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ABSTRACT AND HEADNOTE
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city with durable housing. On the demand side, identical households choose location, housing
quality and quantity (floor area), and other goods. On the supply side, developers choose the
structural density and time path of quality (which depends on construction quality and
maintenance) of buildings. Under a certain set of assumptions, existence and uniqueness of

equilibrium are proved, and its comparative static/dynamic properties are determined.
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1 INTRODUCTION AND OVERVIEW OF THE MODEL

In the last 30 years, considerable progress has been made in modeling competitive housing
markets. Prior to 1980, there were three broad lines of development. First, the monocentric city
model of the "new urban economics' (see Alonso (1964)) was extended in many ways, among
others to treat non-durable housing, asin Mills (1967) and Muth (1969). Second, durable housing
was incorporated into a growing monocentric city (e.g. Fujita (1976) and Anas (1978)end the
value and indestructible. Third, Sweeney (1974a, 1974b) and Braid (1979) devel oped non-spatial,
stationary-state filtering models of the housing market in which the quality deterioration of a

housing unit depends on the endogenous level of maintenance.

An ultimate objective of these lines of research isto develop ageneral equilibrium, non-
stationary, spatial model of the housing market with the following characteristics. On the demand
side, heterogeneous households choose location and other goods, as well as housing quality and
guantity. On the supply side, devel opers choose (with perfect foresight, for each plot of land)
congtruction date, initial quality, and structural density of the first building on the site, the time path
of maintenance over the building's life, and the date of demolition (or redevelopment), and so on

for subsequent buildings.

Since 1980, a number of authors have constructed spatial models of growing urban areas
with durable housing. They all make significant simplifying assumptions. Models with perfect
foresight (Arnott (1980), Fujita (1982), Hochman and Pines (1982), Wheaton (1982a), Braid
(1988, 1991)) normally assume that housing cannot be demolished and redevel oped, although
Akitaand Fujita (1982) allow some limited redevelopment. Models with demolition and
redevelopment (Brueckner (1980a, 1980b), Wheaton (1982b), Cooke and Hamilton (1984))
normally assume myopic expectations. Brueckner (1981) assumes a stationary-state city, and
incorporates both perfect foresight and multiple rounds of redevel opment on each plot of land. All

these papers ignore consumer choice over more than a single housing attribute, ignore endogenous
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mai ntenance expenditures (except that Brueckner (1981) allows endogenous maintenance
expenditures that are constrained to be constant over time), and assume a single income group

(except Brueckner (1980b), Cooke and Hamilton (1984), and Braid (1991)).

In this paper, each devel oper chooses construction date, initial quality, structural density,
the time path of maintenance, and the date of demolition and reconstruction for a succession of
buildings on his’her site. However, the economic environment and the rent gradient (giving rent as
afunction of quality and location) remain constant over time, and as a result we may say that the
equilibrium is a stationary state. We consider only the case with a single income group, and some
additional restrictive assumptions are employed. Nevertheless, this paper makes a number of
advances over the previous literature. It isthefirst paper to treat household choice over both
quality and quantity.l More significantly, by continuing the line of research of Arnott, Davidson,
and Pines (1983), referred to hereafter as ADP1, and Arnott, Davidson, and Pines (1986), referred
to hereafter as ADP2, it provides the first general equilibriumspatial model of the housing market
to treat quality and endogenous maintenance. It also provides the first proof of existence and

unigueness in amonocentric city with internal ownership of land?

It isworthwhile to place our model in the context of the Arrow-Debreu model of perfect
competition. Temporarily suppose, to be consistent with Debreu (1959), that time, location,
structural density, and quality are all discrete. Then housing isa set of commodities indexed by

time, location, structural density, and quality. Each of these commodities can be produced using a

10ne on-going debate in the housing literature concerns how to treat the multi-dimensional heterogeneity of
housing units. In the classical, Muthian model (1969) all housing characteristics are aggregated into a single
composite index, termed the "quantity of housing services." At the other extreme, in the hedonic price
literature, demand is expressed in terms of all housing characteristics. The problem with the Muthian
approach is that it is too coarse for many purposes; policy makers are often interested in the effects of policy
on housing quality and the volume and nature of housing construction, information the Muthian approach
cannot provide. There are two main problems with the hedonic price approach. First, it is too complex.
Demand and technological parameters are hard to estimate, particularly in view of the insufficient detail of
most of the housing data that has been collected. Second, housing units are sparse in characteristics space;
thus, it may be seriously misleading to view the household as able to buy any bundle of housing characteristics
it wishes. The treatment of housing in this paper lies between these two extremes.

2See Fujita and Smith (1987) for a proof of existence and uniqueness of equilibrium in a monocentric city
model without housing or internal ownership of land, but with multiple income groups. See also the references
therein.
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variety of Leontief techniques3 This multiplicity of techniques can render the production set
nonconvex. On the consumer side, in each time period a household may consume housing of
only one quality and at a single location, which implies nonconvexity of the consumption set. Itis
these structural nonconvexities that distinguish the model from the Arrow-Debreu model of

perfect competition, and which cause the proof of existence of equilibrium to be non-trivial.

The paper incorporates an extended version of a partial equilibrium developer model
introduced in ADP1 and ADP2, an extended version of a household decision model used in
ADP2, and a market-clearing spatial model. The extensions include the simultaneous treatment of
structural density, quality, and quantity of housing consumption. The treatment of structural
density on the producer side is absent in ADP1 (though present in ADP2), and the treatment of
guantity on the consumer side is absent in both. The market-clearing spatial model connects the
two extended submodels of households and producers and allows comparative staticsin the

general equilibrium context.

A building is constructed at a particular structural density and initial quality. Asit ages, its
structural density remains the same, but its quality can change, and so too can the floor area of the
housing unitsit contains. Quality deteriorates continuously through time at a rate which depends
on maintenance expenditure per unit floor area, and can be negative. The floor area of the housing
units can be altered without cost. These assumptions ensure that, in competitive equilibrium, there

isawell-defined rent per unit floor area for housing as a function of quality and location.

A household derives utility from the quality and floor area of its housing, as well as from

other goods. It isindifferent to structural density and to location except through the effect of the

3For example, where t istime, x location, q quality, u structural density, Q quantity of housing, C
guantity of composite good (either maintenance or construction),
— !
Qt,x,q,u =min Qt—l,x,q+l,u’m)

specifies that housing of type t,x,q,u can be produced using housing of the same structural density and
location from a period earlier of the next higher quality, when combined with the appropriate amount of
composite good (maintenance expenditures) from period t, where BQ+1 iS an exogenous parameter.

5
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latter on transportation costs. When purchasing housing services of aparticular quality and at a
particular location, the household faces a market-determined price and can choose how many units

of floor areato rent at that price.

We consider a stationary state equilibrium in the sense that the market price of a unit of

floor area of agiven quality at a given location does not vary with time.

The housing market studied in this paper isthat of a monocentric urban area. Each
household spends on transportation a sum which depends on the distance, denoted x, of its

residentia location from the city center (where all the non-residentia activities take place).

The interrelationships of the model are described in chart 1. There are three submodels.

Thefirst isademand-side model. From an exogenous utility function for the identical households

are derived a bid-rent function P(q, x) -- the demand price for one unit of housing of quality q a
location x -- and a housing demand function H(g, X) -- the quantity demanded of housing of
quality g a x when pricesare given by P(g,x). Exogenousto this submodel are household
income, Y, the household utility level, U, and the level of transport costs, denoted by a shift
parameter a. Next isa supply-side model, an extension of the spatial intertemporal model
presented in ADP2. This model takes the rent function P(q, x) at some location X as exogenous
and independent of time, and generates the optimal program for a landlord-builder, called a
developer, at X, giving the (structural) density u of housing built there, the quality g, of initial
construction, the program of maintenance over the life of the building, m(t), and the timing of
demolitions and reconstructions if these occur. The discounted value, I, of the profit stream to
the developer, which can be interpreted as the competitive land value, is also calculated?
Exogenous to this model are the construction and maintenance technol ogies, characterized by

functions K(qo, u) and g(q,m) to be defined later, and the "agricultural rent,” R,, the opportunity

cost of undeveloped land. Finally comes the equilibrium or market-clearing model, in which two

4Under competition, these profits would be capitalized into land values. Thus, M may be interpreted to be
land value in excess of the land's value in agricultural use (or differential land value).

6
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more exogenous Variables appear, the population, N, of the (closed) city, and the non-rental
income, 1, of the (identical) households. The first two submodels are put together and the
following variables are determined: the equilibrium rent function over quality and location, total
household income, Y (consisting of | plus an equal share of development profits), utility U , the
pattern over the city of housing density, quality levels, demolition rates and so forth, aswell asthe

total city area.

u(C,qH)

v

Households

a,Y,U

¢ H(GX)

Market clearing
M P(q,x)

N, |

H(X)

Developers

Ra

f

K(ag:H) , 9(a.m)

Chart 1. Relationships between the submodels
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Section 2 describes the household model and the derivation of P(q,x) and H(q,x). It

includes comparative statics regarding the effectsof a, U, and Y on these functions. Section 3is

devoted to the dynamic devel oper problem and it includes comparative statics regarding the effects

of P(q, x), K(qo, ,Ll), and R,. Section 4 presents the market-clearing model, and examines issues

of existence and uniqueness. Section 5 examines its comparative static properties, investigating the

effects of changesin I, N, a, R,, and K(qo,u) on the structure of the city.> Concluding

comments are presented in Section 6.

2. DEMAND-SIDE MODEL

The utility of arepresentative household is given by
U =u(C,H,q), (1)

where C isthe quantity consumed of a Hicksian composite of non-housing goods; H is housing
quantity; g ishousing quality; and u([)lis differentiable strictly, quasiconcave for each g, with
ou/0C >0, du/dH >0, and du/dg > 0. Quantity, H, asfloor area, isa cardina measure.

Quality, on the other hand, is an ordinal measure, such that g = 0 denotes the lowest possible

quality.

It is convenient to characterize tastes by the expenditure function dual to the utility function
(2):

E(U,P,q) = rgiHn(C +PH|u(C,H,q) 2 V). ©

P ishere interpreted as the price (or rent) of one unit of floor area of quality . If ahousehold

livesin housing of quality q, pays P for each unit of floor space, and receives a utility level of U,

SSection 5 derives the comparative static results for 1. The derivation of the other comparative static results
is presented in an unpublished appendix which is available from the authors on request.

