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Abstract

Threshold models have a wide variety of applications in economics. Direct applications
include models of separating and multiple equilibria. Other applications include empirical
sample splitting when the sample split is based on a continuously-distributed variable such
as firm size. In addition, threshold models may be used as a parsimonious strategy for non-
parametric function estimation. For example, the threshold autoregressive model (TAR) is
popular in the non-linear time series literature.

Threshold models also emerge as special cases of more complex statistical frameworks,
such as mixture models, switching models, Markov switching models, and smooth transition
threshold models. It may be important to understand the statistical properties of threshold
models as a preliminary step in the development of statistical tools to handle these more
complicated structures.

Despite the large number of potential applications, the statistical theory of threshold es-
timation is undeveloped. The previous literature has demonstrated that threshold estimates
are super-consistent, but a distribution theory useful for testing and inference has yet to be
provided.

This paper develops a statistical theory for threshold estimation in the regression con-
text. We allow for either cross-section or time series observations. Least squares estimation
of the regression parameters is considered. An asymptotic distribution theory for the regres-
sion estimates (the threshold and the regression slopes) is developed. It is found that the
distribution of the threshold estimate is non-standard. A method to construct asymptotic
confidence intervals is developed by inverting the likelihood ratio statistic. It is shown that
this yields asymptotically conservative confidence regions. Monte Carlo simulations are pre-
sented to assess the accuracy of the asymptotic approximations. The empirical relevance of
the theory is illustrated through an application to the multiple equilibria growth model of
Durlauf and Johnson (1995).
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1 Introduction

A routine part of an empirical analysis of a regression model such as y; = F'z; + €; is to
see if the regression coefficients are stable when the model is estimated on appropriately
selected sub-samples. Sometimes the sub-samples are selected on categorical variables, such
as gender, but in other cases the sub-samples are selected based on continuous variables,
such as firm size. In the latter case, some decision must be made concerning what is the
appropriate threshold (i.e., how big must a firm be to be categorized as “large”) at which
to split the sample. When this value is unknown, some method must be employed in its
selection.

Such practices can be formally treated as a special case of the threshold regression model.

These take the form

vy = 0ixi+ey, @G <7 (1)

v = Oy +ey, g > (2)

where ¢; may be called the threshold variable, and is used to split the sample into two groups
or “regimes”. The random variable e; is a regression error.

Formal threshold models arise in the econometric literature. One example is the Thresh-
old Autoregressive (TAR) model of Tong (1983), recently explored for U.S. GNP by Potter
(1995). In Potter’s model, y; is GNP growth and z; and ¢; are lagged GNP growth rates.
The idea is to allow important non-linearities in the conditional expectation function with-
out over-parameterization. From a different perspective, Durlauf and Johnson (1995) argue
that models with multiple equilibria can give rise to threshold effects of the form given in
model (1)-(2). In their formulation, the regression is a standard Barro-styled cross-country
growth equation, but the sample is split into two groups, depending on whether the initial
endowment is above a specific threshold.

The primary purpose of this paper is to derive a useful asymptotic approximation to the
distribution of the least-squares estimate 4 of the threshold parameter v. The only previous
attempt (of which I am aware) is Chan (1993) who derives the asymptotic distribution of
4 for the TAR model. Chan finds that n(4 — ~g) converges in distribution to a functional



of a compound Poisson process. Unfortunately, his representation depends upon a host
of nuisance parameters, including the marginal distribution of x; and all the regression
coefficients. Hence, this theory does not yield a practical method to construct confidence
intervals.

We take a different approach, taking a suggestion from the change-point literature, which
considers an analog of model (1)-(2) with ¢; = . The proposed solution is to let the “threshold
effect” 0,—0; decrease with sample size. Under this assumption, it has been found (see Picard
(1985) and Bai (1997)) that the asymptotic distribution of the changepoint estimate is non-
standard yet free of nuisance parameters (other than a scale effect). We make a similar
technical assumption, letting the difference 0, — 6, decrease with sample size. Interestingly,
we find that the asymptotic distribution of the threshold estimate 4 is of the same form as
that found for the change-point model, although the scale factor is different.

The changepoint literature has confined attention to the sampling distribution of the
threshold estimate. We refocus attention on the sampling distribution of test statistics,
and are the first to study likelihood ratio tests for the threshold parameter. We find that
the likelihood ratio test is asymptotically pivotal when 6, — 6; decreases with sample size,
and that this asymptotic distribution is an upper bound on the asymptotic distribution
for the case that 05 — #; does not decrease with sample size. This allows us to construct
asymptotically valid confidence intervals for the threshold based on inverting the likelihood
ratio statistic. This method is easy to apply in empirical work. A GAUSS program which
computes the estimators and test statistics is available on request from the author or from
his Web homepage.

The paper is organized as follows. Section 2 outlines the method of least squares estima-
tion of threshold regression models. Section 3 presents the asymptotic distribution theory for
the threshold estimate and the likelihood ratio statistic for tests on the threshold parameter.
Section 4 outlines methods to construct asymptotically valid confidence intervals. Methods
are presented for the threshold and for the slope coefficients. Simulation evidence is provided
to assess the adequacy of the asymptotic approximations. Section 5 reports an application
to the multiple equilibria growth model of Durlauf and Johnson (1995). The mathematical

proofs are left to an appendix.



2 Estimation

The observed sample is {y;, ;, ¢}, where y; and ¢; are real-valued and z; is an m-vector.
The threshold variable g; may be an element of z;, and is assume to have a continuous
distribution. A sample-split or threshold regression model takes the form (1)-(2). This
model allows the regression parameters to differ depending on the value of ¢;. To write the
model in a single equation, define the dummy variable d;(v) = {¢; < 7} where {-} is the
indicator function, set z;(y) = z;d;(7y), so that (1)-(2) equal

yi =0x; + 8xi(y) + e (3)

where 6 = 6, and 6 = 0 — 05. Equation (3) allows all of the regression parameters to switch
between the regimes, but this is not essential to the analysis. The results generalize to the
case where only a subset of parameters switch between regimes and to the case where some
regressors only enter in one of the two regimes.

To express the model in matrix notation, define the n x 1 vectors Y and e by stacking
the variables y; and e;, and the n X m matrices X and X, by stacking the vectors z; and

z;(y)". Then (3) can be written as
Y =X0+X,6+e. (4)
The regression parameters are (6,6, v), and the natural estimator is least squares (LS). Let
Su(0,6,7) = (Y — X0 — X,6) (Y — X0 — X,,6) (5)

be the sum of squared errors. Then by definition the LS estimators 9,6, 4 jointly maximize
Sn(0,06,7). For this minimization, v is assumed to be restricted to a bounded set [y,7] =T..
Note that the LS estimator is also the MLE when e; is iid N(0,0?).

The computationally easiest method to obtain the LS estimates is through concentration.
Conditional on 7, (4) is linear in # and é, yielding the conditional OLS estimators 6(v) and
5(7) by regression of Y on X3 =[X X,]. The concentrated sum of squared errors function
1s

Su(1) = S (002),8(3).7) =YY = Y'X2 (X7'X3) 7 X,
and 7 is the value which minimizes S, (). Since S, (7) takes on less than n distinct values,
4 can be defined uniquely as
4 = argmin S, (¢;)

g €l
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which requires at most n function evaluations. The slope estimates can be computed via
0 =0(%), and 6 = 6(%).

