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Abstract

This paper presents asimple model of parking congestion which focuses on
drivers search for a vacant parking space in a spatially homogeneous metropolis.
Individuals' residences are distributed uniformly around an annulus. When at home an
individual waits for atrip opportunity which is generated by an exogenous stochastic
process. A trip opportunity provides a benefit if she visits a specific location for a
specific period of time. The individual decides which trip opportunities to accept and
what mode of transport to take. If she drives, she must decide how far from her
destination to start cruising for parking, and then takes the first vacant parking spot and
walks to her destination. The mean density of vacant parking spacesis endogenous. A
parking externality arises because individuals neglect the effect of their parking on the
mean density of vacant parking spaces.

The paper examines stochastic stationary-state equilibria and optima in the model.
Our main finding is that due to the model's nonlinearity, there may be three equilibria--
stable-congested, unstable, and stable-hypercongested (which is Pareto inferior to the
stable-congested equilibrium). The effects of parking fees are, as aresult, complex. For
one thing, the fee may cause the appearance of a congested equilibrium and/or the
disappearance of a hypercongested equilibrium. The important policy insight is that
parking pricing is both a delicate and potentially powerful tool for the regulation of traffic
congestion.

A variety of extensions are discussed. Oneisto include flow congestion in car
travel. If such congestion is unpriced, determination of the optimal parking feeisan
exercise in the second best. Another isto determine the social value of a particular
parking information system.



MODELING PARKING

Downtown parking isasignificant problem in all mgjor cities. Remarkably,
however, there has been very little formal economic analysis of even the most obvious
issues. If traffic congestion is efficiently priced, how should parking fees be set?
Alternatively, what are the second-best parking fees when, asisrealistic, traffic
congestion is underpriced? Depending on the pricing of auto congestion and public
parking, should private, off-street parking fees be taxed or regulated? For various pricing
régimes, how much land should be allocated to parking, both on- and off-street? What is
the value of information concerning parking availability? In this paper we develop a
simple structural model which provides a conceptual basis to answer such questions.

Various aspects of parking have been considered in the literature. Descriptions of
parking patterns, the effects of on-street parking on traffic circulation, and the technology
of off-street parking appear (e.g. Highway Research Board (1971), Institute of
Transportation Engineers (1982)), aswell as discussions of parking policy (e.g.
Segelhorst and Kirkus (1973), Miller and Everett (1982), Shoup (1982), U.S. DOT
(1982), Adiv and Wang (1987)). Some empirical work has been done identifying the
determinants of modal choice and parking location (e.g. Gillen (1977a,b, 1978), Westin
and Gillen (1978), Hunt (1988)). Numerous city-specific parking studies have been
undertaken (Smith (1967)). And there are high-quality, non-technical economic
discussions of parking policy, notably Vickrey (1959) and Roth (1965). But with the
exception of a short note by Douglas (1975) and papers by Arnott, de Palma, and Lindsey
(19914a), Glazer and Niskanen (1990), and Verhoef, Nijkamp, and Rietveld (1995) no
economic model has been devel oped that considers the potential efficiency gains from
parking fees or that incorporates the effects of parking on travel congestion. The effects
may be substantial, for in major urban areas the time to find a parking spot and walk from
there to work can be an appreciable fraction of total travel time, and parking fees may be
comparable to vehicle operating costs (Lansing (1967), Gillen(1977b)). Arnott, de
Palma, and Lindsey (1991a) explored the effects of parking fees in a deterministic model
of the morning auto commute to the central business district, with bottleneck congestion.
They showed that parking fees which vary over location can significantly reduce total
travel costs. Glazer and Niskanen (1992) examined simple partial equilibrium models to
demonstrate that raising parking fees may increase both local traffic (by encouraging




shorter visits) and through traffic. And Verhoef, Nijkamp, and Rietveld (1995) compared
parking fees and parking regulations.

This paper presents a quite different model that focuses on the stochasticity of
vacant parking spaces. This stochasticity isimportant to treat for several reasons. First,
it resultsin drivers cruising around looking for a parking space. It has been claimed that,
in Boston and major European cities, over one-half the cars driving downtown in rush
hour are cruising for parking. Cruising for parking is not only frustrating and time-
consuming for the driver but also contributes significantly to traffic congestion, by
increasing traffic volume and slowing traffic down. Second, many cities are exploring a
variety of information systems that provide information to drivers on parking availability;
to evaluate such systems, it is necessary to treat the stochasticity of vacant parking
spaces. Third, recent studies (e.g. Small, et al. (1995)) support what intuition suggests --
that unanticipated travel time is disproportionately costly; variability in the timeto find a
parking spot isamajor component.

The aim of this paper is modest. It does not attempt to treat these issuesin their
full complexity. Rather, it explores perhaps the simplest possible structural model that
incorporates the stochasticity of vacant parking spaces. A later section discusses at some
length how the model can be extended in the direction of realism. The structure of the
basic model isasfollows. The city islocated on an annulus and is spatially symmetric.
At each location there is a fixed amount of land devoted to parking. The demand for
parking is derived from the demand for trips. Trip opportunities are generated according
to an exogenous, stochastic, time-invariant process. A trip opportunity provides a benefit
to aspecific individual if she travelsto a specific location and visits there for a specified
period. Anindividual sits at home waiting for atrip opportunity. When she receives an
opportunity, she decides whether to accept it, and if she does accept it, what mode of
transport to take. If she drives, she must decide how far from her destination to start
cruising for parking, and then takes the first available parking spot and walks to her
destination. The expected walking distance depends on the mean density of vacant
parking spaces, which is determined endogenously. A parking externality arises because
individuals collectively neglect the effect of their parking on the mean density of vacant
parking spaces.

Our main finding is that the model exhibits complex nonlinearity. One
consequence is that there may be two stable equilibria which can be Pareto ranked.
Which obtains depends presumably on the path of adjustment to equilibrium. Another



consequence is that the comparative static properties of the model, including its response

to policy variables -- notably parking fees -- are complex. The important policy insight is
that even though parking pricing is a potentially powerful tool for the regulation of traffic
congestion, it isintrinsically difficult to determine the appropriate level of parking fees.

Section | describes the basic model. Section |1 examines equilibrium with no
parking fee. Section |1l considers the social optimum. Section IV treats equilibrium with
aparking fee, and explores decentralization of the social optimum via parking fees.
Section V provides quite a detailed discussion of directions for future research, and
provides an illustration of how the model can be employed to determine the social value
of parking information systems. Brief concluding comments are given in section VI.

|. TheBasic Modedl

The basic model provides a highly stylized and ssimplified, but structural and
general equilibrium, representation of the downtown parking problem. It isdesigned to
admit numerous extensions. The model has four modules: spatial structure, trip
generation technology, technology of parking and travel, and stationary-state conditions.

|.1 Spatial structure

To abstract from complications arising from spatia heterogeneity, it is assumed
that the city is spatially symmetric. More specifically, the city occupies athin annulus of
arbitrarily large inner radius r and has the same spatial structure at each location.
Population density is I per unit length. The number of parking spaces per unit distance,
the "density” of parking spaces, is D.

[.2 Trip generation technology

The demand for parking is derived from the demand for trips. Anindividual takes
trips for the benefit she derives at the destination. To avoid complications associated
with scheduling, interaction between individualsisignored and al trips are single-
purpose.