8
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then by Shephard's Lemma the quantity of housing it will choose to consumeis

h(U,P.q) = E,(U.P.q),

the partial derivative of E with respect to itsargument P. Consequently, the amount of the

composite good consumed will be

c(U,P,q) = E(U,P,q) - Ph(U,P,q).

We assume that households can neither borrow nor save. Letting Z denote household
income net of transportation costs, we can then define thebid rent (see Wheaton (1977)) on
housing of quality g, conditional on U and Z. Thisbid rent isthe maximum rent per unit floor
areaof quality g consistent with the attaining of a utility level U by a utility-maximizing

household with net income Z. If the bid-rent function is expressed as P(q,U, Z), thenit is

defined by the identity

E(U,P(q,U,2),q) = Z. )
Differentiating (3) with respect to g, U and Z, and using Shephard's Lemmayields

P, =-E,/E, =-E,/h(U,P,q) >0,

R, = ~E,/E, = ~E, /h(U,P,q) <0, )

P, =1/E, =1/h(U,P,q) > 0.

In order to establish subsequently the existence of a non-trivia equilibrium on the housing
market, we must impose some restrictions on preferences. First, we require that utility be defined
on the entire (open) orthant, which would not be the case if, for example, the underlying
preferences entailed a survival bundle or commitment expenditures (e.g. a Stone-Geary utility
function). Second, we require that, for any given level of utility U, quality q, and rent P, both the

guantity of housing and the quantity of other goods consumed are strictly positive. Further, asP
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tendsto infinity, we require that expenditure on housing also tend to infinity. Formally, we

assume:

(AS-1a) (i) Forevery Z >0, g >0, and P >0, thereisasolution U(Z,P,q) tothe
equation E(U,P,q) = Z.

(i)  Forevery >0, P>0,and U, E,(U,P,q) =h(U,P,q) >0 and
c(U,P,q) >0.

(i) Forevery g>0and U, limPh(U,P,q) = «.

Pioo

We make the following additional assumptions on preferences. the composite good is

non-inferior; housing quantity is strictly normal; and housing quality is normal in the sense that the

marginal willingness to pay for quality, P,(q,U, Z), riseswith utility. Thus,
(AS-1b) (U,P,g20 h(U,Pg)>0 Py(qU,z)>0.
For net income Z we take the following specification:
Z=Y-as(x), (5)

where: x is distance from the city center; s(x) isthe transport cost function, with s continuous, s
positive and finite, (0) =0, and 0 < §(x) < for 0<x <oo; a isashift parameter; and Y is

gross household income. Plainly Z,>0,Z, <Ofor x>0, Z, <O0.

It is convenient to define an equilibrium housing quantity demand function by the relation
H(a,U,2) =h(U,P(q,U,Z),q) = E,(U,P(q,U, Z),q) (6)
Total differentiation of (6) under (AS-1b) gives, by use of (4),

Hy =h.P, +h, >0, H, =h,P, <0, (7ab)

10
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since h, = E,, <0 by the concavity of the expenditure function. Furthermore,

Hy =hPy +h,Z 0

is of indeterminate sign since h, <0, P, >0, and h, is of indeterminate sign. Also, from (4) and
(6)

H(q,U,2)P,(q,U,Z) =1. (8)

Total differentiation of thisresult gives:

H H H
Pe= 0 Pam o <0 Pume ©
thislast cross partial derivative being of indeterminate sign. Note that the use of (5) allows usto
obtain al the partial derivatives with respect to the variablesY, a, and x that we shall need

subsequently.

The following assumption plays akey role in much of our analysis:

(AS-2) H, =0.

q

The assumption states that, for fixed household net income and utility, the quantity of housing
demanded is independent of the quality of that housing®:7 An important consequence follows

from (9), namely that

P, =0. (10)

6An expression for Hyq in terms of the direct utility function may be obtained from total differentiation of
u(Z - pH, H,q) =U and -u.p+u, =0. The resulting expression implies that Hy =0 is equivalent to
H TTZ(‘Ucch + ucucq) + Uglg — UglyqH = 0. A class of utility functions for which H, = 0iis

u(C, H,q) = min(U(C, q), H).

A point of disagreement in the literature on urban spatial models with durable housing is whether it is more
reasonable to assume that, over the lifetime of a building, apartment size is fixed or costlessly adjustable.
Under (AS-2) this point of disagreement is immaterial. As the building deteriorates, the size of apartment
most preferred by households remains fixed. Consequently, the developer has no incentive to adjust apartment
size as the building ages.

11
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Thisimpliesthat the slope of the bid-rent function, P, isindependent of Z and therefore of

income and location, for U fixed. We use (AS-2) in our proof of existence and also to sign a

number of comparative statics derivatives that are otherwise ambiguous.

In Table 1, we bring together those results of this section on the signs of partial derivatives

that will be used subsequently.

3. SUPPLY-SIDE MODEL

This submodel has been treated in detail in ADP2. The developer of a particular piece of

land at location x determines, as a consequence of the rent function P(q) there, whether to

construct housing, whether eventually to demolish it and reconstruct, and the values of the

following other variables characterizing the building: q,, quality at time of construction; ¢, quality
at time of demolition; T, age at time of demolition; m(T), flow of maintenance expenditure at age

T;and , dengity , i.e. number of quantity units built per unit area of land.

The developer maximizes profit per unit of land area, defined as

_ 1% % T) — K(do 1) _ Ry (12)
1-¢e7 r’

I_I(QO’qT’T’IJ)

where: 1 isthe discount rate; R, = agricultural rent (per unit time); K(dj,, i) isthe cost per unit

areaof land of constructing a building of quality g, and density u; and J(qo, qT,T) Isthe solution

to the following maximization problem over m(7):

;
30, Gy, T) = max [, e""(P(q) - m)dr, (12)
subject to g(0) = q,,q(T) = ¢, and the maintenance technology linking m and g, namely

4 =9(q.m).

12
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The assumptions made for regularity of the solution to this model are (see ADP2 for discussion
and more details):

(AS-3) lim On(@m) =, limg,(q,m=0, g,,<O0, foral g>0.

(AS-4) There exists a positive § such that for all g 0(0,q), thereisan m> 0 for which

g(g,m) =0. Also, this m tendsto zero as g - 0.

(AS-5) K(0,u) = K(q,0)=0;K,,K,,K,,, K, >0for q0(0,§) and u>0.8

qr N DN NNapp

The next two assumptions, which concern the interaction of the utility function u (and
hence P) and the technology functions K and g, require for their formulation the use of the phase

plane for problem (12). Thisisdepicted in Figure 1, in which ¢ denotes the co-state variable of

the problem, the shadow price of quality. The current-valued Hamiltonian for (12) isfound by
maximizing P(q) — m+ ¢g(g, m) with respect to m:

H(a,¢) = max (P(a) - m+ gg(q,m)),

m20

and the locus marked ¢ = 0 in Figure 1 isthe set of points (q, ¢) satisfying H,(q,¢) =0. The

curve CDGF isthe optimal path for the particular configuration of the phase plane drawn, and itis

a solution of the canonical equations
G§="H,(a,¢) (13)
p=ro-Hy(a.¢)=re-P, - ¢, (14)

Thelocusmarked @ =K, /i isthelocus of points satisfying the first-order condition for g, inthe

maximization of (11) for a particular value of 11, and is defined by the equation ¢ =K, (q,u)/u.

We make the following assumptions about the configuration of the phase plane:

8Note that all the properties are independent of the cardinalization of q, except that q = 0 is defined to be the
lowest possible quality.

13
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(AS-6) There exists g, 0(0,§) such that for pointson the ¢ = 0 locus, pS0 for qSqs (&
given by (14)).
(AS-7) Thereisan upper limit [ such that, for 0< u < 1, thelocus ¢ =K /i lies

entirely below thelocus =0 for 0< q < §; and there exists a critical value §
such that for g > @ the slope of the locusis algebraically greater than that of the
solution of the canonical equations (13) and (14) through the locus at q, and for g

< q smaller.

Asshown in ADP2, (AS-3) through (AS-7) guarantee the existence of a unigque optimal
program, specified by i, q,, d;, T, m(7), asolution to (13) and (14), and maximized profit .
If Area A in Figure 1 exceeds Area B, then T isfinite, and ademolition cycle path such as CDGF
(with Area CDG = Area OHGF -- see discussion below) isfollowed. Otherwise, T isinfinite, so
that the building once constructed is never demolished, and the stable arm, WS in Figure 1, is
followed.

The remainder of this section derives results which are used in the comparative static

analysis of Section 5.

To obtain the comparative static properties of the submodel, we follow the general

procedure outlined in the Appendix of ADP2: Let X denote the vector of endogenous variables

(G, Gy, T),andlet I, and I1,, denote the gradient and Hessian respectively of I, as defined by
(12), with respectto X. If A denotes any shift parameter, then

d_ng_x+d_Xd_u’ (15)
dA  JA Juda

where d/dA denotes changesin which u isheld constant, d/du changesinwhich A isheld
constant, and d/dA changesin which u adjusts optimally along with X. We have, in obvious

notation:

14
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-N3M,,, Z—Z = -M% Ny, (total differentiation of M, =0) (16)

X _
oA
du _ M, +M, X/

- (total differentiation of M, = 0) (17)
dA M, +N,dX/du

M, +N , JdX/du <0 (second-order condition for optimal 1) (18)
dn
a =TI, (envelope theorem). (29

Further, of the three components of X/du: If T isfinite, the components of dX/du are as
follows: dq,/du <0 but dq,/du and JT/du cannot in general be signed; whileif T isinfinite,
dq,/du <0and dq, /du =0.

We consider four comparative statics exercises. Thefirst istaken from ADP2, and treats a

parallel upward shift of the rent function P(q). If we call the shift parameter x inthiscase, then

P(a,x) = P(q)+ x,

and P, =1foral g. Changesin x do not affect the canonical equations (13) and (14), and so we
see from (12) that J, (0,07, T) =J'0Te‘”dr :%(l—e‘”). Thus, from (11), N0, = u/r; O, =1r;

and M, =0. From (16), dX/dx = 0; from (17) and (18),

Mo, (20)
dx
from (19),
dail _ u
2 -F. 21
o (22)

and from (15), dX/dx hasthe samesignsas dX/du.