If n is very large, I' can be approximated by a grid. For some N < n, let q(; denote
the (j/N)’th quantile of the sample {q1, ..., ¢,}, and let I'n = T'N {qq), ..., q(v)}- Then 4y =
argmin, ., S,(7) is a good approximation to 4 which only requires N function evaluations.

From a computational standpoint, the threshold model (1)-(2) is quite similar to the
changepoint model (where the threshold variable equals time, ¢; = 7). Indeed, if the observed
values of ¢; are distinct, the parameters can be estimated by sorting the data based on g;,
and then applying known methods for changepoint models. When there are tied values of ¢;,
estimation is more delicate, as the sorting operation is no longer well defined nor appropriate.
From a distributional standpoint, however, the threshold model differs considerably from the
changepoint model. One way to see this is to note that if the regressors z; contain ¢;, as
is typical in applications, then sorting the data by ¢; induces a trend into the regressors
x;, so the threshold model is somewhat similar to a changepoint model with trended data.
The presence of trends is known to alter the asymptotic distributions of changepoint tests
(see Hansen (1992b, 1997) and Chu and White (1992)). More importantly, the distribution
of changepoint estimates (or the construction of confidence intervals) has not been studied
for this case. Another difference is that the stochastic process R, (v) = > . ziei{q; < v}
is a martingale (in ) when ¢; = ¢ (the changepoint model), but it is not necessarily so in
the threshold model (unless the data are independent across i.) This difference may appear

minor, but it requires the use of a different set of asymptotic tools.

3 Distribution Theory

3.1 Assumptions

To allow for time-series data, we employ the weak dependence concept of absolute regularity

(f-mixing). The absolute regular mixing coefficient 3(.A, B) between o-fields A and B is
1
BAB)=gsup ) |P(A;NB;) — P(A)P(B))],
(i.5)e(L,J)

where A; C A, B; C B, and the supremum is taken over all the finite partitions (A4,);e;
and (Bj;),ecs respectively A and B measurable. Absolute regularity was first defined by



Volkonskii and Rozanov (1959), and is stronger than strong mixing yet weaker than uniform
mixing. Pham and Tran (1985) have shown that a wide class of linear processes with iid
innovations (such as ARMA processes) are absolutely regular when the innovation has a
bounded, continuous density. The (-mixing coefficients for the strictly stationary sequence
(xi,q;,€;) are given by 3; = B(Fy, F;), where F; = o(z;4+1,¢j41,¢€; 1 § < ©). Our theory also
allows for cross-section data, for independent sequences are trivially absolutely regular with
coefficients 3,, = 0 for m > 1.

Define the conditional moment functionals
D(y) = E(zxi | s =), (6)

V(y) = E (zizief | ¢ =), (7)
and
Va(y) = E (’%\4 e |ai=").

Let f(q) denote the density function of ¢;, 7o denote the true value of 7, and set D = D(~),
V =V(%), and f = f(y).

Assumption 1 For some ¢ > 6,
1. (i, qi,e;) is strictly stationary with B-mizing coefficients By, = O(m=%);
2. E(e; | ;1) =0
3. E|zi* < 0o and E |e;|* < oo;
4. f(), D(v), V(v) and Va(y) are continuous at vy = ~o;
5. P(gel) <1,
6. 6 =06, =cn"* withc+#0 and%<a<%—i;
7. dDc>0,Ve>0, and f > 0.
Assumption 1.1 excludes time trends, integrated processes, and long memory processes.

The parameter ¢ controls the degree of serial dependence in the data. If the mixing coef-

ficients 3, decay exponentially (or if the data are independent) then we can set ¢ = cc.



Assumption 1.2 imposes that (1)-(2) is a correct specification of the conditional mean. As-
sumption 1.4 requires the threshold variable to have a continuous distribution, and essentially
requires the conditional variance E (€? | ¢; = ) to be continuous at 7o, excluding regime-
dependent heteroskedasticity. Assumption 1.5 requires that I' be restricted to a subset of
the support of ¢;. This is a technical condition which simplifies our consistency proof.

Assumption 1.7 is a full-rank condition needed to have non-degenerate asymptotic distri-
butions. While the restriction ¢’ D¢ > 0 might appear innocuous, it excludes the interesting
special case of a “continuous threshold” model, which is (1)-(2) with z; = (1 ;) and §'7§ =
0 where 7§ = (1 7). In this case the conditional mean takes the form of a continuous linear
spline. From definition (6) we can calculate that ¢’ Dc = E (z;2} | ¢; = v0) = dyjy5'c = 0.
A recent paper which explores the asymptotic distribution of the least squares estimates in
this model is Chan and Tsay (1998).

Assumption 1.6 is the most unusual condition. It specifies that the difference in regression
slopes gets small as the sample size increases. Conceptually, this implies that we are taking
an asymptotic approximation valid for small values of §. The parameter a controls the rate
at which ¢,, decreases to zero, i.e., how small we are forcing 6 to be. Smaller values of
a are thus less restrictive. The assumption restricts o > ¢ !, which implies a trade-off
with the serial correlation in the data. For cross section data (or f—mixing processes with
exponential decay) the restriction simplifies to o > 0, which is quite mild. The reason
for Assumption 1.6 is that Chan (1993) found that with 6 fixed, n(¥y — ) converged to
an asymptotic distribution which was dependent upon nuisance parameters and thus not
particularly useful for calculation of confidence sets. The difficulty is due to the O,(n™!)
rate of convergence. By letting 6,, tend towards zero, we reduce the rate of convergence and

find a simpler asymptotic distribution.

3.2 Asymptotic Distribution

Let Wi (v) and W5 (v) be two independent standard Brownian motions on [0, c0). A two-sided

Brownian motion W (v) on the real line is defined as

Wi(—v), v<0
W)= 0 v=20 .
Wa(v) v>0
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Theorem 1 Under Assumption 1, n ¥ —Y) —q WT, where

Ve
(DS
and
T = argmax {—% 7| + W(r)] :

Theorem 1 gives the rate of convergence and asymptotic distribution of the threshold
estimate 4. The rate of convergence is n'~2%, which is decreasing in «. Intuitively, a larger
a decreases the threshold effect ¢, which decreases the sample information concerning the
threshold ~, reducing the precision of any estimator of ~.

Theorem 1 shows that the distribution of the threshold estimate under our “small effect”
asymptotics takes a similar form to that found for changepoint estimates. For the latter
theory see Picard (1985), Yao (1987), Diimbgen (1991), and Bai (1997). The difference is
that the asymptotic precision of 4 is proportional to the matrix F (z;x} | ¢; = ) while in
the changepoint case the asymptotic precision is proportional to the unconditional moment
matrix E (z;z}). It is interesting to note that these moments equal when z; and ¢; are
independent, which would not be typical in applications.

