  And whether the technological improvement,

which reduces the cost of capital, causes the return to land to increase or decrease depends, inter

alia, on the elasticities of substitution between land and capital in housing production and between

housing and other goods in consumption.

Lemma A8: Under (AS-1) to (AS-9):

a) There exists an x1 ∈ 0, x[ )  for which dΠ
dδ  = 0

b) dH
dδ  > 0 for all x  for which ∂P

∂δ  < 0 for some quality level
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Proof:   a)  From (41)

r ′Ω x( )
0

x U ,Y( )
∫ Π U,Y, x;δ( )dx = N .

Differentiation with respect to δ  yields

r ′Ω x( )
0

x U ,Y( )
∫

dΠ U,Y, x;δ( )
dδ

dx = 0 (A.17)

Since Π ⋅( ) is continuous, and since dΠ
dδ  must be positive for some x ∈ 0, x[ ) and negative for other

x , there must be an x  for which dΠ
dδ  = 0.

b)  The argument is completely analogous to that used to prove Lemma 9.  À

Lemma A9: Under (AS-1) to (AS-9)

a)  Housing rent may either fall at all settled locations or may rise at some locations and fall at

others.

b)  i)  ∂ ∂P ∂δ( )
∂x = α ′s

hs hU
dU
dδ + hPPδ( ), which is positive at those locations where Pδ < 0  and of

ambiguous sign otherwise.

ii)  ∂ ∂P ∂δ( )
∂q = PqU

dU
dδ > 0, which implies that the perturbation in the rent gradient entails

γ > 0.

iii)  ∂ 2 ∂P ∂δ( )
∂x∂q = 0

Proof:

a)  Housing rent cannot rise at all locations, for then profits would rise at all locations, which is

inconsistent with Lemma A8a).  The results in b) are easily established using earlier arguments.  À

Almost all other comparative static results are ambiguous.  This should not be surprising

considering that we are examining a change which affects both the construction technology and the
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rent  gradient.  But it will be useful to explore further the reasons for the ambiguity.

To establish many of the comparative statics results for the changes in I , N , and α  -- all

demand-side changes -- we started with a location x1  for which dΠ
dλ = 0 .  At this location, the

qualitative effects of an increase in λ  on the rent function and hence (since with a demand-side

change, the landlord's behavior is affected only via the rent function) on µ , q0 , qT , and T  (where

applicable) are the same as those resulting from an increase or decrease in γ , as the case may be,

which can be determined per Table 2.  Furthermore, in some cases, we were able to establish,

using an argument analogous to that employed in Lemma 11, that dΠ
dλ

>=< 0  as x1
>=< 0, for instance.

Then for x < x1, for example, the qualitative effects of an increase in λ  on the rent function and

hence on µ , q0 , qT , and T  are the same as those resulting from an increase or decrease in γ ,

combined with a decrease in χ , which can again be  determined per Table 2.  Thus, in some cases

we were able to ascertain the effects of the increase in λ  on µ , q0 , qT , and T  at all locations.

Applying the analogous procedure here -- for a supply-side change -- is problematical.

First, at a location x1  for which dΠ
dδ = 0 , the fall in construction costs must be offset by a fall in

"average" rent.  The qualitative effects of an increase in δ  can be decomposed into the direct effect

-- holding the rent function fixed -- and the indirect effects which operate via induced changes in

the rent function.  Thus, the qualitative effects of an increase in δ  on µ , q0 , qT , and T  are the

same as those resulting from (some average) of those resulting from an increase in δ , holding the

rent function fixed, an increase in γ  (Lemma A9, bii)), and a decrease in χ , and are in all cases

ambiguous.  Second, the argument analogous to that employed in Lemma 10 is inapplicable here.

That argument depended on µ  and H  moving in opposite directions, which may well occur with

a demand-side change (viz., a rise in rents typically causes construction at higher density but

reduced housing consumption).  But with a change in costs, structural density and housing

consumption tend to move in the same direction.
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4. RA

Lemma A10: Under (AS-1) to (AS-9), dU
dRA

< 0  and dY
dRA

?