When at home an individual receives trip opportunities according to a Poisson
process. A trip opportunity statesthat if she travels immediately to a specific location
and visits for afixed period of time ¢, she will receive afixed dollar benefit [. If the



individual accepts the trip opportunity, she travelsto that location, receives the benefit,
returns home, and waits for her next trip opportunity.

The origin of trip opportunitiesis uniformly distributed around the circle. The
Poisson arrival rate of trip opportunitiesis p per individual. Thus, the model is
temporally, as well as spatially, homogeneous.

Many other specifications of the trip generation technology are possible. The
above assumptions were chosen for their smplicity.

.3 Travel and parking technologies

There are two travel modes - walking and driving, indexed i =1,2, respectively.

Let x denote the distance of atrip opportunity from home. The expected travel time to
and from x by mode i is T,(x). Walking speed isaconstant w. Thus,

Ty(x) ==. 1)

Determining auto travel time is more complex. There are two components of car
travel time - time spent in the car, and time spent walking from the parking location to the
destination and back again. The time spent in the car can in turn be decomposed into
time spent cruising for parking and time spent in "regular” car travel. Sincethe
congestion caused by cruising for parking is of central importance to the parking
problem, asiswalking time when driving, it isimportant to model car travel with care.

Two simplifying assumptions are made, both of which should be relaxed in more
realistic models. Thefirst isthat carstravel at a constant speed, independent of the
density of cars both in regular traffic and cruising for parking; that is, thereisno travel
congestion. The second isthat car speed is the same whether in regular traffic or cruising
for parking, v.

To provide a primitive treatment of the parking technology and to incorporate
cruising for parking, it isimportant to treat the stochastic nature of finding a parking spot.
Sincetraffic isin astochastic stationary state, it is reasonable to assume that adriver
knows the probability of finding a vacant spot between x and x + dx, Pdx, where P is
the average density of vacant parking spaces. To simplify, it is assumed that a driver
searching for a parking spot can neither stop and wait for a parking spot to become
vacant, nor back-track. For short distances, adriver would start cruising for parking as



soon as she leaves home. For longer distances, she would start cruising for parking a
distance d from her destination. A simple argument establishes that with a non-negative
parking fee, which we assume, walking dominates driving for x <d : If the driver starts
cruising immediately upon leaving home, then the expected cost of taking a vacant
parking space immediately is no greater than the cost of not taking a parking space, which
issimply the expected travel cost. The cost of taking a parking space immediately upon
leaving homeis, in turn, at least as high as the cost of just walking since in both cases she
has to walk the same distance. Thus, the expected travel cost of driving and cruising
immediately upon leaving homeis at least as high as the cost of walking, and so the
option of driving and cruising immediately upon leaving home can beignored. Hence,
the individual will walk on shorter trips and drive on longer ones.

Let y bethe distance the driver cruisesfor parking.l  Pdy isthe probability that
she finds a vacant parking space in an interval dy. On the assumption that the
probabilities of adjacent parking spaces being vacant are independent,? the probability
that she finds her first vacant parking space between y and y + dy is Pe”™dy.
Expected driving time on the round-trip journey istherefore

R P.d)= 2229 4 2 g0 54, %)

v vP

On the journey from home to the destination, the individual drives adistance x —d
before starting to cruise for parking and then cruises for parking for an expected distance
+. Since, by assumption, driving speed is v both in regular traffic and while cruising for
parking, expected driving time on the outbound journey is 2 + . On the homeward
journey, theindividual travels an expected distance x —d + + inregular traffic at speed
V. Summing the times on the outbound and homeward journeys gives R(Jl.

Expected walking time on a car trip is now computed. Let y be the distance the
driver cruisesfor parking. If shefindsaparking spot at y < d, she must walk a distance
d-y; andif shefindsaspot a y>d, shemust walk adistance y—d. Thus,

dd- 00\ —
W(P,d) = 2J'O % Pe Pdy + 2Id y—WdPe‘ PYdy

11t is assumed that the radius of the city is sufficiently large that the probability that a driver will drive more
than half way round the circle beyond her destination is negligible.
2This assumption is an approximation. The accuracy of the assumption is discussed in section V.5.
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|.4 Decision variables and stationary state conditions

There are three individual decision variables. Thefirst concerns which offersto
accept. Sincethereisan opportunity cost to the individual's time, she will not accept trip
opportunities beyond X, the maximum travel distance. The second relates to her travel
mode; she will walk shorter distances, up to the maximum walking distance X, and drive
longer distances. And the third isthe cruising distance d - the distance from her
destination adriver will start cruising for parking. It was argued in the previous
subsection that, with a non-negative parking fee, x> d.

The expected trip period, L, will feature prominently in the analysis. Thishas
three components: expected travel time, visit length /7, and expected time waiting at

home for an accepted trip opportunity. Expected travel timeis J’:T(x)g(x)dx , Where

g(x) isthep.d.f. of x ontripstaken and T(x) istravel timeto x with the chosen mode.
Since the location of trip opportunitiesis uniform on the circle, and since all trips up to X
are accepted, g(x) = % Furthermore, T(x) = Ty(x) for x< X and T(x) =T,(x,P,d) for

x 0(X,X). Hence, expected travel timeis

11X X H
= goTl(x)dx RACLLLE

Sincethe arrival rate of trip opportunitiesis . and the proportion of trip opportunities
accepted is -£2- Zm , the arrival rate of accepted trip opportunitiesis u( m) The expected

time waiting for an accepted trip opportunity between tripsis therefore 7~ X Thus,

3The partial derivatives of W(P,d) and To(x,P,d) are provided in Appendix 1.
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L(%,%,P,d) = % HoiTl(x)dx + I:Tz(x, P, d)dx5+ 0+ % (5)

Finally there is a stochastic stationary-state condition, which can be interpreted in various
ways. Oneisthat the average rate at which parking spaces become occupied equal the
average rate at which they are vacated. In stationary state, the rate at which parking
spaces become occupied equals the rate at which car trips are initiated, which equals the
rate at which trips are initiated, &, times the proportion of trips that are by car, . And,

also in stationary state, the rate at which parking spaces are vacated equalsthe den5|ty of
occupied spaces times the rate at which each occupied space is vacated, W Thus?

D-p= F(W(P,dl)_;ﬁ)(f(—f(). ©)

[I. Equilibrium with No Parking Fee

Thisisthe natural base case.