The asymptotic distribution in Theorem 1 is scaled by the ratio w. In the leading case of

conditional homoskedasticity

E (622 | Qi) = 0-27 (8)
then V = 02D and w simplifies to ,
o
“ T @hof

The asymptotic distribution of 4 is less dispersed when w is small, which occurs when o? is
small, f(7p) is large (so that many observations are near the threshold), and/or |c| is large
(a large threshold effect).

The distribution function for 7" is known. (See Bhattacharya and Brockwell (1976)). Let

®(z) denote the cumulative standard normal distribution function. Then for z > 0,

prsa=eyfeo (5 sgerwn () - (557) 0 (F).

and for z < 0, P(T' < z) =1— P(T < —x). A plot of the density function of T" is given in

Figure 1.



3.3 Likelihood Ratio Test

To test the hypothesis Hy : v = 9, a standard approach is to use the likelihood ratio statistic

under the auxiliary assumption that e; is iid N(0,0?). Let

(1) = Sa(3)
5:(3)

The likelihood ratio test of Hy is to reject for large values of LR, (7).

LRn(’Y) =

Theorem 2 Under Assumption 1,

LRn (70) —d 7]257

where
£ = max[217 (5) 5]
and
s Ve
o2c¢' De’

The distribution function of £ is P(§ < x) = (1 — 6_1/2)2.

If homoskedasticity (8) holds, then n* = 1 and the asymptotic distribution of LR, (7o)
is free of nuisance parameters. If heteroskedasticity is suspected, n? must be estimated. We
discuss this in the next section.

Theorem 2 gives the large sample distribution of the likelihood ratio test for hypotheses
on «. The asymptotic distribution is non-standard, but free of nuisance parameters under
(8). Since the distribution function is available in a simple closed form, it is easy to generate

p-values for observed test statistics. Namely,

Pn=1- (1 — exp (—%LRn(%)Q))Q

is the asymptotic p-value for the likelihood ratio test. Critical values can be calculated
by direct inversion of the distribution function ¢¢(8) = —2In (1 —+/B). Thus a test of
Hy : v = v rejects at the asymptotic level of v if LR, () exceeds c¢(1 — ). Selected critical

values are reported in Table 1.



Table 1: Asymptotic Critical Values
80 | .85 | .90 |[.925].95 |.975| .99

P(¢<=x)|450|5.10 594 |6.53 | 7.35 | 8.75 | 10.59

3.4 Estimation of n?

The asymptotic distribution of Theorem 2 depends on the nuisance parameter n%. It is
therefore necessary to consistently estimate this parameters in order to use this theory in
applications. Let ri; = (8. 2;)° (€2/02) and ry; = (8,2;)* . Then

s E(rulg=m)

= E — (9)
(7" 2i \ q; = ’Yo)

is the ratio of two conditional expectations. Since r; and 79; are unobserved, let 7y; =

L\ 2 N2
(6’ xz) (€2/6?%) and 7oy = (6’ mz) denote their sample counterparts.

A simple estimator of the ratio (9) uses a polynomial regression, such as a quadratic. For
j =1 and 2, fit the OLS regressions
Py = fjo + ndi + fijagi + Eji,
and then set
2 fio + finry + fi2y?
fiao + flo1Y + fl2oy?
An alternative is to use kernel regression. The Nadaraya-Watson kernel estimator is
ﬁ2 _ 2?21 K (§ — @) T
Z?:l K (§ — i) P2
where Kj,(u) = h™ 'K (u/h) for some bandwidth h and kernel K (u), such as the Epanechnikov

K(u) = 3 (1 —u?) {|Ju| < 1}. The bandwidth h may be selected according to a minimum

mean square error criterion (see Hardle and Linton, 1994).

4 Confidence Intervals

4.1 Threshold Estimate

A common method to form confidence intervals for parameters is through the inversion of
Wald or t-statistics. To obtain a confidence interval for v, this would involve the distribu-
tion T" from Theorem 1 and an estimate of the scale parameter w. While T is parameter-

independent, w is directly a function of 6§ and indirectly a function vy (through D(vp)).

9



When asymptotic sampling distributions depend on unknown parameters the Wald statistic
can have very poor finite sample behavior. In particular, Dufour (1997) argues that Wald
statistics have particularly poorly-behaved sampling distributions when the parameter has
a region where identification fails. The threshold regression model is an example where this
occurs, as the threshold ~ is not identified when 6 = 0. These concerns have encouraged
us to explore the construction of confidence regions based on the likelihood ratio statistic
LRy (7).

Let [ denote the desired asymptotic confidence level (e.g. 5 = .95), and let c¢(3) be the
(-level critical value for £ Table 1. Set

I = {v:LR,(y) < ce(B)} -

Theorem 2 shows that P(vy € f) — 3 as n — oo under the homoskedasticity assumption
(8). Thus [ is an asymptotic S-level confidence region for 7. A graphical method to find
the region I' is to plot the likelihood ratio LR, () against v and draw a flat line at ce().
(Note that the likelihood ratio is identically zero at v = 4.) Equivalently, one may plot the
residual sum of squared errors S,,(y) against v, and draw a flat line at S,,(¥) + 62%c¢(3).

If the homoskedasticity condition (8) does not hold, we can define a scaled likelihood

ratio statistic:
LRn(fY) = 772 = (3_2772

and an amended confidence region

[ ={y: LR;(v) < c(0)} -

Since 7} is consistent for 1%, P(y, € I'*) — 3 as n — oo whether or not (8) holds, so I'* is a
heteroskedasticity-robust asymptotic -level confidence region for ~.

The region I' is an asymptotic G-level confidence interval under the assumption that
6, — 0 as n — oo, which suggests that the actual coverage of the interval may differ from
0 for large values of 6. We now consider the case of @ = 0, which implies that ¢ is fixed as
n increases. We impose the stronger condition that the errors e; are iid N(0,0?), strictly

independent of the regressors z; and threshold variable g;.

Theorem 3 Under Assumption 1, modifying part 6 so that o = 0, and the errors e; are iid

N(0,0?) strictly independent of the regressors x; and threshold variable g;, then

P(LR.(70) 2 2) < P (€ > 2) + o(1).

10



Table 2: Confidence Interval Converage for v at 10% Level
Ty = ¢ x; ~ N(0,1)

b9 = 255 10 15 201.25 5 10 1.5 20
n = 50 .86 .87 .93 97 .99|.90 .87 .93 .93 .97
n=100 (.82 .90 .96 .98 .99|.84 .86 .92 .96 .95
n=250 |.83 93 .97 98 .99|.80 .92 .94 .96 .98
n=>500 |.90 93 .97 98 .99|.81 93 .95 .96 .98
n=1000|.90 .93 .98 99 99 |.86 .93 .94 .96 .97

Theorem 3 shows that at least in the case of iid Gaussian errors, the likelihood ratio
test is asymptotically conservative. Thus inferences based on the confidence region I are
asymptotically valid, even if ¢ is relatively large. Unfortunately, we do not know if Theorem
3 generalizes to the case of non-normal errors or regressors which are not strictly exogenous..
The proof of Theorem 3 relies up the Gaussian error structure and it is not clear how the

theorem would generalize.

