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FRACTIONAL DYNAMICS IN A SYSTEM OF

LONG TERM INTERNATIONAL INTEREST RATES

Abstract

DeGennaro, Kunkel, and Lee (1994) studied the long run dynamics of a system of
long term interest rates of five industrialized countries by means of sophisticated
cointegration methods. They found little evidence in support of the cointegration
hypothesis, thus concluding that a separate set of fundamentals drives the dynamics
of each of the individual long term interest rate series. In this study, we extend the
existing literature by exploring the possibility of very slow mean reverting
dynamics (fractional cointegration) in the same system of five long term interest
rates. We use the GPH test as our testing methodology for fractional integration and
cointegration. Through rigorous investigation of the full system of the five long term
interest rate series and its various subsystems, we provide evidence that the error
correction term follows a fractionally integrated process with long memory, that is,
it is mean reverting, though not covariance stationary. Despite significant
persistence in the short run, a shock to the system of long term interest rates
eventually dissipates so that an equilibrium relationship prevails in the long run.



-1-

FRACTIONAL DYNAMICS IN A SYSTEM OF

LONG TERM INTERNATIONAL INTEREST RATES

I.  Introduction

DeGennaro, Kunkel, and Lee (1994), DKL hereafter, rigorously investigated

the integration and cointegration properties of interest rates on long term

government bonds issued by the U.S., Canada, Germany, U.K., and Japan. Using a

number of unit root and cointegration tests, they established that the long term

interest rates of these industrial countries are individually best characterized as

integrated processes of order one but there is no equilibrium relationship binding

them together in the long run. This absence of cointegration implies that each

interest rate series follows its own set of fundamentals and that the development of

error correction models is not warranted, as it is not likely to improve forecasting

performance. This evidence is in contrast to that of Mougoue (1992) for a system of

short term interest rates (who finds a cointegrating relationship) but is in agreement

with that of Diebold et al. (1994) for a system of foreign exchange rates (no evidence

of a cointegrating relationship).

This study extends the existing literature by allowing deviations from

equilibrium in the system of long term international interest rates to follow a

fractionally integrated process. The cointegration methods employed by DKL

(Johansen, Stock-Watson) only allow for an integer order of integration in the

equilibrium error process, which is a rather restrictive and ad hoc assumption. We

suggest a generalized form of cointegration, known as fractional cointegration, as a

characterization of the long run dynamics of the system of long term interest rates.

Fractional cointegration analysis allows the integration order of the error correction
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term to take any value on the real line, that is, to be fractionally integrated. By doing

so, the knife-edged I 1( ) and I 0( ) distinction is avoided and a wider range of mean

reverting behavior can be captured. More specifically, a fractionally integrated error

correction term implies the existence of a long run equilibrium relationship, as it

can be shown to be mean reverting, though not exactly I 0( ). Despite its significant

persistence in the short run, the effect of a shock to the system eventually dissipates,

so that an equilibrium relationship among the system's variables prevails in the long

run. Fractional cointegration, which uses the notion of fractional differencing

suggested by Granger and Joyeux (1980) and Hosking (1981), was first proposed by

Engle and Granger (1987). It has been applied by Cheung and Lai (1993) and Baillie

and Bollerslev (1994) among others. The authors of the latter study found the system

of seven daily foreign exchange rates to be fractionally cointegrated, contrary to the

conclusions of the study by Diebold et al., which was based on standard

cointegration methodology. In this study, we apply fractional cointegration analysis

to the system of five long term interest rates investigated by DKL. We find that each

individual interest rate series possesses a single unit root but the error correction

term follows a fractionally differenced process. The system of long term interest

rates is found to be cointegrated, exhibiting subtle mean reverting dynamics.