[1.1 Derivation of equilibrium

Theindividual chooses X, X, and d to maximize benefits per unit time, taking P
asfixed. Because P infact depends on everyone'schoiceof X, X, and d , thereisan
uninternalized parking externality. Since the benefit per trip is fixed, maximization of
benefits per unit time is equivalent to minimization of the average trip period. Thus,
using (5), the individual's optimization problem is

O

min T dx+ T dedx +£+— 7

X,x,d Xg l -I 2 ) Q HX )
The first-order conditions are

-~ 1 - -

X g[Tl(X) -To(%, P,d)] =0 (8a)

.1 mid 1 _

X : ?a'o dx+J’ szPd)dx+7 xTZ( ,P,d)=0 (8b)
or, using (5),

4|_ater we shall have occasion to determine how P responds to changesin X, X, and d. For this purpose we

regard (5) and (6) as two equations in the unknowns L and P. The comparative statics of this pair of
equationsisgivenin Appendix 2.
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Eq. (8a) indicates that, in the absence of a parking fee, the individual chooses the mode
with the lower travel time. Eg. (8b") has the following interpretation: The individual will
accept atrip opportunity if the benefit from doing so covers the opportunity cost of the

expected trip time. Thetrip benefitis . Since the opportunity cost of timeis % the

opportunity cost of expected trip timeto x is %(T(x, P,d) + f). Hence, sheisindifferent
between accepting and declining atrip opportunity to X. Eg. (8c) indicates that the
individual will choose d to minimize expected travel time by car. Anincreasein d will
decrease expected driving time. Thus, she will choose d so that the decrease in expected
driving time from asmall increasein d isjust offset by an increase in expected walking
time. Using (4), (8c) gives

_ 0 _ A0 w ,
d=2 where 6= |n§§ e (8¢)

The cruising distance is inversely proportional to the density of vacant parking spaces.

Theindividual's optimization problem is well-behaved. The second-order

m

conditions are satisfied so that the optimum is unique. Furthermore, aslong as - > De—fw ,

which we assume, then, X >d > X.

The equilibrium with no parking fee is characterized by (8a), (8b"), (8¢), (5), (6),
and (3) where the six unknowns are X, X,d, L, P, and W. Unlike the system of equations
characterizing the social optimum and positive parking fee equilibria, which shall be
examined in subsequent sections, this system of equations can be reduced to two
equationsin X and X:

o2
H(i,x)sxvﬂz'é‘%lv—\—l/

m
U

G(X,x) = Eb - g%%% + f(% - \—1/%+ E@— ré%ig% - \—1/5+ E%)‘( -%)=0. (10

U -
D_ =0 (9)



The solution to (8a) is°

~

X=d=

Tl

(84)

Eg. (10) is obtained by substituting (8a), (8¢’), (5), and (3) into (6). Thus, it hasthe
interpretation as the locus of (X, X) such that parking isin equilibrium. Eq. (9) is
obtained from (8a) and (8b). Since (10) incorporates (8a), (9) is appropriately interpreted
asthe X chosen by the individual as afunction of the X he chooses. Eq. (9) describes an
ellipse with the origin as center. Eq. (10) has afar more complex form. The substitution
of (9) into (10) gives a sixth-order polynomial equation (in X or X).

Therest of this section explores the characteristics of equilibrium.

[1.2 Two numerical examples

We have been unable to obtain a complete analytical characterization of the
solutions to (9) and (10), though we have proved that thereis at least one real solution
with X and X > 0. To gain some insight into the properties of the no-parking-fee
equilibrium, we examine two numerical examples.

a) example 1

We employ the following parameter values:®

w =3.0mls./hr. D =200 spaces/m.
v=12.0mis./hr. Ir =2533.3 persong/ml.
o =.79052ml.-hrs. =0 hrs.

u

These parameter values imply that ¢ — 0.98083.

STheintuition for X = d with a non-negative parking fee was given earlier. Suppose with a zero parking

feethat X > d. Then aperson drivingto X would be better off not taking a parking spot immediately
upon leaving home. Since the cost of taking a parking spot immediately upon leaving home is the same as
walking, sheis better off driving, which isinconsistent with the definition of X.

6D was chosen such that there is continuous parking on one side of the street, with each parking space 26.4°
long. | was chosen on the basis of 6-story apartment buildings on each side of the street, with each
apartment having a frontage of 25.01". Thus, there is one household per 25.01/12 ft., which corresponds to

2533.3 households per mile. % was chosen so that, with no congestion in parking, the longest trip taken
would be approximately 3.08 miles.
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Three solutions’ of economic interest to (9) and (10)were found:

X X P L d
H 0.0052382 3.0800 187.25 0.51595 0.0052382
i 0.085619 3.0764 11.456 0.55554 0.085619
0 1.4924 1.6747 0.65722 1.0253 1.4924

Egs. (9) and (10) are plotted for this examplein Figure 1. Asalready noted, (9)
(H(% x) =0) isan ellipse. The properties of (10) can be explained by noting that with

fixed, the equation is aquadratic function in X. The upper curve for (10) correspondsto
the positive root of the function and the lower curve to the negative root. Note that

P < D since the number of vacant parking spaces cannot exceed the number of parking
spaces. From (8a) thisimpliesthat X > % so that lower values of X are not of economic

interest; relatedly, the singularity in the positive root function of (10) at X = % is not of

€conomic interest.

Figure 1: The zero-parking-fee equilibrium with ¢ =0.0

7All numerical results are presented with five non-zero digits. The computed accuracy was the maximum
allowed by EUREKA, namely to 13 digits.
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In Appendix 3, we provide an argument that equilibria 0 andd are stable, while
equilibrium O isunstable. The argument is supported by the fact that comparative static
results in the neighborhood of equilibrial]l and [0 are intuitive, while those in the
neighborhood of equilibrium are perverse. Following the economic terminology
applied to road congestion, which we shall explain shortly, we term equilibrium [ the
congested equilibrium and O the hypercongested equilibrium.

In the congested equilibrium [, over 90% of parking spaces are vacant. On car
trips, individuals start cruising for parking 28" before reaching their destination, and walk
an average distance of 21" to their destination which takes 4.7 seconds. Since ¢ =0, the
average time parked on a car trip therefore equals 9.4 seconds. With a zero parking fee,
X =d; hence individuals drive on trips exceeding 28". Averagetrip duration, L, isabout
332 minutes of which about 153 are spent at home with the rest spent traveling.

Evidently, this equilibrium entails very little parking congestion.

The hypercongested equilibrium 00 isvery different. Only about onein three

hundred parking spacesis vacant. On car tripsindividuals start cruising for parking
almost 1% miles before reaching their destination, and walk an average distance of 1.1

miles to their destination which takes somewhat over 22 minutes. The average time

parked on a car trip therefore equals about 45 minutes. Average trip duration is about
61% minutes, of which about 28% minutes are spent at home with the remainder spent in

travel. This equilibrium exhibits extreme parking congestion.

Why are there multiple equilibria? To provide an answer, we explore the anal ogy
between flow congestion on a highway and the parking congestion considered in this

paper.

12



Figure 2: Equilibrium with highway flow congestion

A central tenet of traditional highway engineering (Institute of Transportation
Engineers (1982)) is that on a given section of road, there is a stable relationship between
flow, g, and velocity, v. Thisrelationship has the characteristic that for any flow rate
between zero flow and maximum (capacity) flow, there are two velocities; for example,
zero flow corresponds to zero velocity (completely jammed traffic) and also to free-flow
velocity (when there are no cars on theroad). Travel at the lower velocity for agiven
flow rate is termed hypercongested, and at the higher velocity congested. Now plot travel
time against flow -- shown as Q in Figure 2. The upper portion of the travel time curve
corresponds to hypercongested travel, and the lower portion to congested travel. To
simplify, ignore the money costs of travel and normalize so that the shadow cost of time
equals 1.0. Then thetravel time curve can be interpreted as the marginal price cost or
user cost curve. Now draw in aset of demand curves which relate the number of trips

demanded per unit time to travel time. Asdrawn, there may be only a congested
equilibrium (with d;), three equilibria (with d,), or only a hypercongested equilibrium

13



(with d,). Inthe case where there are three equilibria, conventional stability arguments
imply that the top and the bottom equilibria are stable and the middle one unstable; also
the top equilibrium is termed the stable, hypercongested equilibrium and (with aslight
abuse of terminology) the bottom one the stable, congested equilibrium.