4.2 Simulation Evidence

We use simulation techniques to compare the coverage probabilities of the confidence intervals
for 7. We use the simple regression model (3) with iid data and z; = (1 z;)’, e; ~ N(0,1),
and ¢; ~ N(2,1). The regressor z; was either iid N(0,1) or z; = ¢;. The likelihood ratio
statistic is invariant to . Partitioning 6 = (61 69) we set 6; = 0 and v = 2, and assessed the
coverage probability of the confidence interval I as we varied &, and n. We set &, = .25, .5,
1.0, 1.5 and 2.0 and n = 50, 100, 250, 500 and 1000. Using 1000 replications Table 2 reports
the coverage probabilities for nominal 10% confidence intervals.

The results are quite informative. For all cases, the actual coverage rates increase as n
increases or &, increases, which is consistent with the prediction of Theorem 3. For small
sample sizes and small threshold effects, the coverage rates are lower than the nominal 90%.
As expected, however, as the threshold effect d5 increases, the rejection rates rise and become

quite conservative.
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4.3 Slope Parameters
Letting 0= (0, 6), Lemma A.12 in the Appendix shows that

Vi (B(r) = 6) = N(0,9) + Op(n /%) (10)

2

uniformly in a n!' 2*—neighborhood of =, where ¥ is the standard asymptotic covariance

1=22_consistent and o < 1/2, this means that we

matrix if v = 7o were fixed. Since 4 is n
can approximate the distribution of 8 by the conventional normal approximation as if v were
known with certainty. Let @(7) denote the conventional asymptotic 3-level confidence region
for § constructed under the assumption that v is known. (10) shows that P (Q € @(’y)) — f3
as n — oQ.

In finite samples, this procedure seems likely to under-represent the true sampling un-
certainty, since it is not the case that ¥ = vy in any given sample. It may be desirable to
incorporate this uncertainty into our confidence intervals for . This appears difficult to do
using conventional techniques, as é('y) is not differentiable with respect to v, and 4 is non-
normally distributed. A simple yet constructive technique is to use a Bonferroni-type bound.
For some n < 1, let f’(n) denote the confidence interval for v with asymptotic coverage 7.
For each € I'(n)) construct the pointwise confidence region O(v) and then set

én = U 6(7)
yel'(m)
Since O, D O(%), it follows that P (9 € én) > P (0 € @(&)) — [ as n — oo.

This procedure is assessed using a simple Monte Carlo simulation. In Table 3 we report
coverage rates of a nominal 95% confidence interval (§ = .95) on 6s. The same design is used
as in the previous section, although the results are reported only for the case z; independent
of ¢;, and a more narrow set of n and 6, to save space. We tried n = 0,.5, .8, and .95. As
expected, the simple rule O, is somewhat liberal for small 65 and n, but is quite satisfactory
for large n or 8. In fact, all choices for n lead to similar results for large 6. For small 0,
and n, the best choice may be n = .8, although this may produce somewhat conservative
confidence intervals for small 6,.

In summary, while the naive choice (:)(’y) works fairly well for large n and/or large thresh-
old effects, it has insufficient coverage probability for small n or threshold effect. This prob-
lem can be solved through the conservative procedure (:)n, and the choice n = .8 appears to

work reasonably well in simulations.
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Table 3: Confidence Interval Converage for 6, at 5% Level

n = 100 n = 250 n = 500
bo=1.25 5 10 20|.25 5 10 20|.25 .5 1.0 2.0
A0 90 93 96 951.90 95 95 94| .91 97 94 94
©s |90 95 96 95|.94 96 96 .94|.94 98 94 .95
O©s |95 97 97 96|.97 98 96 .94|.97 98 .95 .95
Ogs .99 99 95 94].99 99 97 94|.99 99 .95 .95

5 Application: Growth and Multiple Equilibria

Durlauf and Johnson (1995) suggest that cross-section growth behavior may be determined
by initial conditions. They explore this hypothesis using the Summers-Heston data set,
reporting results obtained from a regression tree methodology. A regression tree is a special
case of a multiple threshold regression. The estimation method for regression trees due
to Breiman et. al. (1984) is somewhat ad hoc, with no known distributional theory. To
illustrate the usefulness of our estimation theory, we apply our techniques to regressions
similar to those reported by Durlauf-Johnson.

The model seeks to explain real GDP growth. The specification is

In (Y/L)i,l985 —In (Y/L)i,1960 = (+fn (Y/L)z',1960 +mIn(1/Y); (11)
+moln (n; + g+ 6) + m3In (SCHOOL), + e;,

where for each country 1,
e (Y/L),, = real GDP per member of the population aged 15-64 in year ¢.
e (I/Y), = investment to GDP ratio.
e n; = growth rate of the working-age population.
e (SCHOOL), = fraction of working-age population enrolled in secondary school.

The variables not indexed by ¢ are annual averages over the period 1960-1985. Following
Durlauf-Johnson, we set g + 6 = 0.05.
Durlauf-Johnson estimate (11) for four regimes selected via a regression tree using two

possible threshold variables which measure initial endowment: per capita output Y/L and
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the adult literacy rate LR, both measured in 1960. The authors argue that the error e; is
heteroskedastic so present their results with heteroskedasticity-corrected standard errors. We
follow their lead and use heteroskedasticity-consistent procedures, estimating the nuisance
parameter 1? using an Epanechnikov kernel with a plug-in bandwidth.

Since the theory outlined in this paper only allows one threshold and one threshold vari-
able, we first need to select among the two threshold variables, and verify that there is indeed
evidence for a threshold effect. We do so by employing the heteroskedasticity-consistent La-
grange multiplier (LM) test for a threshold of Hansen (1996). Since the threshold v is not
identified under the null hypothesis of no threshold effect, the p-values are computed by the
bootstrap, using the regressors from the right-hand-side of (11) and the bootstrap depen-
dent variable generated from the distribution N(0,é?), where ¢é; is the OLS residual from
the estimated threshold model. Hansen (1996) shows that this bootstrap procedure pro-
duces asymptotically correct p-values. Using 1000 bootstrap replications, the p-value for the
threshold model using initial per capita output was marginally significant at 0.088 and that
for the threshold model using initial literacy rate was insignificant at 0.214. This suggests
that there might be a sample split based on output.

Figure 2 displays a graph of the normalized likelihood ratio sequence LR (7) as a function
of the threshold in output. The LS estimate of 7 is the value which minimizes this graph,
which occurs at 4 = $863. The 95% critical value of 7.35 is also plotted (the dotted line), so
we can read off the asymptotic 95% confidence set I* = [$594, $1794] from the graph from
where LR} () crosses the dotted line. These results show that there is reasonable evidence
for a two-regime specification, but there is considerable uncertainty about the value of the
threshold. While the confidence interval for v might seem rather tight by viewing Figure 2,
it is perhaps more informative to note that 40 of the 96 countries in the sample fall in the
95% confidence interval, so cannot be decisively classified into the first or second regime.