The plan of the paper is as follows. Section 2 presents the concepts of

fractional integration and cointegration analysis and the fractional integration test

employed. The data and empirical results are discussed in Section 3. Finally, in

Section 4 we summarize our results and offer suggestions for future research.
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2.  Econometric Methodology

A series is said to be integrated of order d , denoted by I(d), if it has a

stationary, invertible autoregressive moving average (ARMA) representation after

applying the differencing operator d(1−L) . The series is said to be fractionally

integrated if d  is not an integer. A system of time series y
t

= 1ty , 2ty ,..., nty{ }is said to

be cointegrated of order I(d,b) if the linear combination tz = α ty , called the error

correction term, is I(d − b)  with b > 0 . Under the general hypothesis of cointegration

of order I(d,b) with b > 0 , Cheung and Lai (1993) showed that the least squares

estimate of the cointegrating vector is consistent and converges at the rate O bT( ) as

opposed to the rate of O T( )  in standard cointegration analysis in which d = b = 1. The

system of variables is said to be fractionally cointegrated if the error correction term

tz  is fractionally integrated. The relevant case in this study is one in which the I(1)

hypothesis for the individual time series cannot be rejected, but the error correction

term is found to be I(1 − b) with b > 0  and taking a noninteger value. In this scenario,

the error correction term is mean reverting, though not necessarily covariance

stationary, as a shock to the system persists, but it eventually dies out. There is a

binding long run equilibrium among the system variables even though adjustments

to equilibrium may take a long time to complete.

Fractional cointegration analysis is implemented in two steps. In the first step,

the error correction term is obtained through ordinary least squares estimation of

the cointegrating regression. The error correction term is subjected to a unit root test

in the second step to determine its order of integration. The unit root test employed

allows for a fractional exponent in the differencing process of the error correction

term.

Granger (1986) showed that the fractionally cointegrated system has an error

representation of the form
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Ψ L( ) 1 − L( )d
ty = −γ 1 − 1 − L( )b[ ] 1 − L( )d−b

tz + c L( ) tε (1)

where Ψ L( ) is a matrix polynomial in the lag operator L  with Ψ 0( ) being the

identity matrix, c L( )  is a finite lag polynomial, and tε  is a white noise error term. If

expanded in powers of L , the lag function 1 − 1 − L( )b[ ] has no term in 0L , so only

lagged values of the error correction term tz  enter the right hand side of equation

(1). This suggests that improvements in the forecasting accuracy of the system's

variables can be attained over that of the benchmark ARMA models.

The hypothesis of fractional cointegration requires testing for fractional

integration in the error correction term. The fractional testing methodology

employed here is the semi-parametric test suggested by Geweke and Porter-Hudak

(GPH, 1983). We now proceed to describe the properties of a fractionally integrated

process and the GPH testing method.

A flexible and parsimonious way to model short term and long term behavior

of time series is by means of an autoregressive fractionally integrated moving

average (ARFIMA) model. A time series y = { 1y ,..., Ty } follows an autoregressive

fractionally integrated moving average process of order p,d,q( )  with mean µ ,

denoted by ARFIMA p,d,q( ) , if

Φ(L) d(1−L) ty − µ( ) = Θ(L) tu ,       tε  ~ i.i.d.(0, ε
2σ ) (2)

where L  is the backward-shift operator, Φ(L)  = 1 - 1φ L  - ... - pφ pL , Θ(L) = 1 + 1ϑ L +

... + qϑ qL , and d(1−L)  is the fractional differencing operator defined by

d(1−L)  = 
Γ(k − d) kL

Γ(−d)Γ(k +1)
k=0

∞

∑ (3)
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with Γ ⋅( )  denoting the gamma, or generalized factorial, function. The parameter d  is

allowed to assume any real value. The arbitrary restriction of d  to integer values

gives rise to the standard autoregressive integrated moving average (ARIMA)

model. The stochastic process y is both stationary and invertible if all roots of Φ(L)

and Θ(L) lie outside the unit circle and d < 1
2 . The process is nonstationary for

d ≥ 1
2 , as it possesses infinite variance, i.e. see Granger and Joyeux (1980).

ARFIMA series exhibit both long term dependence and short memory. The

effect of the differencing parameter d  on observations widely separated in time

decays hyperbolically as the lag increases, thus describing the high-order

correlation structure of the series. At the same time, the temporal effects of the

autoregressive and moving average parameters, Φ(L)  and Θ(L), decay

exponentially, describing the low-order correlation structure of the series.

Assuming that − 1
2 < d < 1

2  and d ≠ 0, Hosking (1981) showed that the correlation

function, ρ(⋅) , of an ARFIMA process is proportional to 2d−1j  as j → ∞ .