L
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Figure 3: The analog for the parking problem

of the 'supply-demand' diagram of flow congestion

We now develop an analogous analysis for the parking problem. We take asthe
flow rate the expected number of trips by an individual per unit time, and as the travel
time the expected trip period. Since under our assumptions the individua is either
traveling or waiting to travel, the demand curveistrivia: Theflow rateis + and travel
time L, so that the demand curve is ssimply the unit rectangular hyperbola. To derive the
user cost curve, we first substitute out X, X, and d from (5), using (8a), (8b), and (8c),
which gives an equation L = L(P). We then substitute out X, X, and d from (6), again
using (8a), (8b), and (8c), which gives an equation S(%, P) =0. Thenwevary P over the
relevant range plotting the L's which satisfy L(0J= 0 against the +'swhich satisfy

14



()= 0, which yields the analog of auser cost curve. Figure 3 plotsthe curves for the
parameter values of example 1. The congestion technology is evidently more complex
than that for highway flow congestion, which is perhaps not surprising considering that it
incorporates the three behavioral margins of adjustment, X, X, and d. The upper portion
of the user cost curve, shown by the dashed line, corresponds to the negative root of G([J
in Figure 1, and may be interpreted as corresponding to hypercongestion. The lower
portion, shown by the dotted line, corresponds to the positive root of G(J) = 0in Figure 1,
and may be interpreted as corresponding to congested travel. Thus, there is an analogy
between flow congestion on highways and the parking congestion of the paper, but the
analogy is not perfect because of differences in the two technologies.

b) example 2

This exampl e has the same parameters as the previous one, except that ¢ =.25.
Thus, the minimum time parked on acar trip is 15 minutes. If X and X wereto remain
the same as in the congested equilibrium of the previous example, the level of parking
congestion would increase very substantially. Thus, one might expect the parameter
change to cause the congested equilibrium to more closely resemble the hypercongested
equilibrium. In fact, the parameter change eliminates the congested and unstable
equilibria. Only the stable, hypercongested equilibrium remains, with X =1.4962,
X =16644, P=0.65554, and L =12755. If the analog to Figure 1 were plotted, then
H(%,x) = 0 would remain unchanged, the upper (positive root) portion of G(%,%) =0
would lie above H(X,X) =0, and the lower (negative root) portion of G(X,X) =0 would
intersect H()”(, >‘<) = 0 at the hypercongested equilibrium. The equilibrium isvery similar
to the hypercongested equilibrium — of example 1, except that L is higher by about .25.

1.3 Comments

The comparative static properties of the equilibria can be obtained
straightforwardly from (9) and (10), but the analysisis messy. The only simple
comparative static exercise iswith respect to 1. Intermsof Figure 1, an increasein |, the
Poisson arrival rate of trip opportunities, shifts (9) inwards, towards the origin. Consider,
for instance, the congested equilibrium ¢, in Figure 1. The inward shift in (9) causes X to
fall and X torise. The mechanism is asfollows: Theimmediate effect is that time
waiting at home falls, causing the expected trip period L to fall. Thisin turn hastwo

first-round effects. First, since the opportunity cost of time % rises, the individual

refuses some longer trips that she previously accepted -- X falls (eq. (8b)). Second, trip

15



frequency rises, which increases the parking occupancy rate (eg. (6)). The increased
parking congestion in turn causes the individual to walk on some trips on which she
would previously have driven -- X rises (eg. (8a)) -- and to increase cruising distance -- d
rises (eg. (8c)). The qualitative effects of the full adjustment are the same as for these
first-round effects.

The possibility of multiple stable equilibria raises the issue of equilibrium
selection. Which equilibrium obtains presumably depends on the path of adjustment to
the stationary state. If the economy were previously highly congested, the economy
should settle at the hypercongested equilibrium, while if congestion built up towards the
stationary state the economy should settle at the congested equilibrium. Unfortunately,
thisintuition is very difficult to make precise because the transient behavior of the
economy is highly complex. For example, in deciding between walking and driving, with
perfect foresight an individual would have to take into account that the density of vacant
parking spaces would change as she was cruising for parking.

The complexity of the model's solution is discouraging. It is, however, intrinsic to
the problem. We chose our assumptions to obtain the ssimplest structural model that in
our opinion captures the essential elements of the problem. Much of the complexity
derived from the stochastic nature of finding a parking space. But, without this
stochasticity, there would be no cruising for parking, which we judge to be an essential
feature of the problem. Fortunately, the first-best welfare economicsisrelatively
straightforward. However, the second-best welfare economics is comparably complex.
This suggests that practical parking policy should be investigated employing realistic
simulation models.

[11. Social Optimum

[11.1 First-order conditions and interpretation

The planner's aim isto maximize trip frequency. Unlike individuals, however, the
planner takes into account the dependence of the density of vacant parking spaceson X,
X and d. Hisoptimization problemis

. . 10X X O mm
min L st L==HA T,(x)dx+[. T,(x,P,d)dxo+ ¢+ —
min Lost i) L= 2 Tdcr [ To(xPd)dgs £+
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Constraint i) isthe definition of L (eq.(5)), while constraint ii) isthe parking equilibrium
condition (eq.(6)). Eliminating L, the optimization problem in Langrangean formis

min  Z :%B’(:Tl(x)dxq;u(xpd dx +z+—§1 A)

%,x,d,P
X - X
gl'(W(P,d) + g)DTDD

+A[G 0 (11)
0 D-P i
(] Ul

where = isthe Lagrange multiplier on ii), with L substituted out. The corresponding first-
order conditions are:8

.. 1 ~ . F(W(P,d)+¢)C

X ggl—/\)(Tl(x)—Tz(x,P,d))—A ( é_F)) )%:o (12a)
.10, . e r(w(P,d)+¢) x0_

X §Er(l A)L(%%,P,d) = £ -T,(x,P,d))+ Soh )_(E_o (12b)
X=X, ) dT,(x P,d) r ow(P,d)O_

d: X gl iy =’ (120)
p. X=X0, _ /\)o"Tz(x,P,d)+ AT (P,d)+W(P,d)+€%:O (12d)
X oP D-PO 4P D-P '

Consider first the interpretation of (12a). When an individual walksto X, the
social timeit takesis Ty(X). When instead she drivesto X, the expected social time of

the trip equals her expected travel time plus the expected parking congestion externality
she imposes through reducing the density of vacant parking spaces and hence increasing
the expected travel time of other drivers. Thus, the condition for the optimal choice of X
is

T.(X) = T,(X, P,d) + parking congestion externdlity. (12a)

8We have proved that with P fixed, the minimization problem has a unique interior minimum. We
conjecture, but have not proved, that there is a unique interior minimum with P variable in the economically

meaningful region of ()N(, X,d, P). This conjecture is supported by the numerical results reported in fn. 9.
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The parking congestion externality is proportional to the length of time parked. Define
E to bethetimelost by other drivers per extra minute parked (notethat E is
dimensionless). Hence

Ty(%) = T,(%,P,d) + E(W(P,d) +¢). (12a")
Comparing (12a) and (12a ") yields

Aol O
=2 4’ 134
1-AUD-pPO (133

Eg. (12b) hasasimilar interpretation. The individual should accept atrip
opportunity to x if the expected social time of the trip is not greater than the expected
socia time until completion of the next accepted trip. Since atripto X isby car, its
expected social timeis T, (X, P,d) + ¢ + E(W(P,d) + ¢). If thetrip opportunity to X is
declined, the expected social time until completion of the next acceptabletripis L plus
the expected parking congestion externality. Since a proportion % of trips entail
parking, the expected parking congestion externdlity is (*Tif‘)E(W(P, d)+¢). Thus, X is

characterized by

T,(%,P,d) + ¢+ E(W(P,d) + ¢) = L(X,%,P,d) + Sy‘ _ )N(EE(W(P, d)+¢), (12b7)

which, using (13a), is consistent with (12Db).

