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LONG TERM DEPENDENCE IN STOCK RETURNS

Abstract

We test for long term dependence in U.S. stock returns,

analyzing composite and sectoral stock indices and firms'

returns series to evaluate aggregation effects. Fractal

dynamics are not detected in stock indices, but are present in

some firms’ returns series.

1.  Introduction

Long memory, or long term dependence, describes the correlation structure of a

series at long lags. If a series exhibits long memory (or the “biased random walk”), there

is persistent temporal dependence even between distant observations. Such series are

characterized by distinct but nonperiodic cyclical patterns. Mandelbrot (1977)

characterizes long memory processes as having "fractal dimensions." The presence of

long memory dynamics in asset prices would provide evidence against the weak form

of market efficiency as it implies nonlinear dependence in the first moment of the

distribution and hence a potentially predictable component in the series dynamics. It

would also raise issues regarding linear modeling, forecasting, statistical testing of

pricing models based on standard statistical methods, and theoretical and econometric

modeling of asset pricing.

The most widely used tests for fractal dynamics are the rescaled-range (R/S)

analysis introduced by Hurst (1951) and later refined by Mandelbrot (1972, 1975) and
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Mandelbrot and Wallis (1969), the modified R/S analysis introduced by Lo (1991), and

the spectral regression method suggested by Geweke and Porter-Hudak (1983). Long

memory analysis has been conducted for stock returns series (Greene and Fielitz (1977),

Aydogan and Booth (1988), Lo (1991), Cheung, Lai, and Lai (1993), Cheung and Lai

(1995), Chow, Denning, Ferris, and Noronha (1995)) with most evidence suggesting the

absence of fractal structure in stock returns. All these studies have used returns series

on stock indices, whose construction entails a great deal of aggregation. If fractal

structure does exist in individual stock returns series, its presence may be masked in

aggregate returns series. This paper considers that possibility by employing the

spectral regression method to test for long memory in a variety of aggregate and

sectoral stock indices and stock returns series for individual companies.

The plan of this paper is as follows. Section 2 presents the technical details of the

fractional integration test. Empirical results are discussed in Section 3. Finally, in

Section 4 we summarize our results.

2.  The Spectral Regression Test for Long Memory

A flexible and parsimonious way to model both the short term and long term

behavior of a time series is by means of an autoregressive fractionally integrated

moving average (ARFIMA) model. A time series y = { 1y ,..., Ty } with mean δ  follows an

autoregressive fractionally integrated moving average process of order p,d,q( ) ,

denoted by ARFIMA p,d,q( ) , if

Φ(L) d(1−L) ty − δ( ) = Θ(L) tε ,       tε  ~ iid(0, ε
2σ ) (1)
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where L  is the backward-shift operator, Φ(L)  = 1 - 1φ L  - ... - pφ pL , Θ(L) = 1 + 1ϑ L + ...

+ qϑ qL , and d(1−L)  is the fractional differencing operator defined by

d(1−L)  = 
Γ(k − d) kL

Γ(−d)Γ(k +1)
k=0

∞

∑ (2)

with Γ ⋅( )  denoting the gamma, or generalized factorial, function. The arbitrary

restriction of d  to integer values gives rise to the standard autoregressive integrated

moving average (ARIMA) model, rendering the ARIMA model a special case of the

ARFIMA model. The stochastic process y is both stationary and invertible if all roots of

Φ(L)  and Θ(L) lie outside the unit circle and d < 0.5 . The process is nonstationary for

d ≥ 0.5 , as it possesses infinite variance (cf. Granger and Joyeux (1980)). Assuming that

d ∈ −0.5,0.5( )  and d ≠ 0, Hosking (1981) showed that the correlation function, ρ(⋅) , of an

ARFIMA process is proportional to 2d−1j  as j → ∞ . Consequently, the autocorrelations

of the ARFIMA process decay hyperbolically to zero as j → ∞ , which is contrary to the

faster, geometric decay of a stationary ARMA process. For d ∈ 0,0.5( ) , ρ( j)
j=−n

n

∑  diverges

as n → ∞ , and the ARFIMA process is said to exhibit long memory, or long-range

positive dependence. The process exhibits intermediate memory, or long-range

negative dependence, for d ∈ −0.5,0( ).1 The process possesses only short memory for

d = 0 (corresponding to the standard ARMA model). For d ∈ 0.5,1[ ) the process is mean

reverting as there is no long run impact of an innovation to future values of the process.