Consequently, the autocorrelations of the ARFIMA process decay hyperbolically to

zero as j → ∞ , which is contrary to the faster, geometric decay of a stationary ARMA

process. For 0 < d < 1
2 , ρ(k)

k=−n

n
∑  diverges as n → ∞ , and the ARFIMA process is said

to exhibit long memory.1 The process exhibits short memory for d = 0 and

intermediate memory for − 1
2 < d < 0 . For d < 1 the series is mean-reverting in that

the cumulative impulse response of future values of the series to a unit innovation

at an infinite horizon, denoted by ∞c , is zero even though it is not covariance

stationary for 1
2 < d < 1. For d = 1, ∞c  is finite and nonzero; and for d > 1, ∞c  is

infinite.

The existence of a fractional order of integration can be determined by testing

for the statistical significance of the sample differencing parameter d , which is also

interpreted as the long memory parameter. To estimate d  and perform hypothesis
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testing, we employ the semi-parametric procedure suggested by Geweke and

Porter-Hudak (1983). They obtain an estimate of d  based on the slope of the spectral

density function around the angular frequency ξ = 0 . More specifically, let I(ξ )  be

the periodogram of y at frequency ξ  defined by

I(ξ )  = 
1

2πT
itξe

t=1

T∑ (yt − y)
2

. (4)

Then the spectral regression is defined by

ln I( λξ ){ } = 0β  + 1β ln sin2 ξλ

2














 + λη ,       λ = 1,..., ν (5)

where λξ = 2πλ
T

λ = 0,...,T − 1( ) denotes the Fourier frequencies of the sample, T  is

the number of observations, and ν  = g( T ) << T  is the number of Fourier frequencies

included in the spectral regression.

Assuming that 
T→∞
lim g T( ) = ∞, 

T→∞
lim

g T( )
T




= 0 , and 
T→∞
lim

ln T( )2

g T( ) = 0, the

negative of the OLS estimate of the slope coefficient in (5) provides an estimate of d .

Geweke and Porter-Hudak (1983) prove consistency and asymptotic normality for

d < 0 , while Robinson (1990) proves consistency for 0 < d < 1
2 . Hassler (1993) proves

consistency and asymptotic normality in the case of Gaussian ARMA innovations in

(1). The spectral regression estimator is not 1/2T  consistent and will converge at a

slower rate. The theoretical asymptotic variance of the spectral regression error term

is known to be 
2π

6 .

To ensure that stationarity and invertibility are achieved, we apply the GPH

test to the first differences of the series. The differencing parameter in the first-

differenced data is denoted by d̃  in which case the fractional differencing parameter

for the level series is d = 1 + d̃ .
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3.  Data and Empirical Estimates

A. Data

The data set is that employed by DKL, consisting of interest rates on long term

government bonds issued by the central governments of the U.S., Canada, Germany,

U.K., and Japan. They are of monthly frequency and span the period January 1967 to

December 1990 for a total of 288 observations. They are obtained from the

International Financial Statistics data tape of the International Monetary Fund.

B. Fractional Integration and Cointegration Analysis

Before we proceed with our analysis, we briefly describe the results obtained

by DKL. By means of Dickey-Fuller (Dickey and Fuller (1981), Fuller (1976)),

Phillips-Perron (Phillips (1987), Phillips and Perron (1988)), KPSS (Kwiatkowski,

Phillips, Schmidt, and Shin (1992)) and Bayesian (Sims (1988)) unit root tests, DKL

established that each interest rate series is I 1( ). They then applied the Johansen

(Johansen and Juselius (1990)) and Stock & Watson (1988) cointegration methods and

established the absence of any common nonstationary components in the system of

long term interest rates. We have reproduced the results obtained by DKL.

As the unit root tests employed by DKL allow for only integer orders of

integration, the interest rate series are each first checked for a fractional exponent in

the differencing process using the GPH test. The unit-root hypothesis is tested by

determining whether the GPH estimate of d̃  from the first-differenced interest rate
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series is significantly different from zero. The number of low-frequency

periodogram ordinates used in the spectral regression in (5) must be chosen

judiciously. Improper inclusion of medium- or high-frequency periodogram

ordinates will contaminate the estimate of d̃ ; at the same time too small a regression

sample will lead to imprecise estimates. For both the interest rate series as well as the

error correction term below, we report d̃  estimates for   ν = 0.55T , 0.575T , and 0.60T  t o