The next exercise deals with a change in the dope of the function P(q) . The shift

parameter iscaled y, and we put

15
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P(a.y) = P(q) + y/(a),
where ¢'(g) >0, and if " (7) denotesthe optimal path of quality for y = 0, then
J’OT e‘”E(q* (T))dl' =0. (22)

Condition (22) impliesthat dJ/dy =0. It aso impliesthat ¢(q,) >0 and ¢(c,) <0. From (11),

we obtain

n,=o0, N,k =0. (23)

Instead of using (16) to find dX/dy, we have the following direct argument. If T if finite,
it is known from ADP1 and ADP2 that the first-order condition for T in the maximization of I

implies that the areas CDG and OHGF in Figure 1 must be equal for CDGF to be the optimal
path. Thelocus ¢ =K, /u isunchanged by shiftsin y (for given 1) and so isthe canonical

equation (13), and hence thelocus g = 0. However, for (14) we have d¢/ dy=-P,, =

—¢'(q) <0. Thus, the algebraic Sope dg/dq of any solution to (13) and (14) with ¢ < 0 increases
with y. Now consider Figure 2, where EF denotes the optimal path for y = 0. In order to satisfy
the equal-area condition, the optimal path, CD, for some y > 0, must cut EF, and must do soin
the sense shown if its ope isto be greater than that of EF at their intersection. We conclude that
dq,/dy >0 and dq,/dy >0. JT/dy cannot be signed in general ® To obtain du/dy from (17)
we need the vector M1, . Itisshownin ADP2that 1, <O, M, =0,and M, >0. From (17),
(18), and (23) we see that du/dy hasthe samesign as I, dX/dy, which, since M, =0 isthe
sumof M, dq,/dy <0and M dT/dy, whichis of indeterminate sign. One may presume that
usually du/dy <0, but thisis not alwaystrue. If itis, then from (15) dg, /dy > 0. If further
dq,/0du <0 (the most likely case according to ADP2), then dqg,/dy > 0.

9AIl we can say is that if dT/dy > 0, the profit per construction-demolition cycle, viz. uJ - K, increases with
y, and if dT/dy <0 it decreases. This follows since n,=o0 and hence dr/dy =0 by (18); since overall
profits remain unchanged, profit per cycle must be larger, the longer the cycle.

16
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Thecaseof T = isnow considered. In Figure 3, GSisthe optimal path for y =0 and
HS’ the optimal path for y > 0. Since d(,b/dy <0, thenanincreasein y causesthe (hz 0 curve
to shift upwards, and the saddlepoint to move right along the g = 0 line. Furthermore, since with

S totheright of S, an intersection of GS and HS” would violate the result that the algebraic slopes
of pathsincrease with y, HS must lie to the right of GS. Thus dq,/dy >0, and dqg, /dy > 0.
Since N, <0,M, =0,and M, =0 (see ADP2), then from (17), (18), and (23), du/dy <O0.

And because dq,/du <0 and dqg, /du = 0, it follows from (15) that dg,/dy >0 and dg, /dy > 0.

Note that combinations of the previous two comparative statics exercises alows us to treat
movements of the rent gradient that can be decomposed into arotation (in the sense above) and a

parallel shift. Thiswill prove useful when we do the general equilibrium comparative statics.

The third comparative statics exercise treats a shift in the construction technology function

K. The shift parameter is o and we put
K(Go. 143 8) = OK (dl, 11/ 6).

It can be seen that if J isdoubled, then the new cost of constructing abuilding of a given quality
and structural density equals twice the old cost of abuilding of the same quality but half the
density. Sincethere areincreasing marginal construction costs to density, anincreasein
corresponds to a particular form of technological improvement in construction. This shift has the

following properties
K (G- 1:1) = K (0, 1)
Ks(Go, ;1) = K(0, 1) = K, (0o, 1) < O (DY (AS-5))
K (0l 14;2) /14 = K (0, 48 0) /1S

Ko (0o, 1:2) /11 = Ky (0, 18:0) /1S

17
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K, (G0 H31) = K, (0, 183 0)

Thuschangesin u and J that leave 11/d unchanged leavethe ¢ = K, /u locus unchanged. Since

the canonical equations (13) and (14) are unaffected by J, the whole phase plane is unchanged,
and the optimal path for all such (i, 5) pairsisthe same. From (11), M, = 1-;(‘] - K,,), and this

too isunchanged if u/d is. Thus, if u” isoptimal for & =1, du’ isoptimal for other values of
d. Hence, du/dd =" =u/d; dX/dd =0; and

dn

== ~(1-e"T) "k, >0. (24)

Finally, consider changesin the agricultural rent R,. A changein R, can affect whether a

building will be constructed or not, since M, = -+ <0, and construction requires N > 0. But

otherwise R, isjust afixed cost, and affectsnoneof q,, ¢, T, U.

In Table 2, we bring together those results of this section on the signs of partial derivatives

that will be used subsequently.

4. MARKET-CLEARING MODEL AND EXISTENCE AND UNIQUENESS OF

EQUILIBRIUM

The market-clearing model to be constructed employs the demand-side submodel of
section 2 and the supply-side submodel of section 3. Since an essential feature of the supply-side
model is that the rent function P does not change over time, conditions must be imposed on the
market-clearing model to ensure that P isindeed time-invariant.19 It iseasy to require that the

exogenous functions-- u, K, g, and s -- be constant, as well as al the exogenous parameters --

10we do not investigate in this paper the possibility of an equilibrium with non-constant P. This appears to
be a difficult matter, and its study would necessitate a quite different, and explicitly time-dependent, supply-
side model, complete with a mechanism to generate expectations for future rent profiles. Thus, later assertions
of uniqueness of equilibrium in this paper mean (or at least are proved to mean) only uniqueness in the class
of equilibria with time-independent rent functions.
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a, d, R,, N (city population), and | (non-rental income of a household). But P depends also
on thevariables Y (gross household income) and U (see (3) and (5)), and so we must be sure that

they too are constant.

To examine the conditions under which Y and U are in fact constant, we must consider
the market-clearing condition itself. For some given time-independent rent function P(q, x) , we
can derive from the supply-side submodel the optimal density and demolition age as functions of
location; we obtain p1(x) and T(x). If 6(x)dx denotesthe area of land available for devel opment
in the ring contained between x and x + dx, then the quantity of housing supplied in thisringis
O(x)u(x)dx. Let F(7,x,t) denote the distribution of building agesin the ring, the proportion of
buildingsat x of ages < 1 attime t. Clearly, F(T(x),x,t) =1. Nextlet q(z,x) bethe optimal
quality at x of abuilding of age 7, calculated again from the supply-side submodel. Now
consider the demand side, and let H (q, x) be the quantity of housing demanded by a household at
x if the quality is q with rent function P(q, x). Then in market equilibrium the number of
householdsintheringat x attimet is

6(x)u(x)dxjg(x)mdF(r,x,t). (25)

Thisexpression is, in general, dependent on t, asis, by integration over x, the total number of

householdsin the city, contrary to the assumption that it is fixed and equal to N .

There are three situations, however, in which (25) istime invariant with atime independent
rent function. Inthefirgt, thereisarectangular distribution of building ages, which ensures that

F(7,x,t) isindependent of time; specificaly,
F(r,xt)=17/T(x) (1<T(x)). (26)
In the second, the stable-arm path is profit-maximizing and all housing has reached the

corresponding saddlepoint quality, g°(x); then (25) reducesto (Q(X)/J(X) /H (qs(x), x))dx
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independently of t. Inthethird, (AS-2) applies, so that H, = 0, which implies that
H(q(z,x),x) = H(x). Then (25) becomes %ﬁgx)dx.

Thefirst situation, arectangular distribution of building ages, appears reasonable at first
glance. However, at any location, all developers will have faced the same prices through history,
implying that all buildings at a particular location should be of thesame age. The second situation,
in which all housing is at saddlepoint quality, is conceptualy justifiable, but empirically
implausible. The stable-arm path could be profit maximizing at al locationsif construction costs
were high enough relative to maintenance costs!! but casual empiricism suggests that with actual
construction and mai ntenance technol ogies, construction-downgrading-demoalition cycles are to be
expected, at least at some locations12 The third situation, in which a household’ s choice of
housing quantity isinvariant to its choice of housing quality (givenU and Z), appearsto usto be

the most plausible. In consequence, in both this section and the next section on comparative
statics, we shall assumethat H, =0, i.e. we shall employ (AS-2).

We now compl ete the specification of the market-clearing model under (AS-2). For the

moment we omit explicit reference to the exogenous variables a, J, and R,, and consider the
endogenous determination of the variables Y and U that appear in the rent function, which we

shall now denote as an explicit function of both income and location:

P(q,U,2) =P(q,U,Y - as(x)) = P(q,U,Y,x), (27)

in terms of the old bid-rent function defined by (3) along with (5). The solutions of the supply-

side submodel with this function are thus also functionsof Y and U -- and so we write
X(U,Y,x) (recall that X denotes the vector (g, ¢, T)), #(U,Y,x), and M(U,Y,x) for these

solutions. We define the city boundary, located at x(U,Y), by the equation

11An increase in construction costs shifts the @ = Kq / U locus upwards (see Figure 1), which reduces Area A

and increases Area B, increasing the relative profitability of the stable arm.
1210 ADP2, under the assumption that housing quantity is fixed, it is shown that the stable-arm path is “more
likely” optimal the closer is housing to the city center.
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n(u,Y,x(U,Y))=0. (28)

Consequently we can compute the number of householdsin the city in market equilibrium,
by integrating an expression analogous to (25) over X.

x(U,Y)

H(U.Y,x)
H(U,Y, X)

6(x) dx, (29)

NU.Y) =

0

where H(U, Y, x) isjust the (now g-independent) function of the demand-side submodel, given
by (6) and with partial derivatives given by (7). Thefirst equation of the market-clearing model is

thus
N(U,Y) =N, (30)
for the exogenous number N.
The model could be closed by writing simply
Y=1I, (31)

for an exogenousincome | . Thiswould correspond to an assumption of absentee landlords for
the city. More interesting isto divide the developer's profits equally among the city dwellers -- the
case of internal ownership (see Pines and Sadka (1986)). Thus define

r _xu.,)

o(U.Y.N) = <o 6(x)(U,Y, x)dx. (32)

Thefunction o isinterpreted as each household's share of the interest on the discounted value of

total profits from development in the city and is non-negative by construction. Then the equation
Y=1+0(U,Y,N) (33)
can be adjoined to (30) to close the model.
We now examine the existence and uniqueness of equilibrium with internal ownership.
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The two equations which characterize any equilibrium that may exist are (30) and (33)13 The
functions N and o appearing in these equations are defined by (29) and (32). The various
functions that appear in these definitions can be obtained as follows. One starts from the bid-rent
function of the demand-side model, P(q,U, Y, x) (equations (3), (4), and (27)), and uses thisin the
supply-side model to obtain solutions q,, @,, T, ¢, and I, al functionsof (U,Y,x). Thecity
boundary is located at radius X(U,Y) given by (28). Next, 8(x), the areaof usable land per unit

radial displacement at radius X, is given exogenously, and must satisfy

(AS-8) Theintegral of the function 6(x I 9 dy tends to infinity with x; in other

words, there is an infinite amount of land area potentially available for

development. Also 6(x) >0 at all locations, except that 6(0) =

Findly H(U,Y,x) is derived from the demand-side model (equations (5), (6) and (7)). Notethe

absence of any dependence on q, because of (AS-2).