If we fix v at the LS estimate $863 and split the sample in two based on initial GDP,
we can (mechanically) perform the same analysis on each sub-sample. It is not clear how
our theoretical results extend to such procedures, but this will enable more informative
comparisons with the Durlauf-Johnson results. Only 18 countries have initial output at or
below $863, so no further sample split is possible among this sub-sample. Among the 78
countries with initial output above $863, a sample split based on initial output produces an

insignificant p-value of 0.152, while a sample split based on the initial literacy rate produces
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a p-value of 0.078, suggesting a possible threshold effect in the literacy rate. The point
estimate of the threshold in the literacy rate is 45%, with a 95% asymptotic confidence
interval [19%, 57%]. The graph of the normalized likelihood ratio statistic as a function of
the threshold in the literacy rate is displayed in Figure 3. This confidence interval contains
19 of the 78 countries in the sub-sample. We could try to further split these two sub-samples,
but none of the bootstrap test statistics were significant at the 10% level.

Our point estimates our quite similar to those of Durlauf and Johnson (1995). What is
different are our confidence intervals. The confidence intervals for the threshold parameters
are sufficiently large that there is considerable uncertainty regarding their values, hence

concerning the proper division of countries into convergence classes as well.

6 Conclusion

This paper develops asymptotic methods to construct confidence intervals for least-squares
estimates of threshold parameters. The confidence intervals are asymptotically conservative.
It is possible that more accurate confidence intervals may be constructed using bootstrap
techniques. This may be quite delicate, however, since the large sample distribution of the
likelihood ratio statistic appears to be non-pivotal. This would be an interesting subject for

future research.
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Appendix: Mathematical Proofs

Let “ =" denote weak convergence with respect to the uniform metric. When the limit

is non-random this specializes to uniform convergence in probability.

Lemma A. 1 Uniformly over vy € I :

%X;X,Y = M(y) = E (ziwi{a: < 7}) (12)
and
%x;e = X(7), (13)

where X () is a mean-zero Gaussian process.

Proof: Pick ¢ so that 0 < ¢ < (¢ —4)/2 (which is possible since ¢ > 4). Set

2¢
= 14
"ot 20 (14)
and
1 1 1+
T ro 2 10} ( 5)
Note that 1 < r < 2. Then
Z B < Z (Cm™?) =C7 Z m " < oo, (16)
m=1 m=1 m=1

Theorem 3 of Hansen (1996) shows (12) and (13) follow from (16) and Assumptions 1.1-1.3.
O

It will be helpful later in our analysis to observe that since o > 2/¢ (Assumption 1.6)
and definition (14), it follows that

11 11 1\ L

Lemma A. 2 4 —, .
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Proof: Define Q,(v) = Sy(70) —Sx(7) and note that ¥ = argmax_ . Qn (7). Assumption 1.5
guarantees that for n sufficiently large, the conditional OLS estimators A(v) and é(v) can
be defined for all 4 € I' with probability one. Let P, = X* (XX?) ' X, Py = P,

Xo = X,,.Set AX, = X,—Xj. Since X lies in the space spanned by P,, and Xy = X, —AX,,

and

Su(7) = YU -P)Y
= (I —P)e+28,X)(I — P)e+ &8,X,(I — Py)Xoby
= (I —P))e—28,AX/ (I — P,)e+ 6,AX (I — P,)AX,6,.
Thus
Qn(y) = €' (Py — Ry)e+2n ¢ AX! (I — Py)e —n **¢ AX! (I — P,)AX c.

Using (12) and (13), and the fact that X! X = X! X, we find that uniformly over v € T

n 2Q.(y) = n (P, — R)e —2n* 1 X)(I — P)e —n ' X{(I — P,)Xoc
= —c [AM(y) = AM(y)M'AM(v)] ¢
= b(v)
where M = F (z;x}) and
AM() = M) = Mo = [ Dl (o) (18)

which can be found from (6). Note that b(7) is a continuous non-positive real function
which achieves its unique maximum of 0 at 7. Since 4 maximizes n~172%Q,,(v), and the
latter converges in probability to the continuous function b(vy) uniformly over I', and b(7)

has a unique maximum at -, it is well known that 4 —, v, (see, e.g., Theorem 2.1 of Newey

and McFadden, 1994). O

Lemma A. 3 n® (é — 00) = 0p(1) and n* (5 — (50) = 0,(1).

Proof: For v € I', by (12) and (13),

0(v) — 0 -
ne A('Y) 0 _ (lX;,X:yk> (le;’e—lX:AXWCQ
5(7) — b n " "
-1
M M (v AM (v
. @) D) =0,
M(y) M(y) AM(v)



say. Since 6(vy) is continuous near vy, 6(7) = 0, and ¥ —, 70 (Lemma A.2) then

0 — 0, | (%) — 6,
5—50 ('3’)_60

D>
S

nCK

Il
3

—p 0(7) = 0.

>

Let Ay(7y) = di(7) — di(0) and Ay(Y',7") = di(7') — di(7"). Define
9:(7) = (¢z:)” |Ai(v)]
ki(v) = |ail* [ 20()]

and
hi(7',7") = el |12a (', )] -

Lemma A. 4 For some B > 0, there exist some d >0, d" < oo, ' >0, k" < 0o, H < 00,

and V < oo such that for all |y — | < B,
1. Egi(y) > d' |y — 0| and Eg;(v) < d" |y — l;
2. Eki(v) 2 K'|v — | and Eki(v) < K" |y — o ;
3. Ehi(y ") < HPY' —+'| ;
4. ERZ(Y, ") SV I =+ .

Proof: Follows from Assumption 1 under standard Taylor series expansions. O

Let Gn(/}/) =n! Z:’L:I 92(7)7 Kn(’}/) =n! Z:L:l k2(7)7 Hn(/}//y”) =nt Z?:l hz’(V’W”%
and Hy,(v,7") =n"! Z?:l h?(7I7 7).

Lemma A. 5 There is a K < 0o such that for all |y — v| < B,

IGa(7) = EGu(Y)]l, < Kn'/™=" |y — 5[/, (19)
IKa(y) = EKu(), < KnV/™ 1 |y — |2, (20)
1Ho (v, 7") = EHo (Y A, < Ent/m "ty — 412 (21)
| Hen (Y, 7") = EHau(7, "), < KnV™ 1y — 42, (22)

where 1 is defined in (14).
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Proof: We show (19). Let r and 7 be defined as in (14) and (15). By McLeish’s (1975)
a-mixing inequality, ||E (g:(y) — Eg:(7) | Fi-m)ll, < 6ag, [|9:(v) — Egi(7)]l, . where om, are
the strong mixing coefficients for z;. (16) implies that Y~ a7 < oco. Since r < 2, Lemma

2 of Hansen (1992a) implies that there is a K; < oo such that
1Ga(7) = BEGa()Il, < " Ky lgi()lly < n!" 7 KL (@ |y = 30]) 2

where the second inequality is Lemma A.4 (1). This implies (19) with K = K;v/d”. O

Set a,, = n'~%«.