check the sensitivity of our results to the choice of ν . This choice is made in light of

the recommended choice by Geweke and Porter-Hudak, based on forecasting

experiments, and the test performance of simulation experiments conducted by

Cheung and Lai (1993). Table 1 reports the empirical estimates for the fractional

differencing parameter d̃ = 1 − d  as well as the test results regarding its statistical

significance based on the GPH test. To test the statistical significance of the d̃

estimates, two-sided ( d̃ = 0 versus d̃ ≠ 0) as well as one-sided ( d̃ = 0 versus d̃ < 0  and

d̃ = 0 versus d̃ > 0) tests are performed. We have imposed the known theoretical

variance of the spectral regression error 
2π

6  in the construction of the t − statistic

for d̃  in order to increase estimation efficiency. The GPH test statistics cannot reject

the unit-root null hypothesis for any interest rate series. Some evidence of long

memory is obtained for the Japanese interest rate series but it is not robust across the

various sample sizes of the spectral regression considered. Consistent with evidence

obtained by DKL based on integer order unit root tests, the results obtained here

support the hypothesis that each interest rate series possesses a single unit root, that

is, it is I 1( ).

We now turn to investigate the time dependencies in the error correction term

of the system of long term interest rates. In the classical paradigm of cointegration,

the system variables ty  are I 1( ) and the error correction term tz = α ty  is I 0( ). This

I 1( ) versus I 0( ) characterization of the low frequency properties of the error

correction term is strict and ad hoc as the error correction term can be mean



-9-

reverting without being exactly I 0( ). The error correction term could be I d( ) with

0 < d < 1, in which case deviations from equilibrium are persistent but the

cumulative impulse response of a shock to the system equals zero at an infinite

horizon. In this case, the error correction term follows a fractionally integrated

process and the system's variables form a fractionally cointegrated system. It must

be noted that, by simulation methods, Diebold and Rudebusch (1991) found that

standard unit root tests have very low power against fractional alternatives. Cheung

and Lai (1993) found similar evidence when the unit root null hypothesis for the

error correction term is tested against fractional alternatives.

The hypothesis of fractional cointegration requires testing for fractional

integration in the error correction term. The GPH test can be used for that purpose

but the critical values for the GPH test derived from the standard normal

distribution cannot be used in testing for fractional cointegration. This is due to the

fact that the error correction term is not actually observed but estimated by

minimizing the residual variance of the cointegrating regression. The error

correction term thus obtained tends to be biased toward stationarity, causing the

null hypothesis of non-cointegration in the GPH test to be rejected more often than

suggested by the nominal size of the GPH test. Since the critical values for the GPH

test for cointegration are non-standard, we estimate them through Monte Carlo

simulations. Table 2 reports the empirical size of the GPH test for cointegration

corresponding to our sample size of 288 observations for various dimensions of the

system and sample sizes of the spectral regression. As seen, the empirical

distribution of the GPH test statistic for cointegration is negatively skewed, which is

consistent with the argument above that critical values from the standard normal

distribution would bias inference toward finding cointegration too often. It is also

apparent that the empirical size depends upon the dimension of the system.
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To ensure robustness of our evidence as well as to obtain insights into the

long term dynamics of the system of interest rates, we test for fractional

cointegration for the full system as well as for all possible subsystems. More

specifically, we investigate the low frequency properties of the error correction term

obtained from estimating all possible bivariate, trivariate, and four-variate

subsystems of interest rates as well as the full system. For all cases considered, we

run the cointegrating regression with all possible normalizations. However, we

report results for those cases for which the GPH test statistics are statistically

significant and for those normalizations in each subsystem which result in the

highest adjusted coefficient of determination R2( ) in the corresponding

cointegrating regression.2

Table 3 reports the GPH cointegration test results. Concentrating first at the

bivariate systems of interest rates, there is evidence of fractional cointegration only

between the Canadian and U.S. interest rate series. This finding is hardly surprising

given the similarities and interdependencies between the two economies. The error

correction term corresponding to this subsystem is not covariance stationary as

0.5 < d < 1 but it is mean reverting. For no other bivariate subsystem is the null

hypothesis of no cointegration rejected.