The natural way to proceed would appear to be to prove that the graphs of (30) and (33)
intersect (existence) only once (uniqueness) in (U,Y) space. For reasons that will be explained,
our method of proof of existence and uniqueness of equilibrium proceeds somewhat differently.

Unless noted otherwise, the signs of partial derivatives employed in the proof are obtained from

Tables1 and 2.
Lemma 1: o, = iJ’X(Y’U) 6(x) LICARY dx = N(E’Y) (34)
N Jo H(U,Y,x) N
Proof: Since M(U,Y,X) =0 (see (28)), from (32)
%(U, Y) i
o, = NI +(U,Y, x)dx. (i)

Now consider I1,. To evaluate it, we must proceed through the function P. We know that

130ne may view (30) as characterizing equilibrium in the housing market, and (33) as an income =
expenditure condition.
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P, =1/H >0, (see (4), (5), and (6)), and P,, =0 (see (5) and (10)). Consequently ashiftinY
givesriseto aparallel shift of the function P, asin thefirst of the comparative statics exercisesin
section 3 (increasein x). From that exercise, we know that M, = p/r, and consequently,

M, =u/rH. (Also, from Section 3 or Table 2, i, >0, but this does not provide a useful
expression for the derivative.) Substitution of this expression for I, into (i) and use of (29) gives

the stated result.A

Next, alemma concerning g, .

Lemma2  Noy,(U,Y,N)=N,(U,Y)>0.

Proof: The equality in the result isimmediate from Lemma 1. Three facts demonstrate the
inequality. First, we have seen that L., is positive (see the proof of Lemma 1), and so the
numerator of the integrand in the expression (29) for N(U,Y) isincreasingin Y. Second, since
H, <0 from (5) and (7b), the denominator of the integrand in (29) isdecreasing inY. Third,

since 1, hasthe opposite sign to M., whichis positive, M, < 0. But then from the definition of
X in (28) it follows that X, > 0, so that the upper limit of integration in (29) isincreasingin'Y.

This establishes what we wished to show.A
The next result we need is expressed in the following lemma:

Lemma3:  Under (AS-8), for fixed U, N(U,Y) tendsto infinity with Y.

Proof: Theideaof the proof isthe following. We show that it is aways possible for given
U to attain apositivelevel of u/H atlocation x = 0 by increasing Y sufficiently. Then we see
that thissame level of u/H can be attained, by further increasing Y, at any location x. Since
(/H does not decrease with Y, (AS-8) meansthat N(Y,U) can be made to exceed any

prespecified bound by choosing Y large enough.

Choose any q intheinterval (0,§) (recall (AS-4)) and some P>0. Set Y = E(U,P,q)
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for the given value of U . Then, by the definition (27) of the bid-rent function, P = P(q,U,Y,0).
Now let usincrease Y keeping the other arguments of P fixed at (g,U,0). We know that

P, =1/H >0 (from (8) and (5)) and P,,, >0 (from (9) and (5)), which together imply that P
becomes indefinitely large with Y. But, by part (iii) of (AS-1a), as P tendsto infinity, so does
expenditure on housing, P(q,U,Y,0)H(U,Y,0). Since costs remain constant in this exercise, the
profit M(U,Y,0) must also becomeinfinitewith Y, at arate at least as fast asthat at which P
becomesinfinite. Now recall that P, =0, by (10), so that we are in the presence of aparallel shift
of the rent function. From (21), therefore, we conclude that, for Y large enough, the optimal
density u must be positive and bounded away from zero in order that N tend to infinity at least as
fast as P. Finally, since H(U,Y,0) is positive and decreasing in Y (by (7b)), we see that, for
large enough Y, 1(U,Y,0)/H(U,Y,0) isbounded away from zero.

To see that the above result holds for any x, it is enough to observe that by our

specification of the transportation cost function s(x), in particular that it isfinite for any finite x,

thereisalways afiniteincrement in Y which will exactly compensate in net income Z for any

finite x. As Y tendsto infinity, X(U,Y) tendsto infinity, and by (AS-8) so too does the land area
of the city. Since population density is bounded away from zero at all settled locations, population

tends to infinity.A

A fourth lemma:

Lemma 4: For given Y large enough and for any N >0, a(Y,U, N) can be made to increase

indefinitely by decreasing U sufficiently.

Proof: Thisresult isalittle more tricky than the preceding one, since we cannot use the

same comparative statics exercisewith U aswith Y. Butitisstill clear from (32) that what we

need isthat M(U,Y,x’) be unbounded above as U decreases, where X' is fixed and positive,
satisfying as(x') <Y (with the assumed properties of s(x) (see (5)) thisis always possible for

large enough Y). The next step isto ensure that thereisalwaysaU small enough that, given Y,

24



February 21, 199617:16

construction would take place at x', that is, (U, Y, x') > 0. Thislast condition will be satisfied if
thebidrent at x' for housing of quality g ishigh enough. To seethis, recall that, from (AS-1b),
P, >0, sothat decreasing U makes the slope of the bid-rent curve less steep. Thus, an increase
intherent at quality g caused by reducing U entails greater increases at lower qualities. Suppose
then that, if P(§,U,Y,x’) > P, it would be profitable to construct, that is (U, Y,x') > 0. But by
(AS-1a), for fixed (q,Y,x), we can awaysfind aU suchthat P(q,U,Y,x) takes on any positive
value, however large. Thustheentire bid-rent curve, over the full range (0,§), can be madeto lie
above any prespecified value, by choosing U low enough. By arguments similar to those used in
the proof of Lemma 3, we find that (U, Y, x') can be made indefinitely large, and thus also
O'(U,Y, N) for Y largeenough and N > 0.A

Lemma 5: o, <0.

Proof: Since P, <0 fordl g, anincreasein U causesthe bid-rent curveto fall for al q,
which impliesthat M, <0. Since MN(U,Y,X) =0 (see (28)), it then follows from (32) that
o, <0.A

A remark isin order. The assumption (AS-14a) isclearly critical for the proof of Lemmad4.
It is perhapsinstructive to give an example in which equilibrium cannot exist in order to see what
the force of the assumption is. Suppose that there were some minimum positive quantity of
housing that each household had to consume in order to survive. This suppositionis, aswe
remarked in Section 2, incompatible with (AS-1a). Suppose further that exogenousincomel is
so low that, even at the city center, the minimum rent required to make construction possibleis
sufficiently high that a household's expenditure on housing would exceed | . Then evidently no
equilibrium exists. Aswe shall see, our proof of existence requiresthat it be possible to raise rents
arbitrarily high by decreasing utility. Thisisnot possible in the example, but is guaranteed by
(AS-1a).

Proposition 1. Under (AS-1) to (AS-8), when developers profits are distributed equally
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among households residents in the city, equilibrium with atime-independent rent function exists

and isunique.14

Proof: Consider Figure 4, in which Y is plotted as the independent variable and W asthe
dependent variable. Firgt, the 45¢ line W =Y isdrawn. The point onthislinefor whichY = | is

on that member of the family of loci

W=1+0(U,Y,N) (35)

for which U =U, = sup{U|u(U, 1,0) > 0}, because for utility level U, thereis no construction at

location x = 0, and so none anywhere, so that o(U,, 1, N) = 0. At this point we also have that
o, =N(U,Y)/N =0 (Lemma 1), and so locus (35) with U =U, islocaly flata Y = | . From
Lemmas 2 and 3, o,, >0 and o, increases without limit, and so the locus must cross the 45¢, line

for somefinite Y > |, and can do so only once, as shown in the Figure.

The conditions (30) and (33) for equilibrium will be satisfied if avalue of U can be found,
U*® say, such that for that value the locus (35) has a point of tangency with the 45¢,line, W = Y.
At this point of tangency, (33) isclearly satisfied. For (30), note that the tangency means that the
slope of (35) must be unity. Theslopeisjust o, (U,Y,N), which by Lemmais N(Y,U)/N,

and so (30) is satisfied.