Similarly, in deciding on cruising distance the planner takes into account the
parking congestion externality. The privately optimal cruising distance minimizes the
sum of expected driving time and expected parking time. Since the externality derives
from parking, the planner chooses a shorter expected parking time and alonger expected
driving time, which entails a shorter cruising distance.

Eq. (12d) givesthevalue of A. Combining (13a) and (12d) yields

_ JT,(x,P,d)

_ oP
E=WEa+r wWPd) (130)

+
D-P P

Eq. (9) continues to hold at the social optimum and we shall show in the next
section that it holds aswell in equilibriawith a parking fee. An explanation for why (9)
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holdsin all these situationsis as follows: Let C (x) bethe cost (socia cost for the social

optimum, and private cost for the equilibria) of travel to x by mode i. The optimality
condition with respectto X is

C,(%) = C,(%), (i)
which has an obviousinterpretation. That with respect to X is

C,(x)-C=V-—, (ii)

where C isthe average cost of travel on atrip and V isthe opportunity cost of time. Eq.
(ii) statesthat X is such that the expected travel cost savings from refusing atrip
opportunity to X and waiting for the next acceptable trip opportunity equals the
opportunity cost of the expected time until the next trip opportunity arrives. Now

% dx+J'C 5
>”<C1( ) , X-XOG,(X)+C(X)T
"X E 2 H ()

since C,(x) and C,(x) arelinear in x and C,(0) =
Combining (i) - (iii) yields

ECE 2()_() ; Cz(x)a)—( + 5*() + Cl(x)

Now C,(X) = 2% while C,(x) - C,(X) = 2=, Thus, (iv) reducesto (9).

X

_vm
2 U

(iv)

111.2 Examples

We return to our previous examples and report the corresponding social optima.®
a) examplel (¢ =0.0)

Recall that the congested equilibrium ¢,in example 1 of the previous section
(shownin Fig. 1) entailed the lowest average trip duration of the three equilibria, and

970 solve for the social optimum, we employed two separate packages (EUREKA and GINO) to check for
accuracy. We first optimized with respect to X, X, and d , holding P fixed, and then did a search for the
optimal P. In our computational experience, every problem had a unique interior minimum (recall fn. 8).
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entailed very little parking congestion. Thus, one would expect the social optimum (s.0.)
to closely resemble this equilibrium, and indeed it does.

X X P L d
S.0. 0.0056159 3.0800 187.35 0.51595 0.0051148
] 0.0052382 3.0800 187.25 0.51595 0.0052382

Because it takes into account the parking congestion externality, the social
optimum entails alarger maximum walking distance and a smaller cruising distance than
inequilibrium [J . Thelevel of parking congestion in the no-parking fee equilibrium is,
however, so low that the lower average trip duration for the social optimum shows up
only in the sixth non-zero digit. Thus, in this example the social loss in the no-parking-
fee equilibrium from the uninternalized parking congestion is negligible.

b) example 2 (¢ =0.25)

Again, example 2 standsin strong contrast to example 1.

X X P L d
S.0. 1.3874 1.9265 20.966 1.0774 0.036637
e 1.4962 1.6644 0.65554 1.2755 1.4962

There are several noteworthy features of the social optimum. In contrast to the no-
parking-fee equilibrium (€) where X and d are equal, in the social optimum they are very
different. There aretwo reasons. First, the planner takes into account that driving entails
the parking externality, whereas walking does not. Recall from the discussion of (12a)
that Ty(X) - T,(X,P,d) gives the magnitude of the parking externdlity in time units.

At the social optimum, T,(X) = 2 =.92493 while T,(X) = 2 + &= + 2(d - 4)(% - 1) =.25520;
thus, the parking externality in time unitsis .66973. Second, the planner favors a shorter
cruising distance, since even though thisincreases travel time, holding P fixed, it reduces
the length of time the driver is parked and hence the magnitude of the parking externality.
To ascertain the importance of this, we may calculate the cruising distance the driver
would choose with P = 20.966 and no parking fee; it is d = .046782, which exceeds the
socialy optimal value of d, .036637. Another feature of the social optimum isthat it
entails a considerably lower walking time when driving; in the no-parking-fee

equilibrium it is.74323, whilein the social optimum it is.022128. At the social optimum

20



the average parking duration on acar trip is.272128, and hence the parking externality
per unit time parked, E, is2.4611, which indicates that for each extra minute adriver
parks she causes atime loss to others of 2.4611 minutes. And finally, the social optimum
entails a substantial reduction in average trip duration, from 1.2755 to 1.0774 hours,
about 15%.

[11.3 Comments

The reader may wonder why we have investigated the social optimum at some
length when in fact the planner can control none of X, X, d, and P directly. Obviously,
doing so provides an insightful benchmark. But more than this, as we shall see, subject to
astrong qualification, the social optimum is decentralizable. The only distortion is that
the individual failsto take into account the externality associated with her parking, and
this can be corrected via a parking fee.

Some analytical comparative static results could be derived. Given the
complexity of the analysis, however, it would seem preferable to determine the
comparative static properties of the social optimum numerically.

V. The Equilibrium with a Parking Fee

This section examines both the equilibrium with a positive parking feel0 and the
decentralizability of the social optimum.

V.1 Derivation of equilibrium

The parking fee per unit time, p, isspecified in money units. The individual aims
to maximize trip benefits net of parking fees per unit time. The average benefit per trip is
B- p(%‘f()(W(P, d) +¢) since (%) is the proportion of trips taken by car and the
average parking fee per car trip is the parking fee per unit time multiplied by the average
time parked. Thus, the maximand is [[3 - p(*TZ)N‘)(W(P,d) + z)] / L. If parking revenues

100ne can solve for equilibrium with a negative parking fee. But the analysis needs to be altered somewhat
to reflect the fact that a person cannot start cruising for parking before she leaves home. We do not
investigate negative parking fees since their economic relevance is dubious. For one thing, individuals
would then have an incentive to park their cars on the street when at home so as to collect the parking
subsidy.
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are redistributed, the individual regards the payment as afixed sum per unit time. The
analysisistherefore unaffected by the redistribution of parking revenue.