Lemma A. 6 For alln >0 and € > 0, there exists some U < oo such that

Gn(7) '
P sup ————1|>n] <e, (23)
= <ol <5 | EGn(7)
and
Ko(v) ‘
P sup —1>n| <se, (24)
Z <|y—yol<B EKn(7)

Proof: We show (23). Fix n and ¢. Pick b > 1 so that
(1 + g) (1+d'B(b—1)) < 1+7 (25)

and
(1—3) (1-dB(b—-1))>1-n

where B, d’ and d" are defined in Lemma A.4. Set

__ (2K\? 1
ve (n—d> (b 20

and v; = Yo —i-?,_)bj/am 7 >0.
By Markov’s inequality, Lemma A.4(1) and Lemma A.5 (19),

Gn (%) ' 77) (2> — [1Gn(1i) = EGn () ]
P su — 1| > = < — L
<j>§ EGu (7)) 2) — \n ; I EG (7))
< (2>§: Kn'/m1 |y, — 50|
n) = = nld
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- G @)

2K \" 1
nd/@l/Q 1 _ b—’r‘/2

< e

IN

The third inequality holds since (17) implies that n'—ay/> < 1. The final inequality is (26).
Thus with probability exceeding 1 — ¢,

'M

n
et )

for all 7 > 0. Suppose this event holds. Note that for |y,11 — Y| < B,

Vier =l =20 =1) < B(b-1).
Then again using Lemma A.4(1),

EG,(vj11)

<1+d" |y —v <14+d"B(b-1). 28
ey ST i =l S1+dBO 1) (28)

So for v; < v < 7,41, using (27), (28), and (25),

Gn(7) < Gn(Vir1)  Gu(vj41) EGn(vi41)

EGu(v) = EGu(v) EGu(vi+1) EGu(y)
< (1+ 2) (1+d"B(b—1)) <1+1.

Similarly, we can show that G,,(v)/EG,(y) > 1 —n. Hence, with probability exceeding 1 —¢,
|Gn(73)/ EGn(7) — 1| < n for all D/a, < |y =] < B. O

Let

1 n
=1

Lemma A. 7 For alln > 0 and € > 0, there exists some U < oo such that for n sufficiently
large,
R,
. IR

sup >n| Le
Z<|y—0|<B \ n |7 Yol
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Proof: Fixn > 0and e > 0. Set b = 1+n/H and for j > 0, v; — 7o = 0 /a,, where T
will be determined later. Let m = n® and for k = 1,...,m, set v;5 = v; + (41 — ;) k/m.
Observe that by Lemma A.4(3),

\/HEHn(ijﬁij) < H\/m%‘kﬂ - %’k| = (b - 1)\/7( 70) /m =1 (7 70) @7

SO
sup | Rn(y) — Ru(y;)] — max [Rn(yje) — Fu(7;)
Y <Y<Yi+1
< max Sup |Ro(7) — R (i)
1<k<m . <y<vjpi1 ’
< max v/ [Hu (s, V)|
< ax VI Hy (Vs Yikr1) = EHp(Yik ik )|+ 13v/@n (7 = 0) 5
and
sup [’ (7)] < max | R ()] tmax  sup R (7) ()]
T <ly—p|<B V In v = ol 720 fan | =0l 920 <9<y Ve 11— ol
R, R, (vir) — Ry (s
< max 6l | R0 (75)] + max max | R (5r) ()]
320 \fan |5 =0l 520 1sksm o \fan |y = 0l
Hy,(Viks Vi — EH, (Vi s
1 max max \/_‘ (7]k 73k+1) (73k ’YJKH)’ s
720 1<k<m Van 1v; = 0l
Hence
R ( | R (75)]
P sup >4n | < P >
I <Jy—o|<B Vn 17 — 70l Z Van |75 = ol
= Rn(vjx) — Rul;
+ZP ( max ’ (VJk) (73)’ > 77)
pars 1<k<m \/ay |75 — Yol
b H, (Vig, Vi — EH, (v, Vi
‘l’ZP ( max \/ﬁ’ (ﬂYJk’f)/]k“Fl) (f)/]k 7]k+1)‘ > 77) . (29)
1<k<m Van |7 — Yol

7=0
We now bound each of the elements on the right-hand-side of (29).
First, by Markov’s inequality, the martingale difference property and Lemma A.4(4),

|Rn(;)| ER. ()"
ZP(@m \>’7> : QZ e

0 On ‘7]

- /707 /}/j
Z 70l

0 dn ‘7]
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1 =V

V|7j—70|
< =Y

n =0 an, |/7j - ’70|2
Vo1
o2l 1/b (30)

Second, observe that by Burkholder’s inequality (see, e.g., Hall and Heyde (1980, p. 23),
Minkowski’s inequality, Lemma A.4(3), and Lemma A.5 (22),

2r

E

E |Rn(7jk+1) - Rn(%k”%

% Z zie; (Ai(Viet1) — Di(V)x))

< C'E[Han (ks Viwr1)]"

< O [EHau(Yjks vikt1) + 1 Han(viks Yik1) = EHon(vins Vs,
< {V Niksr — Wikl + K0 e — %’“P/QT

< Clvjwr — vl (31)

where C’ is from Burkholder’s inequality and C' = C’ (V + K )T , and the final inequality in
(31) follows from

R bt V5 1/2—a/2
a2 | T < n < pl-ir
h/JIchl ’ng\ o =~ 75(1) — 1) = )

which holds for n sufficiently large since /2 > 1/r —1/2, as shown in (17). The bound (31)
and Theorem 12.2 of Billingsley (1968, p.94) implies that there is a K’ < oo such that

K' Sy r K Y
P(max |Ru(vs1) — Bu(7;)] >p> < (m = 2)" _ K (jer = 3)"

1<k<m pQT p2r

Hence

ip ( s | R (k) — Rn(;)] - 77) < i K' (yjs1 — ;)"
2r
= \isksmo Van |y =l = (Van |1y — 0l n)

G _Kz/;r) (bn%l)?"‘ (32)

Finally, by Markov’s inequality, Lemma 3.2 of Pollard (1990, p. 10), Lemma A.5 (21),

and m < n,
i P ( max Vi Hy (Ve Yiks1) — EHp (Y, Vies1)] S 77)
o \Isk=m Van |75 — ol
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< [V nja,\ B mex | Ho (Y, Vikr1) — EHn(Vjk, Vikr1)|”
N N ) i isksm 75 =l
_ (n“ 2+ logm>r - e | Hy (Viks Viks1) — EHp(Viks YViks1) ||
B n g [Sksm 7 = ol
< (na V2 + logm) S Kn'™ 1 ypqn — %’k|1/2
~ - max
U £ 1shsm 75 = ol
(K2 +Tlogn(b— 1)Y/2nl/r1/27e/2 ' 1
o 7751/2 1—pr/2
Kb-1DY\" 1
S ( nUl/Q 1 _ b—T/2 (33)

for n sufficiently large since a/2 > 1/r — 1/2, as shown in (17).
The sum of the right-hand-sides of (30), (32) and (33) can be made less than ¢ by picking
suitably large ©U. Together with (29) this establishes the result. O

Lemma A. 8 a,(7 — v) = O,(1).
Proof: Fix ¢ > 0. Pick n > 0 and x > 0 small enough so that
1—n)d —2(c|+r)n—2(c|+&) 1+n)K'x—((2]c] + &) K" (1 + n)k) > 0. (34)

Let © be large enough so that Lemmas A.6 and A.7 hold. Let E, be the joint event that