Examining the trivariate systems of interest rates, we find evidence of

fractional cointegration for the subsystems of interest rates of the following

countries: (Canada, U.S., Germany), (Canada, U.S., U.K.), and (Canada, U.S., Japan).

A common feature of these three fractionally cointegrated subsystems is the

inclusion of the Canadian and U.S. interest rates in each of them. The same pattern is

evident in two subsystems of four interest rates: (Canada, U.S., Germany, U.K.) and

(Canada, U.S., Germany,  Japan), for which evidence of a mean reverting, though not

covariance stationary, error correction term is obtained.
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The full system of long term interest rates is now investigated. As Table 3

reports, all estimates of the fractional differencing parameter for the error correction

term lie between 0 and 1. Formal hypothesis testing indicates that d < 1 except for the

case corresponding to a sample size of the spectral regression of 0.55T . In this case,

the fractional differencing parameter is large but it is associated with a rather large

standard error, and the null hypothesis of a unit root is not rejected. For the other

two sizes of the spectral regression considered, the evidence supports the hypothesis

that d < 1.

The overall evidence from the full system of interest rates and the various

subsystems suggests that the error correction term follows a fractionally differenced

process with long memory. The evidence indicates that there exists a binding long

run equilibrium relationship among the long term interest rates of the five major

industrial countries. Even though the individual interest rate series wander widely,

deviations from the cointegrating relationship are mean-reverting indicating that a

shock to the system will eventually die out, and an equilibrium relationship among

the interest rates will prevail in the long run.

To obtain further insight into the long run behavior of the system of long term

interest rates, Figures 1 though 8 graph the first 60 autocorrelation coefficients of the

error correction terms obtained from the cointegrating regressions reported in Table

3. Concentrating first on the correlogram of the error correction term from the full

system, the autocorrelation function appears to decay at a rather rapid rate. The

shape of the autocorrelation function of the error correction term differs greatly

from the shape of the autocorrelation function of a typical I(1)  series, which exhibits

a very slow linear decay. For comparison purposes, we graph in Figure 9 the sample

autocorrelation function of the interest rate series for the U.S., which was found to be

I(1) . A visual inspection of the sample autocorrelation function clearly suggests

differences in the dynamical behavior between the error correction term and an I 1( )
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process. It is immediately clear that the error correction term is a long memory

process with long term cycles in its autocorrelation. However, standard

cointegration tests mistakenly interpret the subtle mean reverting dynamics in the

error correction term as an indication of I 1( ) behavior. The evidence is similar for

the error correction terms obtained from the fractionally cointegrated subsystems of

long term interest rates.

Evidence of fractional cointegration in the system of long term interest rates

raises the possibility of improved forecasting performance through the

development of an appropriate error correction model. Given that the system of

interest rates is I(1,b) , it has an error correction representation of the form

Ψ L( ) 1 − L( ) ty = −γ 1 − 1 − L( )b[ ] 1 − L( )1−b
tz + c L( ) tε . (6)

This representation involves only I 0( ) terms since after expanding the lag function

in square brackets in terms of powers of L , only lagged values of the error

correction term tz  enter in the right hand side of equation (6). Adding the deviations

from the cointegrating relationship in a VAR model of interest rates should improve

predictive accuracy. Given that the impact of long memory is likely to be persistent,

any improvement in forecasting accuracy should be apparent over long forecasting

horizons. The development of such an error correction model is beyond the scope of

this paper.

Finally, the possibility of the need to have a time series representation more

general than an ARFIMA model to completely describe the fractional behavior of

the error correction term is now investigated. As Figures 1 through 8 indicate, the

autocorrelation coefficients for the error correction term do not exhibit a monotonic

decline, but rather sinusoidal behavior. A more complete description of cyclical

components in the autocorrelation function for the error correction term necessitates
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the use a model that can allow for long memory harmonic behavior. One possible

candidate is the Gegenbauer autoregressive moving average (GARMA) model

considered by Gray, Zhang, and Woodward (1989), which makes use of the

generating function of the Gegenbauer polynomials. The general form of the

GARMA p,u,λ ,q( ) model, λ ≠ 0 , is given by

Φ(L) λ(1−2uL+ 2L ) tz = Θ(L) tε (7)

which reduces to the ARFIMA model for u = 1 and λ = d
2 . Provided that all roots of

Φ(L)  and Θ(L) lie outside the unit circle, the process y is a long memory process if

0 < λ < 1
4  when u = ±1 or 0 < λ < 1

2  when u < 1. The autocorrelation function, ρ(.),

of the GARMA process for 0 < λ < 1
2  and u < 1 is proportional to 2λ −1j sin πλ − j 0ω( )

as j → ∞ , where 0ω  is the Gegenbauer frequency.