Thus, the individual's maximization problem is

B- p(H)( (P,d) +¢)

xxd B T,(x)dx +J’ T,(x,P, d)dxg+ % v

(14)

V(I is the private value of time. In undertaking the maximization, the individual regards
P asgiven. Thus, thefirst-order conditions are:

>”<:—[ W(P,d) +¢) = V(Ty(%) = T,(%,P.d))| = 0 (152)
)‘(:%[/3 p(W(P,d) + £) = V(T,(%, P,d) + £)] = 0 (15b)
 X=%X0O _oW(P,d) . dT,(x,P,d)0_

SEP e Y a EO (150)

where A = LX. Each of these conditions has a straightforward interpretation. For
example, (15a) indicates that the individual will choose the mode which costslessin
money terms, where the price of timeisits private value. The maximization problem has
aunique, interior maximum (see Appendix 3). And the equilibrium is obtained by
combining (15a) - (15c) with (5) and the definition of V, giving five equationsin five
unknowns, X,X,d,P, and V. Eq. (9) continuesto hold. Comparative static analysis of
this system of equationsis very messy, so numerical determination of the comparative
static properties of the model isjustified.

V.2 Decentralization of the social optimum

We have argued previously that thereis only one distortion in the model --
individuals do not pay the full social cost associated with their parking. By setting the
parking fee at the appropriate level, it should be possible to correct this distortion.

We proceed by solving for the parking fee which supports the optimum and then
turn to afuller analysis of decentralizability.

Comparison of (12a) - (12c¢) with (15a) - (15c¢) indicates that the two sets of first-
order conditions can be made consistent by setting
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p* A*T -
= *=V*E*, 16
A (1 A*)(D-P*) orp (16)

where * denotes evaluation at the social optimum (see Appendix 5). Eq. (16) states that
the parking fee should be set equal to the parking externality in time units multiplied by
the private value of time, both evaluated at the social optimum. Observe that the parking
fee causes a divergence between the private and social value of time; the latter is %
Since V isafunction of p, (16) isanimplicit equation. Combining (16) and (14) gives
the following explicit equation for p*:

* — E*ﬁ -,
p L*+E*(X*_X*)(W* ) (16°)

Now recall example 1. There were two stable equilibria, one congested and one
hypercongested. There was very little parking congestion in the congested equilibrium,
and the socia optimum was very similar to the congested equilibrium. These
observations suggest that application of the optimal parking fee, computed per (16°),
should cause the congested equilibrium to coincide with the social optimum but, since the
optimal parking fee is so low, should not eliminate the hypercongested equilibrium. As
we shall see, such isindeed the case. Thus, application of the optimal parking fee given
by (16") does not necessarily result in attainment of the social optimum.

We provided an intuitive argument earlier that one should expect the
hypercongested equilibrium to occur if parking is highly congested in the adjustment to
the stationary state, and the congested equilibrium to occur otherwise. This argument
suggests that the social optimum can always be attained by an appropriate dynamic
parking fee. By setting the parking fee sufficiently high in the adjustment to the
stationary state, the planner should be able to ensure that the economy ends up at the
socia optimum. Investigation of the conjecture will require exploration of the non-
stationary dynamics of the model, which we do not explore here.11

V.3 Examples

We return to our previous examples, and explore the effects of parking fees on the
equilibrium.

11support for this conjecture is provided by Figure 4a, which plots equilibria as a function of the parking
feefor ¢ = 0. If the parking feeis set sufficiently high, the hypercongested equilibrium disappears.
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a) examplel (¢ =0.0)

We start by computing the optimal parking fee and then solving for the
corresponding equilibria. The optimal parking fee, with 8 =$10, isp* =$14232/ hr.
The results are presented in the table below. A heavy dot in acell indicates that the
values are the socially optimal ones. The table contains few surprises. Since the
congested no-parking-fee equilibrium was very little congested, the optimal parking feeis
low. Application of the fee doesindeed result in the congested equilibrium coinciding
with the social optimum. But since the optimal fee islow, its application does not
substantially alter the other equilibria. It is, however, worthy of note that application of
the parking fee increases trip duration for the unstable equilibrium.12

X X P L d
p=p* 0.0056162 3.0800 187.35 0.51595 0.0051149
=0 0.0052382 3.0800 187.25 0.51595 0.0052382
p=p* 0.093515 3.0757 11.315 0.55608 0.084541
[]
p=0 0.085619 3.0764 11.456 0.55554 0.085619
p=p* 1.4878 1.6967 0.75598 1.0132 1.2425
[]
p=0 1.4924 1.6747 0.65722 1.0253 1.4924

We next investigate the effects of imposing a non-optimal parking fee on the
equilibrium.13 These effects can be explained using Figure 4a, which plots the
equilibrium X asafunction of p. A feature of special interest isthat for p > $56.45/hr.,
the unstable and hypercongested equilibria disappear. Thus, a sufficiently high parking
fee "unlocks" the hypercongested equilibrium. Asthe parking feeisincreased, for each
stable equilibrium type the density of vacant parking spacesincreases. Whether X is
positively or negatively related to p depends on two competing effects. On one hand, a
higher parking fee makes driving less attractive; on the other hand, it makes parking less
congested which makes driving more attractive. In the examples the former effect
dominates for the congested equilibrium (since there is little congestion) and the latter

12Since perverse comparative static results are characteristic of unstable equilibria, this result supports the
argument that the intermediate equilibrium is unstable.

13We determined these equilibria by employing a combination of MATHEMATICA and numerical
comparative statics. Using MATHEMATICA alone, we encountered serious difficulties in the numerical
solution. We developed a solution procedure supplementing MATHEMATICA which circumvented these
numerical problems. The procedure is described in Arnott and Rowse(1995).
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effect dominates for the hypercongested equilibrium (since an increase in the parking fee
reduces congestion substantially).

Figure 4a: Equilibrium as a function of the parking fee, ¢ =0.0
b) example 2 (¢ =0.25)

The optimal parking feeis p*=$19.459/hr. Application of the optimal parking
fee decentralizes the socia optimum. Prior to the application of the parking fee, benefit
per hour is V =€ = $7.843. With the optimal parking fee, benefit per hour without

o : o Bp(E)wse) .
redistribution of parking fee revenuesis V = ——-~——— =$7.906. Thus, even without

redistribution of parking fee revenues, individuals are made better off by the parking fee.
In contrast, in example 1 individuals are worse off in the decentralized social optimum if
toll revenues are not redistributed than in the no-parking-fee equilibrium [J. These
results are consistent with the economics of congestion pricing, where unredistributed
optimal tolls help driversif the pre-toll equilibrium is hypercongested but hurt them if it
is congested.
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The effects of imposing a non-optimal parking fee can be explained using Figure
4b. For p between 0 and $18.90/hr., X decreases with p -- driving becomes more

attractive since the reduction in congestion more than compensates for the higher parking
fee. For p between $18.90/hr. and $23.80/hr., X increases with p -- the reductionin
congestion does not compensate for the higher parking fee. At a parking fee dlightly
above $23.80/hr., no one drives. The parking feeis so high that even though thereis no
congestion, the cost of parking on a car trip ( p? =$5.95) makes walking cheaper, even on
the longest trips.