As U variesfor fixed N, (35) generates a one-parameter family of curvesin the (Y, W)
plane, to the northeast of (1, 1), as depicted in the Figure. Each of these curves has positive slope
(since o, >0) and is convex (since o, >0). Further, since g, <0 (Lemma5), for any pair of
loci the one corresponding to the lower utility level must lie strictly to the left of the other. Also,

since by Lemma4 ¢ can be increased without limit by reducing U , there must exist some U

14The reader may check that if we set u = 1 in the model and interpret H(U,Y,x) as lot size, and M(U,Y,x)

as the profit derived from land, then the proposition goes through with minor variations in the proof. Such a
modified proposition provides a proof of existence and uniqueness of equilibrium in the classical Alonso model
extended to incorporate equal ownership of land by city residents.
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such that (35) with U = U liesentirely above the 45¢-line15 Finally, on account of continuity
considerations and the convexity of the loci, there must exist a unique U® such that (35) with U =

U°® istangent to the 45¢-line.16A

We now derive an equation that isimportant for comparative static analysis, and briefly
investigate existence and uniqueness for the absentee landlord case. From (4), (5), (6), (10)
(which incorporates (AS-2)), and Section 3, an increase in x causesachangein P that can be

characterized by avalue of the shift parameter x equal to —as'(x)/H. From (21), we have
N, =-uas (x)/rH. (36)

Substituting (36) into (29) yields

N,Y)=-r [ EQD—Z(Z‘))() @1 . (37)

Integrating (37) by parts, asin Wheaton (1974), yields

%(U,Y)

N(U,Y) = rIO Q'(x)r1(U,Y, x)dx, (38)

where we have denoted 68(x)/as'(x) by Q(x), and used the facts that 6(0) = 0 and
N(U,Y,x(U,Y)) =0 (see (28)). Differentiating (38) with respectto U gives

N, (U,Y) =t J’OX(U'Y’Q'(x)nU (U,Y,x)dx, (39)
where we have again used M(U,Y,%(U,Y)) = 0.

It is very reasonable to make the following assumption:

(AS-9) Q'(x) >0, where Q(x) = 6(x)/as ().

15This is where (AS-1a) is crucial, since it is necessary to prove Lemma 4.
161t should now be apparent why we proved existence and uniqueness of equilibrium in (Y,W) space rather

than in (Y,U) space. The proof used the result o, >0, which cannot be portrayed in (Y,U) space.
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For example, this assumption is clearly satisfied under the standard assumptions that 6(x) = 27x

(two-dimensional city with no gaps) and s"(x) = 0 (linear transportation costs). We now have

Lemma 6. With (AS-1) to (AS-9), N, <0 and g, <0. Further, N(U,Y) and ¢,(U,Y,N)

can be made indefinitely large by decreasing U .

Proof: The first statement follows immediately from (39), (AS-9), I, <0, and Lemma

1. The proof of the remainder is exactly analogous to the proofs of Lemmas 3 and 4.A

Proposition 2: Under (AS-1) to (AS-9), when profits go to absentee landlords, equilibrium

with a time-dependent rent function exists and is unique.

Proof: The equilibrium conditions are (30) and (31), and are satisfied at a point in the
(Y,W) planethat lieson the vertical line Y = | at which the slope of the locus (35) passing through

that point isunity (see Lemmal). That such a point exists and is unique follows from the
observationsthat a (I,1) the Slopeis zero, and that as one decreases U and moves up the line

Y = | the slope increases without limit, since g, <0 and o, tendsto infinity as U decreases, by

Lemma 6.A

5. COMPARATIVE STATICS IN THE MARKET-CLEARING MODEL

This section illustrates the derivation of comparative static results by treating the effects of
an increase in one of the shift parameters, non-rental income . An Appendix which isavailable

upon request treats shiftsin four other shift parameters, N, a, J,and R,. All resultsare

summarized in Table 3 at the end of this section.

Whesaton (1974) presented the first comparative static analysis of a monocentric urban area
that used general functional forms. He used the ssimplest urban model, in which household utility

depends on a composite good and land, addressed both open cities (utility fixed, population
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endogenous) and closed cities (population fixed, utility endogenous). Brueckner (1987) added
housing and structural density to the model, thereby analyzing the comparative statics of the Muth
(1969) - Mills (1967, 1972) model, and generalizing their comparative static results, which
assumed particular functional forms. Household utility depended on a composite good and
housing quantity. Pines and Sadka (1986) extended Wheaton's work by examining afully closed
city, in which land rents accrue to urban area residents rather than to absentee landlords, so that per
capitaincome is endogenous. Our comparative static analysisincorporates all of these extensions.
In addition, it differs from the static models cited above by treating housing quality as well as
guantity, and incorporating a dynamic model in which maintenance and quality deterioration are

important el ements.

A change in a shift parameter affects the solution (Y,U) of the market-clearing mode!
(section 4). We already know, from the demand-side and supply-side submodels, the changesin
other endogenous variablesinduced by changesin Y and U , which are exogenous to these

submodels. In general, as might be expected, most results are indeterminate. However, assuming

(AS-2) and 3—;’ < 0 for demoalition-cycle paths (as described below) removes the indeterminacy of

many comparative-static results of the overall model (see Table 3).

In the remainder of this section comparative static derivativeswithU and Y held constant

are designated by subscripts. Comparative static derivativeswithU and Y alowed to vary are

written in ordinary (d/ d/\) notation, even though other shift parameters, and in some cases x and
g, are being held constant. The exception isthat comparative static derivatives of P, with U and

Y alowed to vary in response to changes in shift parameters, are designated by partial derivatives,

S0 asto enable usto write mixed partial derivatives of P with respect to X, g, and a shift

parameter.

Consider now anincreasein |, with the other shift parameters (N, a,d, and R,) held

constant. Wefirst determine the effect of theincreasein | on the equilibrium valuesof U and Y.
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We then consider how these changesin U and Y alter the rent function. And finally we examine

how the perturbation of the rent function affects the developer's decision.

Lemma 7: Under (AS-1) to (AS-9), dU/dI >0and dY/dl > 0.

Proof: Equilibrium is characterized by the pair of equations (30) and (33). Using Lemma

1, (30) can be rewritten as

0,(U.Y;N)-1=0 (i)

Total differentiation of (i) and (33) gives

du dy
— + — =0 40

S g Ty (40a)

dy du dy

—=1+0,—+0,— 40b

di Y T (400)

Since g, —1=0, from (40b) % = —5: >0 (Lemmas). Then from (40a),

& = -("_YU)%_LIJ =2 >0 (Lemmas 2, 5, 6).A

Oyy Oyy Oy

The next lemma characterizes the perturbation in the rent function induced by the increases

inU and Y.

Lemma 8: Under (AS-1) to (AS-9):

8  Thereexistsan x, 0(0,) for which 4 =0, and a ¢, 0(c(x,), 0(x,)) such that 2 =0 a

(% )-
b)  Thereexistsafunction ¢(x,q) =0 for which

Lo &

Ll
$=0 dq

o <0, ¢(x,q)=0

$=0

i)

ii) Below thisfunctionin x — ¢ space, £<01 d(oP/dl) >0, o(aP/a1) S

0,
ol X aq
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2
9*(apP/a1) _ 0.
oxaq
2
iii) Above thisfunction, P >0, d(dP/dl) >0, I (dP/dI) =0, but M isof
ol aq oxaq
uncertain sign.
Proof: a) From (38) and (30), we have
rJ' M(U,Y,x)dx = N. (41)
Differentiating (41) with respect to | and recalling (28) gives
r_J_x(U Y) (UI,Y, X) dx=0. (42)

Since Q'(x) >0 by (AS-9), (42) impliesthat M must increase for some values of x and decrease

for other values of X, or else be unchanged for all values of x. Since d',]—,(m iscontinuousin X,

dI'I(U Y.x) _

there must exist an x, [J(0,X) such that = 0. But then, since P(q,x;1) iscontinuousin

g, there must exist a g, O(d (x,), 0 (,)) such that Plol) - g,

b) From (5), (6), and (8),

aP(q,x;1) __as(x) 43)
oOX h

Consequently,

d(oP(q,x;1)/0x) _ s (x) @dh(U,P, q)
dl h? d

Using the equality of mixed partials on the left-hand side and expanding the right-hand side,

). ety 4., 20

From Table 1, h, >0 and h, <0; from Lemma 7, % > 0; and from above £ =0 at (x,,q,).
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Thus, viewing (44) as an ordinary differential equation with dependent variable dP/dl and
independent variable x, we have that
o(op/an) >0 for (x,q) such that Po. (45)
ox ol
Remembering that P(q,x, 1) can be expressed as the bid rent function P(g,U, Z), and using (5),

we see that

d(dP(q,x;I)/ﬁl) _ d(&P(q,x;I)/dq) -p av +P az (46)
aq d) Ydl o *d

From Lemma 7 and the P, row of Table 1, it follows that under (AS-2)

d(aP(q,x;1)/a1)
aq

>0 fordl x,q. (47)

Eqgs. (45) and (47) establish that the locus of (x,q) for which & =0, ¢(x,q) =0, isnegatively-
dopedin x —q space. Thisestablishesi).

From (47), £ <0 below ¢(x,q) =0in x-q spaceand £ >0 abovethelocus. The
former result, along with (45), implies that == — (dp/ ) >0 below ¢(x q) 0. Furthermore, since

P, =0 under (AS-2),

2
0*(aP/a1) _ 9P, _ 0. 48)
oxdq dl

These results together with (47) itself establishii). For (x,q) above ¢(x,q) =0 an analogous

argument -- except that (45) does not apply since % > 0 in this region -- establishesiii) A

Among the consequences of Lemma 8 isthe following corollary.

Corollary 1:  Suppose that x, and g, are defined asin part aof Lemma8. It follows directly

from part b of Lemma 8 that
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a) £<O at any point (g, x) which satisfies g < g, and x < x,, with at least one of the

inequalities being strict.
b) ? >0 at any point (g, x) which satisfies g = ¢, and x = x;, with at least one of the

inequalities being strict.
We now consider how this perturbation of the rent function affects housing demand.

Lemma 9: Under (AS-1) to (AS-9), 41 >0 for al x for which 2> <0 for some quality level.

Proof: From (6)
dH _dh dP
—=—=h,—+h,—. 49
d d h’ di " dl (49)

Using (AS-2), if ¥4 >0at x for some g, then & >0 at x forall q. And from Lemmas7 and 8,

aswellash, >0 and h, <0,and 4 >0if £<0.A

We now turn to the supply-side submodel. From (47), at each location the increasein |
steepens the rent function with respect to quality. Thisimpliesthat if 91 =0 at x, then the
perturbation in the rent function correspondsto y =0 and y >0; if 91 <0 at x, then x <0 and
y>0;andif 41 >0at x,then x >0 and y >0. Then we can apply the supply-side comparative
stetic resultsgiven in Table 2. Thus, acrucid step isto characterize 9 asafunction of x.
Unfortunately, except for a couple of situations which we shall identify, the spatia pattern of 4t

appears to be ambiguous.