The significance of the extension to a GARMA model is the inclusion of

periodic or quasi-periodic data in the long memory model.3 A GARMA model for

the error correction term might be able to account for the periodic component in its

autocorrelation function. Given the dearth of literature considering parameter

estimation of the GARMA model, this possibility is not pursued here.

4.  Conclusions and Implications

We reexamined the long run dynamics of a system of long term interest rates

of the U.S., Canada, Germany, the U.K., and Japan by allowing deviations from

equilibrium to follow a fractionally integrated process (fractional cointegration).

Contrary to previous evidence by DeGennaro et al. (1994), which was based on

cointegration tests allowing for only integer orders of integration in the error
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correction term, we find that the long term interest rates form a fractionally

cointegrated system. Even though each interest rate series is best characterized as a

unit root process, the system of interest rates appears to possess a common

fractional, nonstationary component. Shocks to the system exhibit significant

persistence in the short run but they eventually dissipate, so that an equilibrium

relationship is obeyed in the long run. Close examinination of the long run behavior

of the various subsystems of interest rates identifies a strong comovement between

the Canadian and U.S. interest rates, which appears to be robust with respect to the

dimension of the system. This is hardly surprising considering the strong ties

between the two economies. Our evidence is consistent with that of Baillie and

Bollerslev (1994) that a fractional cointegrating relationship exists among daily

exchange rates for seven major currencies.

Our findings have several implications concerning modeling and forecasting

of long term interest rates. There appears to be a common set of fundamentals that

binds the long term interest rates together in the long run. Two reasons can be

hypothesized to account for the presence of long memory in the cointegrating

relationship among the long term interest rates. One reason could be the presence of

long memory in the common set of fundamentals. Another possible reason to

account for the observed long term behavior is the periodic interventions of the

monetary authorities to affect the level or direction of interest rates. A direct

implication of the presence of cointegration is the possibility of improved

forecasting, especially over longer forecasting horizons via the estimation of an

appropriate error correction model. However, it must be noted that estimation of

such an error correction model does not automatically imply improvements in near-

term forecasting accuracy. The impact of long memory is, by definition, spread over

a lengthy period, so that any improvement in forecasting accuracy may only be

apparent in the very long run.
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Future research should extend the framework of fractional cointegration to a

system of international short term interest rates. Even though Mougoue (1992) found

that such a system exhibits cointegration, utilizing a more appropriate VAR

specification in the Johansen procedure might overturn his original conclusion.

Also, the possibility that nonlinear cointegration might exist should also be

addressed.
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Notes

1 Some authors refer to a process as a long memory process for all d ≠ 0.

2  A high R 2  in the cointegrating regression is a desirable feature since Monte Carlo

simulations have shown that the bias in estimating the cointegrating vector

diminishes as R 2  approaches unity (Banerjee, Dolado, Hendry, and Smith (1986)).

The strongest GPH evidence corresponds to the cointegrating regressions with the

normalization that results in the highest R 2 . Full GPH test results for all subsystems

with all possible normalizations are available upon request from the authors.

3  While the ARFIMA model has a peak in the spectrum at f = 0 , the GARMA

process can model long term periodic behavior for any frequency 0 ≤ f ≤ 0.5.
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Table 1: Empirical Estimates for the Fractional-Differencing Parameter d̃

Interest Rate Series d̃ 0.55( ) d̃ 0.575( ) d̃ 0.60( )
U.S. 0.106

(0.626)
0.147

(0.939)
0.054

(0.382)
Canada 0.075

(0.443)
0.125

(0.801)
0.017

(0.121)
Germany 0.093

(0.551)
0.113

(0.723)
0.106

(0.746)
U.K. -0.067

(-0.396)
-0.040

(-0.257)
-0.074

(-0.520)
Japan 0.336

(1.973)**,##
0.190

(1.215)
0.131

(0.917)

Notes: d̃(0.55) , d̃(0.575) , and d̃(0.60)  give the d̃  estimates corresponding to the GPH spectral
regression of sample size ν = 0.55T  , ν = 0.575T , and ν = 0.60T , respectively. The t − statistics are
given in parentheses and are constructed imposing the known theoretical error variance of

2π
6 . The superscripts ***, **, * indicate statistical significance for the null hypothesis

d̃ = 0 d = 1( )  against the alternative d̃ ≠ 0 d ≠ 1( )  at the 1, 5, and 10 per cent levels, respectively.