Proof: Proceeding as in the other comparative static derivations, sign( dU
dRA

) = sign σRA
,

while dY
dRA

= −1
σ YY

σYRA
− σ YU σ RA

σU( ).  From (32)

σRA
= r

N
θ x( )

0

x U ,Y ;RA( )
∫ ΠRA

U,Y, x;RA( )dx

       = − 1
N

Φ x( ) < 0 (since ΠRA
= − 1

r
) (A.18)

and

σYRA
= − 1

N
xYθ x( ) < 0. (A.19)

Combining these results with σYY > 0, σU < 0, and σYU < 0  completes the proof.  À

Lemma A11: Under (AS-1) to (AS-10):

a) There exists an x1 ∈ 0, x[ )  for which dΠ
dRA

= 0 and dΠ
dRA

<=> 0 as x >=< x1 .

b) If there is a stable-arm trajectory at x :

¯  if x ≤ x1, 
dµ
dRA

> 0,
dq0

dRA

< 0,
dqT

dRA

< 0

¯  if x > x1, 
dµ
dRA

?,
dq0

dRA

?,
dqT

dRA

< 0

c) If there is a demolition-cycle trajectory at x :

¯  if x ≤ x1, 
dµ
dRA

> 0  (by AS-10), 
dq0

dRA

?,
dqT

dα
< 0

¯  if x > x1, 
dµ
dRA

?,
dq0

dRA

?,
dqT

dRA

?
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d) dx dRA < 0

Proof:

a) Differentiation of (41) with respect to RA  yields

r ′Ω dΠ
dRA

0

x U ,Y ;RA( )
∫ dx = 0 (A.20)

which by continuity establishes that there is an x1 ∈ 0, x[ )  for which dΠ
dRA

= 0.  Now the analog to

(50) is

d dΠ dRA( )
dx

= − α ′s x( )
r

1
H

dµ
dRA

− µ
H2

dH

dRA







. (A.21)

We wish to sign this at x1 .  Now, ∂ ∂P ∂RA( )
∂q  has the same sign as dU

dRA
, negative.  Hence, γ < 0.

Furthermore, to offset the increase in costs, for profits to remain unchanged requires χ > 0 .  From

Table 2, these changes in the rent function, along with the increase in RA  (which has no direct

effect), imply dµ
dRA

> 0 .  Also, dH
dRA

= hU
dU
dRA

+ hP
dP

dRA
< 0.  Since hU > 0, dU

dRA
< 0 , hP < 0, and dP

dRA

must increase at some quality levels, dH
dRA

 must decrease at some quality levels.  But then by (AS-

2) dH
dRA

 must decrease at all quality levels.  Hence, d dΠ dRA( )
dx < 0 at x1 , which by a now-familiar

argument establishes the second part of a).

Parts b) and c) then follow straightforwardly.  For x < x1, the total change in RA  can be

decomposed into the direct (holding the rent function fixed) change in RA  (which has no effect)

along with induced changes in the rent function characterized by γ < 0 and χ > 0 .  The combined

effect on µ , q0 , and qT  can then be ascertained from Table 2.  For x > x1, the total change in RA

can be decomposed into the direct change in RA , along with the induced changes in the rent

function, characterized by γ < 0 and χ ?  (though > 0 for x  "not much greater than x1 " (and

perhaps for all x ∈ x1, x( ) ).

Part d) follows from dΠ
dRA x

< 0 .  À
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For completeness, we record a couple of remaining results in

Lemma A12: Under (AS-1) to (AS-10)

a) dH
dRA

< 0  for x ∈ 0, x1( )  and may decrease for x  all the way up to x1 .

b) At each x , ∂ ∂P ∂RA( )
∂x  has the same sign as dH

dRA
.

Proof:

a) This result follows from dH
dRA

= hU
dU
dRA

+ hP
dP

dRA
.

b) This result follows from ∂ ∂P ∂RA( )
∂x = α ′s x( )

h2 hU
dU
dRA

+ hP
dP

dRA
( ), which is analogous to (44).