Lemma 10:  Under (AS-1) to (AS-9), if thereisan x, for which 41 =0, and for which a stable-
arm path is profit-maximizing, and if a stable-arm path is profit-maximizing at all locations
between x and x;:

a) If x=x,,thenat x: d—I_l—O awu <0, ad, >0, and OIqT>0
di di di di
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b) If x<x,, thenat x: 3 <0, W cg, W5 g gng B 5

di di di dl
c) If x>x,,thenat x: d—n>0, d—u?, %?, and OI&>0

di di di di

Proof: a) Thechangein P(q) a x can be characterized by a shift in the rent function

y > 0. The stated result then follows from Table 2.

b)c) Now

d(drydi) _ d(r,)
dx di

as(x)gl du  p dHQ (50)

r OHd H*dC

where (36) is used to obtain the second equality. At any x for which 9 =0, % <0 (proof to part
), and % >0 (Lemma9, noting that 9 < 0 at some quality level). Thus, at any such X,

(“”/d') >0. Thisestablishesthat 9 <0 for x<x, and 9 >0 for x>x,. Therest of thelemma

follows from the changes in P(q) implied by the sign of 41, as noted above, and y >0, along

with the results from Table 2. A

The principa difficulty in establishing more general results stems from the ambiguity in

W <0, but it can be

thesign of for the demolition cycle trgjectory -- in the normal casg, 5,

positive. To obtain more general results, we assume the normal case to apply 1’

17Another way to obtain more general results is to assume that structural density is fixed and constant over
location. With this assumption:

“Thereis aunique x, % 0(0,%), for which & =0 and 4120 as xZx, (same line of argument used to

prove Lemma 10).
_g—i\( = g—f for X = (qo,qT, ) and A = x,y (the signs of are given in Table 2).
To obtain the comparative static derivatives, proceed in the by-now-familiar way. For example, in the

calculation of — for x < x;: The rent gradient changes in a way characterized by y >0 and x <0. Since

'Zi; =0 and ﬁq° > 0, whether the optimal path is a stable-arm path or a demolition-cycle path, dq° >0.
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(AS-10) When a demolition-cycle path is profit-maximizing, 4 d“ <0.

Lemma 1l: Under (AS-1) to (AS-10):

a) Thereisaunique x, x, 0(0,X), for which 91 =0and 920 as xZx,.

b) If there is a stable-arm trgjectory at x:

g 9% o o,

h X<X1 Lol "ol

Tif x> x,, d—“?, U, A
dl dl dl
C) If there isademolition-cycle trgjectory at x:

~if x<x,, ‘:j_ﬁl‘ <0 (by (AS-10), %?, % >0

du, dd, , day

Cif x>x, aa

dx
d =
) d

>0

Proof: a) Followsfrom Lemma 8a and the same line of argument used to prove Lemma 10.
b) Followsfrom the same line of argument used to prove Lemma 10.

c) Followsfrom the same line of argument used to prove Lemma 10, except that the relevant

comparative static derivatives drawn from Table 2 are those for a demolition-cycle path.

d) & hasthesamesignas ¢ |X which is positive by a) since X>x,. A

Table 3 summarizes the comparative statics of the model, with respect to changesin |

(derived above) and changesin N, a,d, and R, (derived in an Appendix, which is available on
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request).18 Throughout the table, (AS-1) to (AS-9) isassumed. Many results are ambiguousin
general, though more may be signed if (AS-10) is employed.

6. SUMMARY AND CONCLUDING COMMENTS

In this paper we have investigated the properties of stationary-state general equilibriumin a
monocentric city in which, on the demand side, identical households choose location, housing
quality and quantity, and other goods, while on the supply side, developers choose the structural
density and time path of quality of buildings. Employing arestrictive assumption on preferences,
we proved existence and uniqueness of equilibrium, and determined its comparative static

properties.

Most comparative static derivatives were ambiguous (most of those that are signed in
Table 3 are signed on the basis of restrictive assumptions). This paucity of unambiguous
comparative static results indicates that the conceptual framework is consistent with awide range
of market behavior. That the qualitative behavior of the housing market depends on the form of

the technology and of tastes is to be expected.

One lesson from the paper is that, with depreciation of durable housing in a spatial model,
some restrictive assumption is needed to prove the existence of astationary-state equilibrium.
Such arestrictive assumption is necessary to ensure stationary behavior, as opposed to cycles, for

instance, in a stationary environment. Put alternatively, restrictive assumptions are needed to

18pines and Sadka (1986) used a static model in which households demand land rather than housing. We
could reformulate our model to allow households to construct their own housing using the composite good and
land. We could then define a reduced-form utility function over the composite good, land, and location, where
the location variable captures the spatial variation in the cost of producing structure on the land. (See a
related discussion in footnote 10 of Brueckner (1983).) Under (AS-2), and with u fixed and independent of

location, the cost of producing structure is independent of location (since oy, o, T, m(t) and u are

independent of location), and so the reduced form of our model is equivalent to the model of Pines and Sadka.
In fact, the comparative static results in our Table 3 concerning U, Y, and X are identical to those in Table 1
of Pines and Sadka concerning u, Y, and X. Arnott, Pines and Sadka (1986) used the same model as Pines
and Sadka (1986) and focused on the comparative static effects of an increase in a.
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convert the problem, which is essentially dynamic, into one that is amenable to static equilibrium
analysis. Thissuggeststo usthat the model has been devel oped to the point at which non-

stationary-state dynamic analysis is appropriate.

Since the qualitative properties of the stationary model depend on the form of the
technology and tastes, the range of qualitative behavior of any dynamic extension islikely to be
very wide. Thus, quantitative analysis with careful estimation of the model's parameters will be
necessary in any practical policy application. Furthermore, since a descriptively satisfactory model
(with tenure choice, moving costs, multiple household groups, etc.) will be complex, ssmulation
supplemented with partial analysis of the model's components would seem the most promising

approach. Work along these linesisin progress (e.g. Anas and Arnott (1991)).

Finally, we should emphasize that our model assumes the housing market to be perfectly
competitive. However, many features of housing markets (vacancy rate adjustment, search and
moving costs, imperfect capital markets, etc.) are inconsistent with perfect competition.
Conseguently, some housing economists and many housing experts who are not economists argue
that policy analysis based on competitive models of the housing market may be seriously
misleading. We are agnostic, but believe that there is value to constructing sophisticated
competitive models whose performance can be tested against non-competitive models as they are

developed.19

19The development of non-competitive models of the housing market is in its infancy. For a review of the
relevant literature, see Arnott (1987).
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Notational Glossary

(in aphabetical order with Roman symbols preceding Greek)

C,c Hicksian composite of non-housing goods
E expenditure function

F cumulative distribution of building ages
g depreciation function

H floor space

H Hamiltonian

I exogenous non-rental income

J present value of rent minus maintenance cost from a building
K construction costs

1 rent shift function

m maintenance

N population

N exogenous population

P housing rent

q quality

q given qudlity level

do construction quality

O, termina quality

Q guantity of housing

r interest rate

R, opportunity rent on land

s transport cost

t time
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X

Q O ® > © & < ®™W a N < X =

~

<

maximum building age
utility

distance from city center

outer boundary of residential settlement

artificial variable

= (%G T)

total income

income net of transportation costs
transportation cost shift parameter
parameter

housing rent shift parameter
construction cost shift parameter
residential area

generic exogenous parameter

floor arearatio, structural density

profit per unit area of land (differential land value)

amortized differential land value per household

building age

co-state variable in developer’ s problem

housing rent shift parameter
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For H(q,U,Z) and P(q,U,Z):

A q U Z=Y-as(x) Y X
? + - - +
HA
(Owith (AS-
2)
P, + - + + -
? - + + -
PZA
(Owith (AS-
2))
+ ? ? ?
I:)q/\ 9
(by (AS-1b)) | (Owith (AS-2))| (0 with (AS-2))| (O with (AS-2))

and for h(U,P,q): h, >0, h, <0,and h, ?

Table 1. Signsof partial derivativesfrom the demand-side submodel
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T finite T infinite

A X y o R, X y 5 R.
a9,
-0 2

A 0 + 0 0 + + 0
0%

o 0 + + 0 0 + 0 0
ﬂ 0 ? ? 0

N n.a n.a n.a n.a
da,

A ? ? 0 0 - + 0 0
dg
d—/\T - (+) 0 0 0 + 0 0
d—T ) 2

A 0 0 n.a n.a n.a n.a
du

d_)\ + ) + 0 + - + 0
dan

aA + 0 + - + 0 + -

Notes: 1. % denotes the changein g, corresponding to achangein A, holding u fixed. %
denotes the same change, but with u changing endogenously. Etc.

2. (-) indicates that the derivative is negative under the assumption that 3—‘; <0 fora
demolition-cycle path (AS-10) but is ambiguous in sign when this assumption is relaxed.

Table2: Signsof derivativesfrom the supply-side submodel
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| N' a ) R,
1. U + - - + -
2. Y + ? ? ? ?
3 X (+) ? () ? )
4. m(x) 0 na ©) 0 0
5. m(0) () (+) (+) ? +)
6. X) (+) ? ) ? )
7 Pldux) 0 na ) . ¥
8. P(dx,) - na (+) ; +
9. P(g,x) ¥ na ) ? ?
10. H(0) () (+) (+) ? (+)
11, u(x) ? ? ? ? ?
12. H(a.x) + na ) + :
13. H(q,0) (+) ) ) ? )
14. H(g.x) ? ? ? ? 2
15. q(0) (+) () () ? )
16. ¢ (X) ? ? ? ? ?