The superscripts ###, ##, # indicate statistical significance for the null hypothesis d̃ = 0 d = 1( )
against the one-sided alternative d̃ > 0 d > 1( )  at the 1, 5, and 10 per cent levels, respectively.
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Figure 1:  Correlogram of the Error Correction Term for the System 
of Interest Rates for Canada and U.S.

Correlation Order

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Figure 2:  Correlogram of the Error Correction Term for the System 
of Interest Rates for Canada, U.S., and Germany

Correlation Order



-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Figure 3:  Correlogram of the Error Correction Term for the System 
of Interest Rates for Canada, U.S., and U.K.
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Figure 5:  Correlogram of the Error Correction Term for the System 
of Interest Rates for Canada, U.S., Germany, and U.K.
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Figure 7:  Correlogram of the Error Correction Term for the System 
of Interest Rates for Canada, U.S., U.K., and Japan
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Table 2.  Empirical Size for the GPH Test for Cointegration

Dimension of the System
2 3 4 5

Percentile µ = 0.55 µ = 0.575 µ = 0.60 µ = 0.55 µ = 0.575 µ = 0.60 µ = 0.55 µ = 0.575 µ = 0.60 µ = 0.55 µ = 0.575 µ = 0.60
0.005 -3.190 -3.081 -3.152 -3.611 -3.560 -3.513 -4.064 -4.016 -4.003 -4.438 -4.425 -4.377
0.010 -2.840 -2.778 -2.845 -3.235 -3.194 -3.185 -3.670 -3.641 -3.624 -4.098 -4.048 -4.012
0.025 -2.350 -2.324 -2.346 -2.719 -2.703 -2.698 -3.129 -3.114 -3.100 -3.542 -3.504 -3.507
0.050 -1.956 -1.950 -1.955 -2.306 -2.304 -2.290 -2.705 -2.703 -2.691 -3.093 -3.064 -3.076
0.100 -1.520 -1.528 -1.525 -1.857 -1.862 -1.841 -2.260 -2.244 -2.237 -2.626 -2.595 -2.604
0.200 -1.034 -1.040 -1.034 -1.352 -1.347 -1.342 -1.722 -1.708 -1.709 -2.074 -2.043 -2.055
0.300 -0.692 -0.693 -0.692 -1.005 -0.999 -0.994 -1.353 -1.344 -1.346 -1.685 -1.662 -1.674
0.400 -0.415 -0.415 -0.412 -0.715 -0.706 -0.700 -1.046 -1.038 -1.040 -1.367 -1.352 -1.357
0.500 -0.160 -0.163 -0.152 -0.453 -0.445 -0.434 -0.766 -0.761 -0.764 -1.073 -1.067 -1.065
0.600 0.083 0.081 0.096 -0.190 -0.188 -0.171 -0.495 -0.484 -0.493 -0.798 -0.787 -0.782
0.700 0.339 0.343 0.361 0.075 0.086 0.092 -0.216 -0.208 -0.207 -0.506 -0.491 -0.486
0.800 0.637 0.646 0.664 0.383 0.394 0.406 0.104 0.110 0.121 -0.175 -0.166 -0.147
0.900 1.048 1.043 1.062 0.812 0.816 0.837 0.543 0.546 0.561 0.276 0.282 0.302
0.950 1.385 1.378 1.401 1.147 1.168 1.179 0.903 0.909 0.921 0.641 0.650 0.681
0.975 1.669 1.674 1.702 1.461 1.452 1.477 1.210 1.205 1.235 0.945 0.962 0.997
0.990 2.010 2.021 2.027 1.798 1.780 1.832 1.555 1.564 1.582 1.326 1.329 1.362
0.995 2.249 2.254 2.273 2.031 2.036 2.065 1.810 1.815 1.807 1.570 1.570 1.619