Geweke and Porter-Hudak (1983) suggested a semi-parametric procedure to

obtain an estimate of the fractional differencing parameter d  based on the slope of the

spectral density function around the angular frequency ξ = 0 . More specifically, let

I(ξ )  be the periodogram of y at frequency ξ  defined by

1  Other authors refer to a process as a long memory process if d ≠ 0 .
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I(ξ )  = 
1

2πT
itξe

t=1

T∑ (yt − y)
2

. (3)

Then the spectral regression is defined by

ln I( λξ ){ } = 0β  + 1β ln sin2 ξλ

2














 + λη ,       λ = 1,..., ν (4)

where λξ = 2πλ
T

λ = 0,...,T − 1( ) denotes the harmonic ordinates of the sample, T  is the

number of observations, and ν  = g T( )  << T  is the number of harmonic ordinates

included in the spectral regression.

Assuming that 
T→∞
lim g T( ) = ∞, 

T→∞
lim

g T( )
T




= 0 , and 
T→∞
lim

ln T( )2

g T( ) = 0, the

negative of the OLS estimate of the slope coefficient in (4) provides an estimate of d .

Geweke and Porter-Hudak (1983) prove consistency and asymptotic normality for

d < 0 , while Robinson (1990) proves consistency for d ∈ 0,0.5( ) . Hassler (1993a,b) proves

consistency and asymptotic normality in the case of Gaussian ARMA innovations in (1).

The spectral regression estimator is not 1/2T  consistent as it will converge at a slower

rate. The theoretical asymptotic variance of the spectral regression error term is known

to be 
2π

6 .

3.  Data and Empirical Estimates

The series studied include three aggregate stock indices: two at daily frequencies

and one at a monthly frequency. We also consider seven sectoral monthly stock indices,

and daily prices for the thirty companies included in the Dow Jones Industrials index.

Further details of the data set (constructed from CRSP Daily Stock Master and
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CITIBASE databases) appear in the tables below. All subsequent analysis is done on the

first-differenced log series (returns series).

Tables 1 and 2 report the empirical estimates for the fractional differencing

parameter d  as well as the test results regarding its statistical significance based on the

spectral regression test. The number of low-frequency periodogram ordinates used in

the spectral regression must be chosen judiciously. Improper inclusion of medium- or

high-frequency periodogram ordinates will contaminate the estimate of d ; at the same

time too small a regression sample will lead to imprecise estimates. We report d

estimates for ν = T 0.50 ,T 0.55,  and  T 0.60  in order to evaluate the sensitivity of our results to

the choice of ν . To test the statistical significance of the d  estimates, two-sided ( d = 0

versus d ≠ 0) as well as one-sided ( d = 0 versus d < 0  and d = 0 versus d > 0 ) tests are

performed. The known theoretical variance of the spectral regression error 
2π

6  is

imposed in the construction of the t − statistic for d .