¥ =l < B, n‘“)é—é)o) <k, n® 5—60‘ < kK,
Gn(7)
Pl _ sup —1>n| <e, 35
BRI o &
Ky (v)
P sup -1 >n] <¢, 36
az<lv—0l<B EK,(v) (36)
and
R,
P sup B0 >n| <e. (37)

= <pyol<n Van |7 = Y0l a
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Let n be large enough so that Lemma A.7 holds and P(E,,) > 1 — ¢, which is possible under
Lemmas A.2, A.3, A.6 and A.7.
Take any v € [ o + T/ay, Yo + B]. Suppose E,, holds. (35) and Lemma A.4 (1) imply

CAXIAX,c  Gu(7)  Ga(y) EG.(v)

) - EG G = M (38)
(36) and Lemma A.4 (2) show that
AXIAX,|  K.(v)  K.() EK,(9) ,
n ) () EK) () S TR (39)
(37) implies
AXiel 1RO (40)

(Y =) Van (v =) ~

Let S*(v) = S,(6,6,7), where S,(0,6,7) is the sum of squared errors function (5). Since
Y = X@o + XWO(SO + €,

Y= X0 X6 = (e~ X (0-60) = Xy (5 60) ) — AKX,
we find that
Sy = Si0) = (v —Xb- XWS)/ (v - x0-x,8) - (v - xb- X,YOS)I (v - xi - x,0)
— FAXIAXS - 28 AX e+ 28 AXIAX, (0 6,)
— SAXIAX b — 2 AX e + 28 AXIAX, (06,
+(00+ 5)' AX,AX, (8- 5). (41)
Let ¢ = n® so that |¢ — ¢| < k. By (38), (39), (40), and (34),

s | axare waxe | wANaxs (o)

= — +
an (7 — Y0) n(y—v) n'=(y =) n(y— )
(c+ &) AXIAX, (¢ —c)
n (7 - 70)

> (I=n)d =2(lc[+r)n=2(c| +r) (1 +n) k" = (2 e[ + £) K" (1 +n)x)

> 0.

We have shown that on the set E,, if v € [y0 +7/ay, v + B] then S} (y) — Sk(v0) > 0.
We can similarly show that if v € [yo — B,y — ©/ay,) then S}(v) — Sy(v) > 0. Since
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SE(A) — Sk(v0) < 0, this establishes that E,, implies |y — vo| < ¥/ay,. Since P(E,) > 1 — ¢,
the proof is complete. O

Let ¥ denote any compact subset of R. Let G}(v) = a,Gn(y + v/a,) and K(v) =
a, K (Y0 + v/ay)

Lemma A. 9 Uniformly inv € U,
GL(v) = dlv], (42)
and
K (v) = |Df||vl, (43)

where d = ¢ Dcf.

Proof: We show (42). Fix v € W. Taking expectations,

EG:(v) = andE (z:)|Ai(yo +v/an)|)c
= an | (M(yo + v/an) — M(yo)) |
— vl M (y)c
= |vld (44)

as n — oo. The final equality comes from M’(yy) = Df, which can be seen from (18) and
the definition d = ¢ D fe. By Lemma A.5 (19) and (17),

1/2
0. (45)

14

Qp,

|G (v) — EGL(v)||, < anKn*/m!

Markov’s inequality, (44) and (45) show that G} (v) —, d|v|.

Since G (v) is monotonically increasing in |v| and the limit function is continuous, the
convergence is uniform over W. To see this, set G(v) = d|v|. Pick any € > 0, then pick
J and (vq,...,vs) so that |G(v;) — G(vj_1)| < € for all j, which is possible since G(v) is
continuous and ¥ is compact. Then pick n large enough so that max;<; |G} (v;) — G(v;)| < ¢
with probability greater than 1 — &, which is possible by pointwise consistency. For any j,
take any v € (v;_1,v;). Both G%(v) and G(v) lie in the interval [G(v;_1) — &, G(v;) + €],
(with probability greater than 1 — ¢) which has length bounded by 3e. Since v is arbitrary,
|G (v) — G(v)| < 3¢ uniformly over ¥. O
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Let Ry (v) = \/an Ry (y0 +v/ay) .
Lemma A. 10 Uniformly in v € U,

R (v) = B(v)

where B(v) is a vector Brownian motion with covariance matriz E (B(1)B(1)") =V f.

Proof: Our proof proceeds by establishing the convergence of the finite dimensional distribu-

tions of R} (v) to those of B(v) and then showing that R’ (v) is stochastically equicontinuous.

Fix v € U. Define u,(v) = v/a,/nzieiNi(yo + v/a,) so that Ri(v) = S0 u(v),
and define V,,(v) = "7 | Ui (V) (v)'. Under Assumption 1.2, {u,;(v), F;} is a martingale
difference array (MDA). By the MDA central limit theorem (for example, Theorem 24.3 of

Davidson (1994, p. 383)) sufficient conditions for R (v) —4 N(0, |v|V f) are
Va(v) =p V|V f

and

X |ui (V)] — 0.

Set
Q(y) = E (ziziei{q < 7))

so that from (7) we can find

Then

EV,(v) = a,E (rizle?|A(v)))
= a4, |Q (v +v/an) — Q)|
— [V ()
= VS

by (48). Note that |V, (v)| = anHan (70,7 + V/ax), so by Lemma A.5 (22), and (17),

1/2

— 0

IVa(v) — EVa(v)]l, < anKnt/m

Qn
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as n — oo, which with (49) combines to yield (46). Note also that using Lemma A.4 (4),

1 a, v
Elun() = LB V0)] = = By (0,70 + v/an) < 2. 61)
so combined with Lemma 3.2 of Pollard (1990, p. 10), we find
1/2
2
s )| < (2 o) puax 2 )
< (2+1logn) Vvl — 0,
n

which establishes (47) by Markov’s inequality. We conclude that R} (v) —4 N(O,|v|V f).
This argument can be extended to include any finite collection [vy, ..., 4] to yield the con-
vergence of the finite dimensional distributions of R () to those of B(v).

It remains to show that the sequence R (v) is stochastically equicontinuous on ¥. We
appeal to Theorem 1 of Doukhan, Massart and Rio (1994). First, note that R}(v) is
Lo,.—bounded. Indeed, by Burkholder’s inequality, (51), and (50),

E|R,W[" < CEV.()I
< O([Valv) = EVa)ll, + E[Va()])"
< (KV1/2 +V|V|)T < o0

Second, the dimension of Lg-entropy with bracketing over the function class { R’ (v) : v € ¥}
is logarithmic. Indeed, since VU is a bounded subset of R, if |15 — 11| < p/ (|V] f), then by
the martingale difference property,

2
[an
Zﬂfzez (Yo +1v2) — Ai(yo +11))
=1
= 0, [0+ v2/an) — Qv+ vi/a,)|
- |V|f|V2 - V1|

|R: () — Ri(w)ll; =

< p,

which means that the Ly entropy is of order o(|log p|). Third, from the definition of r (14)
and 1, we calculate that ¢ (1 — 1/r) = ¢/2 —1— ¢ =¢* > 1. Thus