Figure 4b: Equilibrium as a function of the parking fee, ¢ =0.25
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The effects of the parking fee were so different for ¢ =0.0 and ¢ = 0.25 that we
explored an intermediate case, ¢ = 0.03.

c) example3 (¢ =0.03)

Figure 4c: Equilibrium as a function of the parking fee, ¢ =0.03

Figure 4c plots p against X for thisexample. With azero parking fee, thereis
only asingle equilibrium which is hypercongested. Asthe parking feeisraised, acritical
parking fee, p, isreached at which the congested and unstable equilibria appear. As p is
raised further, another critical parking fee, f) isreached at which the unstable and
hypercongested equilibria disappear.14 For parking fees above f) thereisonly asingle
equilibrium which is congested. This example isinteresting since it demonstrates that

14T hus, there are three equilibriafor p D(f), fa) For example, with p = 61.5, X = .804 for the
hypercongested equilibrium, .489 for the unstable equilibrium, and .414 for the congested equilibrium.
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raising the parking fee may not only cause a hypercongested equilibrium to disappear, as
in example 1, but may also cause a congested equilibrium to appear where one did not
exist in the absence of a parking fee.

The results for this example are broadly analogous to those obtained in the
economic analysis of flow congestion on highways. Refer to Figure 2, and suppose that
the demand curvein the absence of atoll is d,. Theninitially thereisasingle
equilibrium, which is stable and hypercongested. Raising the toll causes the demand
curve to shift down. When the demand curvefallsto d,, two new equilibria appear, one
an unstable, hypercongested equilibrium, the other a stable, congested equilibrium.

When thetoll is further increased to the level associated with d,, both the hypercongested

equilibria disappear.

V. Extensions

We have deliberately kept the model as simple as possible, both to elucidate basic
points and to keep the algebra manageable. Numerous extensions in the direction of
realism are possible. Since the algebrafor even the basic model is quite difficult, with
many of the extensions numerical solution will probably be necessary. In this section, we
simply discuss most of the extensions. We do, however, present one extension in some
detail since the model is so well-suited to treating it -- the provision of information on
parking availability and its effect on equilibrium.

V.1 Demand

It isuseful to think of an individual as deriving utility from activities -- e.g.
commuting to work, attending a baseball game, playing with the kids, eating out with
friends. Each of these activities can be undertaken at only a subset of locations and over
certain intervals of time. Furthermore, the utility from an activity depends on the length
of time spent at it aswell as the goods which are purchased in conjunction with it.
According to this conceptualization, the individual's utility maximization entails solving a
scheduling cum budget allocation problem, the demand for parking is derived from the
solution to this problem, and trip chaining -- whereby the individual undertakes several
different activities on atrip from home and back again -- occurs. The problem is further
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complicated if account is taken of the uncertainties associated with travel time and the
length of time needed to undertake various activities, for then the individual continuously
updates the solution to a stochastic scheduling problem.

While there is broad agreement among experts that thisis the "right” way to think
about transport demand, because of the complexity of its implementation this
conceptualization has not been made operational. A less conceptually satisfying but more
operational method is to enrich the approach taken in this paper, whereby an individual
receives trip opportunities according to a stochastic process. Trip length and trip benefit
could be made random variables. Alternatively, atrip opportunity could be characterized
by arandom function, the realization of which would specify trip benefit as a function of
length of time spent at the destination, and the individual would choose how long to
spend at the destination. A trip opportunity could also specify the period of time over
which the opportunity was in effect, which would permit the treatment of trip chaining.

In this paper, the individual allocates her time so as to maximize per unit time the
expected benefit received at trip destinations, which implies that the individual's value of
time is the same whether sheis driving on afreeway, cruising for parking, walking, or at
home. It iswell-documented, however, that individuals value time in different activities
significantly differently. The model can be augmented to take thisinto account. A
simple way of doing thisis to assume that the individual maximizes benefits minus costs
per unit time, where the costs includes the time cost in various activities (relative to, say,
being at home). A slightly more sophisticated approach is to assume that the individual
maximizes utility, which is afunction of the time spent in various activities.

It should be possible to calibrate the specification of demand in such away that
the pattern of trips, by origin/destination/parking duration is close to that observed, which
will permit calculation of how the pattern of parking demand is altered in response to
policy changes.

V.2 Parking supply

In the model, all parking was operated by the planner and the number of parking
spaces was fixed. It would be relatively straightforward to provide a more sophisticated
treatment of parking supply. At each location the supply of land for roads and for other
uses would be specified. The land for roads would be used for either traffic or on-street
parking. Allocating more land to on-street parking would increase the availability of
parking, but would exacerbate traffic congestion. The land for other uses would be
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allocated between housing and off-street parking. Increasing the amount of off-street
parking would cause construction of housing at higher density, which would increase
housing costs. The allocation of land between these uses could be optimized.

While on-street parking is provided by the government, much off-street parking,
at least in North American cities, is operated by the private sector. Even if traffic
congestion were efficiently priced, the private pricing of off-street parking would likely
be inefficient since the friction of space provides private parking operators with market
power. And if traffic congestion were inefficiently priced, parking operators would base
their decisions on distorted prices. Since land values would be distorted, the market
allocation of land between off-street parking and housing would be inefficient. Also, in
making their pricing decisions, private parking operators would collectively neglect the
effect of their pricing on traffic congestion. Thus, the taxation/regulation of private, off-
street parking is an important issue in parking policy.

V.3 Traffic congestion

The model ignored traffic congestion -- car travel speed was assumed to be
independent of the density or flow of cars on the road. Incorporating traffic congestion
would not be difficult.2> Flow congestion can be treated by assuming that travel speed in
regular traffic depends on the density of carsin regular traffic as well as on effective
capacity which isinfluenced by the amount of on-street parking, the rate at which cars
enter and leave on-street parking spaces, the volume of pedestrian traffic, and the density
of carscruising for parking. Cruising-for-parking congestion is aso important and can be
modeled similarly to flow congestion. Other forms of congestion which may be desirable
to incorporate include parking entry-and-exit congestion, both for on- and off-street
parking, pedestrian congestion and, in network models, intersection congestion and
gridlock.

The incorporation of traffic congestion is not only quantitatively very important,
but also, when- -asistypically the case- -traffic congestion is underpriced, qualitatively
changes the economics since parking policy isthen an exercise in the second best.
Suppose, for example, that the only forms of congestion are traffic flow congestion and
parking congestion, and that the distribution of parking duration is independent of the
distance driven on the trip. Then the second-best parking fee would include afixed,

15Flow congestion can be incorporated straightforwardly into the model by making car speed depend on
traffic density which can be calculated straightforwardly.
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second-best component approximately equal to the average flow congestion externality
associated with car trip6 plus a first-best component linear in time parked to cover the
parking congestion externality. More generally, the second-best parking fee would be set
to minimize the deadweight loss associated with the myriad forms of unpriced
congestion.