As Table 1 indicates, there does not appear to be any consistent, convincing

evidence supporting the long memory (biased random walk) hypothesis for the returns

series of any of the aggregate or sectoral stock indices. When we consider the returns

series of the Dow Jones Industrials companies in Table 2, there is scattered evidence of

fractal structure in some of the series. Strong evidence of long memory is only found

for Boeing and Eastman Kodak, while weaker evidence is found for Merck, Sears, and

Woolworth. These returns series exhibit long memory features. In the time domain, long

memory implies that the series eventually exhibit strong positive dependence between

distant observations while, in the frequency domain, the spectral density becomes

unbounded as the frequency approaches zero. For International Paper and Texaco,

there is clear evidence of intermediate memory; weaker evidence exists for Allied

Signal. In the time domain, these returns series exhibit long-range negative dependence

while, in the frequency domain, their spectral density approaches zero as the frequency

approaches zero. For the remaining 22 stock returns series there is no evidence of fractal
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structure. Based upon this evidence, fractal dynamics does not appear to be a universal

feature of stock returns at either the aggregate or disaggregate level. Limited evidence

of fractal structure for some individual companies' stock returns is established, with the

nature of fractional dynamics being dissimilar across these series.

4.  Conclusions

We applied the spectral regression method to test for fractal structure in

aggregate stock returns, sectoral stock returns, and stock returns for the companies

included in the Dow Jones Industrials index. No evidence of fractal structure is found

in the stock indices. Some evidence of long memory is found for five company returns

series while intermediate memory appears to characterize the returns series for three

other companies. There is no obvious characteristic linking firms in these two

groupings. These results highlight the similarities and differences in fractal structure

across different companies’ series, implying that fractal structure (where it exists) may

be masked in stock indices due to aggregation. However, the overall findings from both

aggregate and disaggregate data do not offer convincing evidence against the

martingale model.
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Table 1: Empirical Estimates for the Fractional Differencing Parameter d
for Stock Index Returns

Returns Series Number of
Observations

or Sample
Period

d 0.50( ) d 0.55( ) d 0.60( )

S&P 500 Index (D) 8180 -0.032
(-0.443)

-0.018
(-0.322)

-0.012
(-0.270)

Nasdaq Index (D) 5571 0.057
(0.704)

0.076
(1.182)

0.107

(2.113)**,##

Dow Jones Industrial
Average (M)

47:01-95:11 -0.250

(-1.552)!!
-0.109

(-0.832)
-0.057

(-0.521)

S&P Composite (M) 47:01-95:10 -0.288

(-1.789)*,!!
-0.071

(-0.542)
0.010

(-0.091)

S&P Capital Spending
(M)

47:01-95:10 -0.330

(-2.055)**,!!
-0.068

(-0.519)
-0.062

(-0.573)

S&P Consumer Goods
(M)

47:01-95:10 -0.212

(-1.321)!
0.014

(0.108)
0.014

(0.132)

S&P Financials (M) 70:01-95:10 -0.061
(-0.303)

-0.152
(-0.923)

-0.178

(-1.296)!

S&P Industrials (M) 47:01-95:10 -0.277

(-1.719)*,!!
-0.073

(-0.553)
0.019

(0.176)

S&P Transportation
(M)

70:01-95:10 -0.275

(-1.365)!
-0.204

(-1.234)
-0.195

(-1.422)!

S&P Utilities (M) 47:01-95:10 -0.248

(-1.545)!
-0.201

(-1.524)!
-0.082

(-0.755)

Notes: The last day of observation for the S&P 500 and Nasdaq index returns series is 12/30/94. d(0.50) ,

d(0.55), and d(0.60)  give the d  estimates corresponding to the spectral regression of sample size

ν = 0.50T , ν = 0.55T , and ν = 0.60T  , respectively. The t − statistics are given in parentheses and are

constructed imposing the known theoretical error variance of 
2π

6 . The superscripts ***, **, * indicate

statistical significance for the null hypothesis d = 0  against the alternative d ≠ 0  at the 1, 5, and 10 per cent

levels, respectively. The superscripts ###, ##, # indicate statistical significance for the null hypothesis d = 0

against the one-sided alternative d > 0  at the 1, 5, and 10 per cent levels, respectively. The superscripts !!!,

!!, ! indicate statistical significance for the null hypothesis d = 0  against the one-sided alternative d < 0  at

the 1, 5, and 10 per cent levels, respectively. D (M) stands for daily (monthly) frequency.
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Table 2: Empirical Estimates for the Fractional Differencing Parameter d
for Daily Stock Returns of the Dow Jones Industrials Firms

Stock Returns Series Number of

Observations

d 0.50( ) d 0.55( ) d 0.60( )

ATT 8178 0.018
(0.251)

-0.013
(-0.231)

-0.008
(-0.179)

Allied Signal 8177 -0.125
(-1.709)*,!!