ﬁ;z_l/r < Cl—l/rm—¢(1—%) — OV Yyt (52)
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As discussed by Doukhan, Massart and Rio (1994) in the last paragraph of their appli-
cation 5, Lsg.—boundedness, logarithmic Lo-entropy, and (52) are sufficient for stochastic

equicontinuity. This completes the proof. O

Let Q5(0) = (an/n) (S5(70) — 5500 + 1/a,)) , where S5(7) = 5,(0,6,7).
Lemma A. 11 Uniformly inv € ¥, Q% (v) = Q(v) = —d|v|+ 2V AW (1), where X = ¢Vef.
Proof: From (41) we find Q% (v) = —G%(v) + 2¢ R: (v) + Ly(v), where

L) < 2\5 S|\ 2 a1+ 28] 0 4] K+ [0+ 8] 4] K

since )é — 90) —p 0, ‘ —, 0, K,(v) = Op(1) and R} (v) = O,(1), by Lemmas A.3, A.9
and A.10. Applying again Lemmas A.9 and A.10, Q;(v) = —d|v| + 2¢'B(v). The process

¢ B(v) is a Brownian motion with variance A = ¢'Vcf, so can be written as v AW (v), where

W (v) is a standard Brownian motion. O

Proof of Theorem 1: Let 7 = a,, (5 — ), or ¥ = 70+ 7/a,. Using this reparameterization,
U = argmax,.g, @, (), where ¥,, = [a,(7 — 70), an(7¥ — 70)]. Lemma A.8 implies that for
any € > 0, there exists some 7, < oo such that setting ¥, = [-7,, 7],

P (an(’y — %) = argmax ), (y)> >1—c.

vew,
That is, if we define
Ve = argmax Q’;kl (V) ) (53)

vev,
then P(v. =70) > 1 —e¢.

To find the asymptotic distribution of 7. from (53) and Lemma A.11, one might be
tempted to apply the continuous mapping theorem. The “argmax” functional, however,
is not continuous. Kim and Pollard (1990, Theorem 2.7) have provided an appropriate
alternative. They show that under Lemma A.11, since @)(v) is continuous, has a unique

maximum, and lim,_,. Q(v) = —oo almost surely (which is true since lim, .o W(v)/v =0
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almost surely), then 0, —% argmax, ., Q(v). Since ¢ is arbitrary we find the asymptotic
distribution of the threshold estimator:
an(5 =) = 7 = argmax Q(v).
VER
The final step is to simplify the asymptotic distribution. Making the change-of-variables
v = (A/d*)r, and noting the distributional equality W (a*r) = aW(r) we can re-write the
asymptotic distribution as

argmax ()(v) = argmax [—d lv| + 2\/XW(I/)i|

VER —oo< V<00

_ 2 argmax {—3 r| 4+ 2V AW (%r)}

d2 —oo<Lr<o d

w argmax {—é || + 2AW (T)]

—oo<Lr<o d

since w = \/d?. O

Let 0= (0, 6).

Lemma A. 12 Uniformly in a n'=2*—neighborhood of Yo,

Vi (000) = 80) = 7+ Oy(a, ),

where Z ~ N(0,¥), and V¥ is the standard asymptotic covariance matrix if v = 7, were
fixed.
Proof: Lemma A.9 (43), 2AX/AX, = Oy(1). Thus

and



Proof of Theorem 2: From Lemma A.12,
Vi (800) = 0) = v (830) = 0) = v (03) = 8y) = 7 — Z =0,
It is also easy to calculate that for ¢ in a y/n neighborhood of 6,,,

= Op(n1/2)-

0
‘a—gsn@, o)

Hence for 6* on a line segment joining § and (),

(7 0
L) - B0 < |2

S0, %) )Q(VO) —0

= 0,(1).

Now applying Lemma A.11 and the continuous mapping theorem

L) = 2 40,1
sup Q5 (v)
= - 6'2 +Op(1)
sup Q(v)
Ed d 0-2
= = sgp [—d|u| + 2\/XW(V)i|
1 A A
= —7sup [—d o +2JXW(F~)]
= gy 81T1p [— |r] + 2W (r)]
= 0%

the second equality following from the change-of-variables v = (\/d?)r, the second-to-last
equality by W (a%r) = aW (r), and the final equality by the fact that n? = \/(c%d).

To find the distribution function of £, note that £ = 2max (&, &] , where & = sup o [W(s) — 3 |s]]
and & = supg<, [W(s) — 3 |s|] . & and & are iid exponential random variables with distrib-

ution function P (& < z) =1 — e *, (see Bhattacharya and Brockwell, 1976). Thus

P <z) = P(2max[§, 6] <)
= P& <z/2)P (& < 2/2)
= (1-e*P)”
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Proof of Theorem 3: Note that by the invariance property of the likelihood ratio test,
LR, () is invariant to reparameterizations, including those of the form v — ~v* = F,(v).
Since the threshold variable ¢; only enters the model through the indicator variables {¢; < v},
by picking F),(x) to be the empirical distribution function of the g; we see that

o <7} = {Ful@) < )k =12 < )

for some 1 < j < n. Without loss of generality, we therefore will assume that ¢; = ¢/n for
the remainder of the proof. Let j, be the largest integer such that jo/n < 5. Without loss
of generality, we can also set 0 = 1.

If we set a = 0, the proof of Lemma A.11 shows that shows that uniformly in v

Qn(v0 +v/n) = =G (v) + 20 R}, (v) + 0,(1) (54)
where for v > 0
Gr(v) = > (62:) {0 < @ <y +v/n}

i=1

- Z(‘S/xi)Q{j_O <q < ]0+V}
n n

=1

and

n : o
Ri(v) = Z{% <q< Bt }
While Lemma A.11 assumed that o > 0, it can be shown that (54) continues to hold when
a=0.
Note that the processes G (v) and ¢’ R} (v) are step functions with steps at integer-valued
v. Let NT denote the set of positive integers and D,,(v) be any continuous, strictly increasing
function such that G% (k) = D, (k) for k € NT. Let N, (v) be a mean-zero Gaussian process

with covariance kernel

E (Nn(l/l)Nn(Vg)) == Dn(Vl N VQ).

Since &R} (v) is a mean-zero Gaussian process with covariance kernel oG} (v1 A 1s), the

restriction of &' R} (v) to the positive integers has the same distribution as N, (v).
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Since D,,(v) is strictly increasing, there exists a function v = g(s) such that D, (g(s)) = s.
Note that N, (g(s)) = W(s) is a standard Brownian motion on R*. Let Gt = {s : g(s) € N*}.
It follows from (54) that

max ng) = max [~Gy (k) + 28R, (k)] + 0p(1)

= max [—Dy (k) + 2N, (k)] + 0,(1)

= max[-Dn(g(s)) +2Na(g(s))] + 0p(1)
= max [—s 4+ 2W(s)] + 0p(1)

< max [—s 4+ 2W(s)] + 0,(1).

We conclude that
LR,(v) = max {max QT(J) ,  max in(;/)
> & < O

IN

max {rgag( [— |s| +2W ()], max [— |s] + 2W (s)]| + 0p(1)

— 4 max [~ |[s| +2W(s)] = &.

—o0<8<0

This shows that P (LR,(y0) > x) < P (£ > z) 4+ o(1), as stated. O
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