Mean -0.208 -0.207 -0.198 -0.497 -0.491 -0.479 -0.820 -0.812 -0.808 -1.135 -1.118 -1.115
Skewness -0.284 -0.268 -0.278 -0.295 -0.285 -0.272 -0.295 -0.292 -0.269 -0.297 -0.293 -0.259
Excess Kurtosis 0.383 0.348 0.329 0.400 0.335 0.342 0.316 0.308 0.278 0.293 0.277 0.237

Notes: The sample size for the GPH spectral regression is given by ν = µT , where T  equals 288, the number of observations in our sample, and
µ = 0.55, 0.575,and 0.60 . Dimension of the system refers to the number of variables in the system. The empirical size is based on 50,000 replications,
assuming that the true system consists of an appropriate number of non-cointegrated random-walk processes, where the number of variables
corresponds to the dimension of the system.



Table 3: Empirical Estimates for the Cointegration Fractional-Differencing Parameter d̃

System of Interest Rate Series Cointegrating Vector 2R d̃ 0.55( ) d̃ 0.575( ) d̃ 0.60( )
Canada-U.S. (1.000, 0.971, 1.341) 0.945

-0.316
(-1.856)‡

-0.384
(-2.447)**,‡‡

-0.412
(-2.878)**,‡‡‡

Canada-U.S.-Germany (1.000, 0.968, 0.015, 1.250) 0.945
-0.329

(-1.934)‡
-0.396

(-2.523)*,‡‡
-0.425

(-2.973)**,‡‡

Canada-U.S.-U.K. (1.000, 0.939, 0.062, 0.925) 0.948
-0.384

(-2.255)‡
-0.459

(-2.927)**,‡‡
-0.488

(-3.414)**,‡‡‡

Canada-U.S.-Japan (1.000, 0.974, -0.026, 1.499) 0.945
-0.288

(-1.694)
-0.359

(-2.288)‡
-0.386

(-2.699)**,‡‡

Canada-U.S.-Germany-U.K. (1.000, 0.941, -0.030, 0.070) 0.948
-0.363

(-2.133)
-0.442

(-2.815)*,‡‡
-0.467

(-3.266)**,‡‡

Canada-U.S.-Germany-Japan (1.000, 0.965, 0.073, 0.072, 1.349) 0.946
-0.296

(-1.740)
-0.364

(-2.320)‡
-0.398

(-2.783)*,‡‡

Canada-U.S.-U.K.-Japan (1.000, 0.924, 0.121, -0.135, 1.357) 0.952
-0.310

(-1.821)
-0.398

(-2.535)‡
-0.415

(-2.902)*,‡‡

Canada-U.S.-Germany-U.K.-Japan (1.000, 0.912, 0.088, 0.125, -0.195, 1.170) 0.953 -0.348
(-2.047)

-0.428
(-2.728)‡

-0.447
(-3.126)*,‡‡

Notes: The first column gives the countries for which the interest rate series enter the cointegrated system. The second column gives the
cointegrating vector for the corresponding cointegrated system: The normalizing variable, that is, the regressand has a coefficient value of unity

while the last term in the cointegrating vector gives the coefficient value for the constant term. 2R  is the adjusted coefficient of determination in the

corresponding cointegrating regression. d̃(0.55) , d̃(0.575) , and d̃(0.60)  give the d̃  estimates corresponding to the GPH spectral regression of
sample size ν = 0.55T  , ν = 0.575T , and ν = 0.60T , respectively, for the error correction term obtained from the corresponding cointegrating

regression. The t − statistics are given in parentheses and are constructed imposing the known theoretical error variance of 
2π

6 . The superscripts

***, **, * indicate statistical significance for the null hypothesis d̃ = 0 d = 1( )  against the alternative d̃ ≠ 0 d ≠ 1( )  at the 1, 5, and 10 per cent levels,

respectively. The superscripts ‡‡‡, ‡‡, ‡ indicate statistical significance for the null hypothesis d̃ = 0 d = 1( )  against the one-sided alternative

d̃ < 0 d < 1( )  at the 1, 5, and 10 per cent levels, respectively. Critical values are based on the simulated values presented in Table 2.