-0.125
(-2.187)**,!!

-0.023
(-0.520)

Alcoa 8179 -0.033
(-0.460)

-0.078
(-1.367)!

-0.087
(-1.940)*,!!

American Express 4453 0.061
(0.697)

0.071
(1.031)

0.002
(0.039)

Bethlehem Steel 8179 -0.073
(-0.999)

-0.052
(-0.905)

-0.037
(-0.834)

Boeing 8179 0.165
(2.249)**,##

0.121
(2.119)**,##

0.078
(1.735)*,##

Caterpillar 8179 0.005
(0.070)

-0.027
(-0.474)

-0.064
(-1.442)#

Chevron 8179 -0.085
(-1.156)

-0.046
(-0.812)

-0.056
(-1.264)

Coca Cola 8179 0.070
(0.953)

0.052
(0.913)

0.050
(1.125)

Disney 8179 0.013
(0.189)

0.036
(0.643)

0.009
(0.218)

DuPont 8178 0.059
(0.809)

0.013
(0.237)

0.013
(0.298)

Eastman Kodak 8179 0.133
(1.816)*,##

0.090
(1.572)##

0.102
(2.276)**,##

Exxon 8179 0.065
(0.889)

-0.068
(-1.184)

-0.070
(-1.568)!

General Electric 8179 -0.012
(-0.173)

0.009
(0.170)

0.020
(0.465)

General Motors 8178 0.020
(0.279)

0.043
(0.758)

0.063
(1.419)#

Goodyear 8179 0.058
(0.799)

0.007
(0.133)

-0.006
(-0.154)

IBM 8176 0.007
(0.102)

-0.037
(-0.646)

0.007
(0.168)

International Paper 8179 -0.094
(-1.285)!

-0.146
(-2.555)**,!!!

-0.097
(-2.166)**,!!

McDonalds 7169 -0.081
(-1.069)

-0.022
(-0.370)

0.050
(1.081)

Merck 8179 0.153
(2.090)**,##

0.097
(1.702)*,##

0.033
(0.745)

Minn. Mining & Mfg. 8179 -0.061
(-0.834)

-0.063
(-1.096)

-0.052
(-1.154)

Morgan JP 6508 -0.049
(-0.626)

-0.003
(-0.055)

-0.024
(-0.496)

Phillip Morris 8178 -0.076
(-1.034)

-0.025
(-0.443)

-0.019
(-0.427)

Procter & Gamble 8179 -0.031
(-0.422)

-0.053
(-0.927)

-0.028
(-0.643)
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Sears 8179 0.040
(0.551)

0.092
(1.615)##

0.111
(2.476)**,###

Texaco 8178 -0.136
(-1.858)*,!!

-0.098
(-1.718)*,!!

-0.078
(-1.748)*,!!

United Carbide 8179 0.080
(1.091)

0.004
(0.071)

0.014
(0.321)

United Technology 8177 0.001
(0.024)

0.024
(0.424)

-0.007
(-0.163)

Westinghouse 8179 0.055
(0.756)

0.107
(1.861)*,##

0.067
(1.508)#

Woolworth 8179 0.097
(1.322)

0.091
(1.585)#

0.095
(2.127)**,##

Notes: The last day of observation for the Dow Jones Industrials companies' returns series is 12/30/94. All
series are of daily frequency. See notes in Table 1 for explanation of table.