Table 3: Comparative Statics Results
Notes.

a Throughout the table, + indicates that the comparative static derivative of the variable in the left
margin with respect to the parameter in the top margin is always positive under (AS-1) through
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(AS-9), whereas (+) indicates that the derivative is ambiguous but is always positive if (AS-10) is
imposed aswell. The symbols-, (-), 0, and (0) are defined analogously.

b. Inrow 4, the entry O meansthat thereisavalue of x between 0 and X, designated x,, for
which I isunchanged. In each column, the value of x; (which generally differs among
columns), depends on all of the exogenous parameters and functions of the model. Whenever
thereisambiguity inrows 5 and 6, such asin the I column when (AS-10) isnot imposed, itis
possible that there is more than one value of x for which Mis unchanged.

c. Inrow 7, the entry O meansthat at x, (or at each value of x, if it isnot unique), thereisaunique
value of q, designated q,, for which P isunchanged. The entry + meansthat at x,, thereare
values of ¢, one of which is designated q,, for which P increases. Analogously for the entry -.

d. Inrow 8, the entry + meansthat P increases at any point (q3, x3) which satisfies g, < g, and
X, < X;, With at least one of the inequalities strict. Analogously for the entry -.

e. Inrow 9, the entry + meansthat P increases at any point (q4, x4) which satisfies g, = g, and
X, = X, with at least one of the inequalities strict. Analogously for the entry -.

f. Inthe N column of the table, rows 4, 7-9, and 12 are marked n.a. (not applicable) since it is not
necessarily possible to find avalue of x, designated x,, for which I isunchanged. There are
alwaysvauesfor x for which I increases, under (AS-1) through (AS-9), and it is possible that
M may increase for al values of x. Also, there are dways values of g and x for which P
increases, under (AS-1) through (AS-9).

g. The comparative static derivativesof T, ¢,(0), and g,(X) are not recorded since they are all
ambiguous.

h. Additional comparative static derivatives can be signed if additional assumptions are made,
such as (i) at all settled locations the optimal trajectory isastable arm, or (ii) structural density is
fixed. The paper containsall of the information needed to sign the derivatives under these
alternative assumptions.
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¢
A

>(

Figure 1: Phase plane for the developer’s problem
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Figure2: Demonstration that dg,/dy >0, dq,/dy >0ona
construction-demolition cycle
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¢
A

0=K,/H

Figure 3: Demonstration that dg,/dy >0 and dg,/dy >0on
astable arm path
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W= +0(L],Y,N)

W=l +a(Ue,Y,N)

>=2

W=1+0(U,Y,N)

wW=Y

Figure 4: Proof of existence and uniqueness of equilibrium
with internal ownership
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NOT FOR PUBLICATION
APPENDIX

The comparative static analysisfor N,a,d, and R, proceeds in much the same way as for

1. N

ay dY
vy <0and &7

Lemma Al: Under (AS-1) to (AS-9)

Proof: Equilibrium is characterized by the pair of equations (30) and (33). Using Lemma

1, (30) can be rewritten as

0,(U.Y,N)-1=0 (i)

Total differentiation of (i) and (33) gives

du dy
Oy, +o,—=+0,.=0 A.la
WAN o AN W (A-13)
dy du dy
—=0,——=+0,—=+0_ A.1b
dN YdN  YdN M (A-1b)
From Lemmal, o = —% which equals - at equilibrium. From (32), o, =—<. From

(A.1b) and (i), & = —Z—S <0 (using Lemmab5). Thenfrom (A.1a)

dY_ 1 L0
BN E
-1 % U—YU (A.2)
Noyy u

which is of ambiguous sign (., >0 (Lemma?2), o, <0 (Lemmas), g, <0 (Lemma5)). A

Theseresults are intuitive. A rise in population makes land more expensive, causing
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differential land rentsto rise. But whether differential land rents rise more or less than
proportionally to the rise in population depends on the easticities of substitution between land and

capital in the production of housing, and between housing and other goods in consumption.

Lemma A2: Under (AS-1) to (AS-9):

a) If &£>0,then & >0 for all valuesof x and q. Consequently, <& >0 for al x 0[0,X) and X

increases.

b) If & <0, there are two possibilities. Either & >0 for al x 0[0,X) and X increases. Or there
isan x, 0[0,x) for which & =0 and apair (X, ql) for which 2 = 0. Under the latter possibility,

there exists afunction ¢(x,q) = 0 for which

. oP dx
|) E— =0, — <0,¢X,ql =0

dN ¢$=0 dq ¢=0 ( ' )

d(dP/oN d(dP/oN
i) Below the functionin x — g space, — op — >0, ( / )<O, ( / )<0
ON 174 aq
9°(oP/oN) _
xdq

P/oN 2(oP/oN P/oN
iy  Above ¢(x,q) =0, d—E<O, 0(5 /0 )<0 J (d /9 ):0 but M is of
ON aq oxadq

uncertain sign.

Proof:

F2) % P, & + P, & >0 (using LemmaA1 and the results from Table 1). Then $& > 0 for

al x 0[0,x) since the developer can do at least as well as pursue the program that was optimal

prior to the population increase. Since N, <0 and M(X) =0, X must increase,

b) Differentiating (41) with respectto N gives

%(U,Y)

rIO Q'(x)

dr(u,Y,x)

dx=1 ) A3
dN (A3
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Then either 41 increases for all x 0[0,X) and X increases. Or 4 increases for some values of x
and decreases for others. Then by continuity, thereisan x, 0[0,X) for which 4 =0 and apair

(x,,0,) for which & = 0. Proceeding asin Lemma8g

9(0P/oN) _as(x). dU . PO
= —+ -_— . A4
ox h? ETL dN ToNC (A4
From Table 1, h, >0 and h, <0; and from LenmaAl, & <0. Thus,

0(dP/oN

M <0 for (x,q) such that 3—; >0. (A.5)
Analogously to (46)

9(9P/oN) _ 9(aP/dq) _ _p W, p 42 (A.6)
aq oN VAN N

From Lemma 7 and the P, row of Table 1, it follows that under (AS-2)

d(dP/oN
%<Ofor al x, g. (A.7)

Egs. (A.5) and (A.7) together imply that the locus of (x,q) for which % =0, ¢(x,q) =0, is
negatively-doped in x-q space. This establishes bi) of the Lemma.

From (A.7), 2 >0 below ¢(x,q) =0in x-q space; and & <0 abovethelocus. The

former result, along with (A 5), implies that 2%™)

(ap/aN)

<0 below ¢(x,q) = 0. But above thelocus,

2(ap/oN) _

cannot be signed. Finally, since P, =0 by (AS-2), dx—aq— N‘** =0. A

Lemma A3:  Under (AS-1) to (AS-9), <2 <0 for al x for which 2 >0 for some quality level.

Proof: Same structure as the proof to Lemma 9. A

We now turn to the supply-side submodel. There are two casesto consider. Inthefirst,

4 >0 foral x0[0,x). Along with (A.7), thisimplies that the perturbation in the rent gradient
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can be decomposed into shifts x >0and y <0. Inthe second, 9% is negative for some x 0J[0,X)

! dN
and positive for others. Applying an analogous argument to that which was employed to prove

Lemma 10, it can be shown that under (AS-10) 4 20 as x= S %, where x, isthe solelocation at

dN<

which <& = 0. Thus, the perturbation in the rent gradient entails y < 0 and )(<O as x>x1

Combining the results for the two cases establishesthat at x =0, y <0Oand x >0, whileat

X=X, y <0and x? Computing the corresponding signs for jﬁ ‘(’fN" ,and qu for the stable-arm

and demolition-cycle casesis | eft to the reader.

2. a

Lemma A4:  Under (AS-1) to (AS9), ¥ <0and &£?

Proof: Equilibrium is characterized by o, (U,Y;a)-1=0and Y = | + o(U,Y;a). Totad
differentiation yields
du dy
oy,—+t0,—+0,=0 A.8a
YU dCY YY da Ya ( )
du dy
o,—+(o,-1)—+0,=0 A.8b
Y da (o )da (A.85)
Thus, & = -2 =ggn(g, ) since g, <0 (Lemma5) and &£ =-2L(oy, +0,, %)
= —%(am - "Y“”") To determine the signs of 42 and 49X, we need to obtain expressions for o,

and o,,. Itwill prove convenient to make atransformation of variablesfrom x to v, where

v = as(x) istransport cost distance. Then

x=s120=090 here 3 > 0. (A.93)

(g0 “OgC’

A~

Since ®(x) = dJ(S(i)),

a

1.,
6k =8 %Da (A.9b)
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Alsosince M(U,Y,x;a) =M(U,Y —as(x)) = N(U,Y - v),
n,=-M,.
And the boundary, U(U,Y), isgivenimplicitly by
n(U,Y-o(U,Y))=R,.
Notethat a entersneither M(Inor (0L Now, from (32),
r xUu.a)

o=5J, O(x)M(U,Y, x; a)dx

S LG Gy )

after making the transformation of variables. Integration of (A.10) by partsyields

o= e, -1 oB .
=ik Ol

Recdling that o enters neither M nor U, and that —ﬁu =N, =4,

J‘":U DDIJdU<O
N

r, v ,0vguQd—

Oy=—=03F—0=—-—010
O NDO o DaUrHO
1 g b goondl)
NJ’Os ZeDaD v du<0
since U, >0 and d(%):—g— H, >0 (Tables1and 2). Thus, & <0and £

(UYH e ) is of uncertain sign (using Lemmas 2,5, and 6). A
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This result too accords with intuition. Land effectively becomes scarcer (the amount of
land within any transport cost distance falls) and whether differential land rentsrise or fall depends

on the relevant e asticities of substitution.

Intuitively, one expects an equiproportional increase in transport costs in a closed city to
increase the profitability of housing at more central locations and to lower its profitability at more
distant locations. However, we have been unable to rule out the curious possibility that the
profitability of housing increase at all locations. The mechanism which generates this curiosum is
asfollows. Because of thefall in utility, the rent gradient as afunction of quality flattens (y < 0).
In the normal demolition-cycle case, this effect by itself causes structural density to rise. But if,
abnormally, it causes structural density to fall and by sufficiently much to offset the reduced
housing demand caused by higher rents and transport costs, the city area has to expand to
accommodate the population, requiring that the profitability of housing increase at the city's

boundary. This curiosum can be circumvented by assuming (AS-10).
Lemma A5:  Under (AS-1) to (AS-10):
a) Thereexistsan x, 0[0,X) for which &1 =0, and apair (x,,q,) for which £ =0.

b) There existsafunction ¢(a,q) = 0 for which

dx

. OP
) —| =0, —| <0, ¢(x,q)=0
ol 40 dq s=0

2

i) Below thisfunction, 97 >0, 29P/9a) - d(oPioa) o F*(0PI0a)
Jda aq ox oxdq
2

iif) Above the function, £<O, M<O, M:O,Whilem is

Ja a9 oxaq

of uncertain sign.

Proof:
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a) From (41),

x(U,Y)

rf, QeONU.Y.x)dx=N.

Differentiation with respect to o, recalling that Q(x) = ‘fs?(xi) and Q'(x) = %(2— Gk )> 0 by
(AS-9), yilds
J_x( ,Y)Qld_rldx - E = O’ (A14)
0 da a

which impliesthat $3 > 0 for some x [J[0,X).

Next we prove that 45 isnot positive for al x 0[O, X). Suppose the contrary. Then since

d(oP/oq) _
Jda I:)q

v 3 <0 (using Py >0 and 92 <0), theincreasein a causes a perturbation of the rent

gradient characterized by x >0and y <0. Then by the results of Table 2, augmented by (AS-
10), % >0 for x 0[0,X), whether the optimal path is a stable-arm path or a demolition-cycle path.

Also, ¥ <0 for x0J[0,X). To establish this, recall (49), &+ = h, % + h, & with h, >0, $2 >0,

’ da
h, <0, and & >0 for at least some q (since §&& > 0). Thus, &+ <0 for at least some q for

x 0[0, %), which implies §# < 0 for dl g for x 0[0,X) by (AS-2). Thus, we have asituation
where, relative to theinitia situation, housing supply expands (housing supply at each location

increases and the area of the city expands since 9 > 0 elsewhere) but housing consumption

contracts, which isinconsistent with equilibrium. This establishes part a) of the Lemma.

The proof to part b) follows from; £ = -0, 2APoa) _ APa) _ _ (9 4 o

=-$+% (hU, +h.P,) whichisnegativeif P, >0 and of ambiguous sign otherwise;

a(aP/da) _ d(ap/a aP/ox 3°P/oxaq
(dq)_(daq) Pqugg<o and E?xdq)_( ) =0. A

Lemma A6: Under (AS-1) to (AS-10):

a) Thereisaunique x, x, 0[0,X) for which 4 =0 and gg;o as xsx1

b) If there is a stable-arm trgjectory at x:

57



February 21, 199617:16

“if x<x, o Yo Y

da da da
~if x>x, u,, %, A g
da da
C) If there isademolition-cycle trgjectory at x:
Tif x< %, —>O(byASlO) qu') ‘;‘luo
—if )(>)(1 ’? %’), d&’)
da da

Y
da

Proof:

a) Now

d(dn/da) _dn, __s(x)u _as(x)0l du _ u dHO
dx da rH r OHda H?dal

Atany x for which 9 =0, % >0 (since x =0and y <0, and using (AS-10), ¢ < 0 (proof of

d[‘l/da)

LemmaADb). Thus, at any such X, < 0, which establishesthat 9L >0 for x<x, and & <

Ofor x>x,.

b) ¢) d) Therest of the lemma follows from the changesin P(q x) implied by the sign of 4%

noted above, and y < 0, along with the results from Table 2. A

Finaly, notethat 2% < 0for all x for which 4= > 0 for some quality level.

3. o

Lemma A7:  Under (AS-1) to (AS-9), 4 >0and 52

58



February 21, 199617:16

Proof: Proceeding as in the other comparative static derivations, sign (42) = sign (o),

i dy — -1 _ 9w
Whlleﬁ—a(am o )

Now, from (32)

Thus
r x(U.v:s) .
g =< [, O0INs(U.Y,x8)dx>0 (Table2). (A.15)
Also, since N, =4,
_ 10, M| 2 x(U,Y;8) (W _ K
0 = PO R+ [ 00 - W (A16)

X5 > 0 since with utility and income fixed, rent remains the same so that a decrease in construction
costs causes profitsto rise; with U, Y, and X fixed, H isunaffected by J, and ;>0 from

Table 2. Combining these resultswith o, >0 (Lemma?2), g, <0 (Lemma5), and o, <0

(Lemma 6) completes the proof. A

Againtheresultisintuitive. Sinceall "profits' accrue to residents, an improvement in the
construction technology makes them better off. And whether the technological improvement,
which reduces the cost of capital, causes the return to land to increase or decrease depends,inter
alia, on the elasticities of substitution between land and capital in housing production and between

housing and other goods in consumption.
Lemma A8: Under (AS-1) to (AS-9):
a) There existsan x, [0, X) for which 93 =0

b) & > 0foral x for which % <0 for some quality level
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Proof: a) From (41)
rIOX(U'Y)Q’(x)I'I(U Y, x;0)dx = N.
Differentiation with respect to 0 yields
e () dUYX0) g (A.17)
do

Since M([Jis continuous, and since 91 must be positive for some x 0[0, X) and negative for other

X, there must be an x for which ¢ = 0.

b) The argument is completely analogous to that used to prove Lemma9. A
Lemma A9: Under (AS-1) to (AS-9)

a) Housing rent may either fall at all settled locations or may rise at some locations and fal at

others.

d(aP/ad) _ as'’

b) ) —=5—= (hJ & +h,P ) which is positive at those locations where P; < 0 and of

ambiguous sign otherwise.

i) ap/d‘s =P,, 9 >0, whichimplies that the perturbation in the rent gradient entails

y>0.

5175
iii) 2P = g

Proof:

a) Housing rent cannot rise at al locations, for then profitswould rise at all locations, which is

inconsistent with Lemma A8a). Theresultsin b) are easily established using earlier arguments. A

Almost all other comparative static results are ambiguous. This should not be surprising

considering that we are examining a change which affects both the construction technology and the
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rent gradient. But it will be useful to explore further the reasons for the ambiguity.

To establish many of the comparative statics results for the changesin |, N, and a -- all

demand-side changes -- we started with alocation x, for which $I = 0. At thislocation, the
gualitative effects of anincreasein A on the rent function and hence (since with a demand-side
change, the landlord's behavior is affected only viathe rent function) on i1, q,, ¢, and T (where
applicable) are the same as those resulting from an increase or decreasein y, as the case may be,
which can be determined per Table 2. Furthermore, in some cases, we were able to establish,

using an argument anal ogous to that employed in Lemma 11, that ¢ % 0 as x %O, for instance.

Then for x < x;, for example, the qualitative effects of anincreasein A on the rent function and
henceon u, q,, ¢, and T arethe same as those resulting from an increase or decreasein y,
combined with adecreasein x, which can again be determined per Table 2. Thus, in some cases

we were able to ascertain the effects of theincreasein A on i, q,, g;,and T at &l locations.

Applying the analogous procedure here -- for a supply-side change -- is problematical.
First, at alocation x, for which 9} = 0, thefall in construction costs must be offset by afall in
"average” rent. The qualitative effects of an increasein & can be decomposed into the direct effect
-- holding the rent function fixed -- and the indirect effects which operate viainduced changesin
the rent function. Thus, the qualitative effects of anincreasein d on u, q,, ¢, and T arethe
same as those resulting from (some average) of those resulting from an increase in 4, holding the
rent function fixed, anincreasein y (LemmaAd9, bii)), and adecreasein x, and arein all cases
ambiguous. Second, the argument analogous to that employed in Lemma 10 is inapplicable here.
That argument depended on 1 and H moving in opposite directions, which may well occur with
ademand-side change (viz, arisein rents typically causes construction at higher density but
reduced housing consumption). But with a change in costs, structural density and housing

consumption tend to move in the same direction.
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4. R,
Lemma A10: Under (AS-1) to (AS-9), &~ <0 and {£-?

Proof: Proceeding as in the other comparative static derivations, sign((;’TUA) =sign oy ,

while & = 21 (g,, - 24%%). From (32)

Oyy o

Og, :%Io e, (U,Y, xR, )dx

:—%CD(Y()<O (since Mg, :—%) (A.18)
and
1_ ..
O, =~ ,0(X) <0. (A.19)

Combining these results with g, >0, g, <0, and g,,, <0 completes the proof. A

Lemma All: Under (AS-1) to (AS-10):

a) Thereexistsan x, 0[0,x) for which {£- =0 and (;’T”éOasx%xl.

b) If there is a stable-arm trgjectory at x:

if XSXl,d—u>0 %<O d&<0

drR, dr, drR,
“if x>x, Ho b, dh_,
dr, drR, dr,
C) If there isademolition-cycle trgjectory at x:

Tif x<x, (;%’Aw (by AS-10), ggo 2 %w
A

du , dg, ., dor,

if x>, 2 e :
“R R, AR,
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d) dx/dR, <0
Proof:

a) Differentiation of (41) with respect to R, yields

x(UYiRy) _dll
r Q' —dx=0 A.20
Io dR, ( )

which by continuity establishes that thereis an x, D[O, X) for which (?T”A =0. Now the analog to
(50) is

d(dr/dR,) _ _as(x)01 du _ p dH
dx r HHdR, HZGR,

E. (A.21)

9(9P/dR,)
aq

Wewishto signthisat x,. Now, has the same sign as §-, negative. Hence, y <O0.
Furthermore, to offset the increase in costs, for profits to remain unchanged requires ¥ > 0. From
Table 2, these changes in the rent function, along with theincrease in R, (which has no direct
effect), imply 45~ >0. Also, 2 =h, £ +h, £ <0. Sinceh, >0, £ <0, h,<0,and &
must increase at some quality levels, dH must decrease at some quality levels. But then by (AS-

(dH/dRA)

2) & — must decrease at all quality levels. Hence, <0 a x;, which by anow-familiar

argument establishes the second part of a).

Parts b) and c) then follow straightforwardly. For x < x,, the total changein R, can be
decomposed into the direct (holding the rent function fixed) changein R, (which has no effect)
along with induced changesin the rent function characterized by y <0 and x > 0. The combined
effecton i, q,, and ¢, can then be ascertained from Table 2. For x > x,, the total changein R,
can be decomposed into the direct change in R,, along with the induced changes in the rent
function, characterized by y <0 and x ? (though > 0 for x "not much greater than x," (and
perhaps for al x O(x,,X)).

Part d) follows from & ‘ <0. A
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For compl eteness, we record a couple of remaining resultsin

Lemma A12: Under (AS-1) to (AS-10)

a) 4 <0 for x0(0,%,) and may decrease for x all theway upto x,.

b) Ateach X, %hasthewmesignas%‘

Proof:

a Thisresult follows from - = h, g+ h, -

b) Thisresult follows from M ==k (hJ U +h, dde) which is analogous to (44).