V.4 Alternative parking strategies

In the paper it was assumed that an individual starts cruising for parking a certain
distance from her destination and then continues cruising on the single road until she
finds a parking spot. But with the single road the individual can also backtrack, sit and
wait for a spot to become available, or smply double park. If the model were extended to
two dimensions -- aManhattan grid network of streets, for example -- the range of
parking strategies would be considerably greater. It would be interesting to explore
which parking strategies are privately and socially optimal under different traffic
conditions, and also to solve for the optimal fine for double-parking.1/

V.5 Stochasticity

Parking may be modeled at varying degrees of sophistication. At the simplest,

one can suppress the stochasticity associated with finding a parking space and posit a
function s=s(¢) which givestime spent parked on acar trip as afunction of the

occupancy rate of parking spaces, ¢. With such a specification, one would obtain most
of the qualitative results we have found -- the optimal parking fee equals the parking
congestion externality, there may be multiple equilibria, etc. The danger of such an
implicit approach is that important insights may be lost. In the current context, for
example, if we had started with the function s(¢) and assumed it to be technological, we
would have overlooked the efficiency gains from congestion pricing that derive from its
impact on the modal choice and the cruising-for-parking decisions.

At the other extreme, one can provide an exact mathematical treatment of the
stochasticity associated with finding a parking spot by employing stochastic queuing
theory (Cooper (1981), Syski (1986)). Each parking spot can be regarded as a separate

16short trips then would be priced above marginal cost and long trips below marginal cost. Whether the
second-best component would be greater than or less than the average flow congestion externality would
depend on the relative demand elasticities of short and long trips.

17This was discussed by Polinsky and Shavell (1979). Their aim was to provide an explanation for why the
optimal finefor all crimesis not infinite. There are situations in which the social benefit from double
parking exceeds the social cost.
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server, with the service time equal to the length of time parked and the distribution of
service times endogenously determined. Servers are spatially ordered and the customer
travels from server to server at a specified speed until she finds onethat isidle. Thisis
not a conventional stochastic-queuing-theoretic problem. While it can presumably be
solved from first principles, doing so would be difficult and the solution would be messy.

We adopted an intermediate strategy, explicitly treating individuals behavioral
decisions and the stochasticity of parking availability, but making the approximation that
the probabilities of adjacent parking spaces being vacant are statistically independent,
which permitted application of the simple mathematics of Poisson processes. An
analogous approximation is made in intersection congestion analysis (Institute of
Transportation Engineers (1982)), where it is assumed that the arrival rate of carsat an
intersection is generated by a Poisson process, even though it evidently isnot (if cars
were delayed by atraffic light at an upstream intersection, for example, they will have
traveled as a platoon to the intersection under consideration).

In the paper, parking fees were independent of the particular realization of vacant
parking spaces. Back in thefifties, Vickrey (1959) proposed responsive pricing for
parking, whereby the parking fee for a parking space would be based on the realized
availability of nearby vacant parking spaces. The efficiency gains from responsive
parking pricing are larger the better-informed is the individual concerning the pattern of
vacant parking spaces when making her usage decisions. At one extreme, when the
individual is perfectly informed, responsive pricing provides the first-best allocation of
parking spaces; at the other extreme, where the individual knows only the mean density
of parking spaces when making her trip and parking decisions, responsive pricing simply
addsinsult to injury -- if, by bad luck, all the parking spaces close to her destination are
occupied, she has to pay more for parking.

Because it explicitly treats the stochasticity of vacant parking spaces, our model is
particularly well-suited for examining the value of parking information. Many citiesin
Europe and Japan put signs on major arterial roads indicating the availability of parking
at the magjor parking lots. And thereistalk of providing parking information to drivers
via computer either before they start atrip or when they arein transit (Asakura and
Kashiwadani (1995)).

To illustrate how the model can be adapted to deal with "informatics,” we now
consider a particularly simple parking information system (PIS) in which each driver is

32



informed, at the time she receives a trip opportunity, of the available parking spot that is
closest to her destination in terms of travel time. If she decidesto drive, the parking spot
isthen reserved for her and she must take that spot. Thereis no parking fee.

Since the individual is tentatively assigned a parking spot when she receives atrip
opportunity, she knows exactly the duration of the trip opportunity -- the lesser of the
travel timeswalking and driving. Thus, she will adopt areservation travel timerulein
accepting trip opportunities. It isshown in Appendix 6 that the probability that travel
time for atrip opportunity islessthan t is!8

1 1 _Alv-w)t 2Pww
H(t) = — ——(1—e : )@ A= , 17
® md2 A Vi —w? (17

(with h(t) denoting the corresponding pdf) where P isthe density of available parking
spaces. A parking spaceisavailableif it isvacant and unreserved.

Theindividual chooses t', reservation travel time, to minimize expected trip
period

L) =T(t")+¢+ () (18)
where T(t') isaveragetravel time asafunction of t':
T(t) = ﬁ [;th(t)et
= i (MO, - (0). Bole) = [ (0
- ﬁgg . (19

which using (19) reducesto H(t') =1, or

18Again under the working assumption that the probabilities of adjacent parking spaces being available are
statistically independent.
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VU L 2 [ )T
4 A+A2(v—w)(1e )_ ' (20)

From (18), (19) and B(t') =1, L(t') =t' +¢. If theindividual is offered atrip with travel
time t', sheisindifferent between accepting and refusing it. If she acceptsit, the

duration of thetripist' + /; if shergectsit, the expected time waiting for the next
acceptable trip opportunity plus the expected duration of thetripis L(t').

Then there is the stationary-state condition. This can be calculated as "the ratio of
unavailable parking spaces to the population equals the ratio of average "parking time" on
atrip, K(t', P), to average trip period," where the parking time on atrip equals the time
the parking spot is occupied plus the time the parking spot is unoccupied but reserved,
while the individual is driving from home to the parking spot:

D-P_ K(t',P). 1)
r L
The average parking time on atrip is calculated as
K(.P)= [ I;'k(t,x)g(qx)f(x)dt dx + H(t), (22)

where k(t, x) is the average parking time on ajourney to x with travel time t, and
g(t[x) f(x) isthejoint p.d.f. of x and t, which are given in Appendix 6. With K(t',P)
substituted out, (20) - (22) provide two equationsin t' and P.

We now investigate a numerical example. Recall that, in the absence of PIS, there
were three equilibria. a stable, congested equilibrium with (P, L) = (187.25, 0.51595), an
unstable, congested equilibrium with (P, L) = (11.456, 0.55554), and a stable,
hypercongested equilibrium with (P, L) = (0.65722, 1.0253). Withthe PIS

P =.042052 L(=t') = 0.98042.

Introduction of the PI'S causes the two congested equilibriato disappear, but resultsin a
reduction in expected trip time of about 4.4% in the hypercongested equilibrium.

The PISisvery inefficient when without it the parking occupancy rate would be
low. To seewhy, suppose that the economy isin the stable, congested equilibrium
without the PIS, and that one individual is provided with the PIS. Her trip length would
be reduced by about three seconds but this would come at the social cost of holding an
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unoccupied parking spot reserved on each of her outbound car trips, for an average of
about nine minutes, which would generate a parking externality of about 40 seconds
(calculated as E times nine minutes). Infact, the PIS does even worse than this
calculation suggests -- it eliminates the stable, congested equilibrium.

But when the parking occupancy rate would be high without the PIS, the PIS|is
welfare improving. The gains from directing drivers to the closest parking spaces and
from having them reject trips they would have taken without parking information more
than offsets the costs of unoccupied but reserved parking spaces.

Intuition suggests that this parking information system would be improved by
reserving a parking spot for an individual only if parking close to her destination is
scarce, and would be further improved by updating the reserved parking spot as parking
spots become available while the individual isen route. Thisintuition is not completely
correct, however, since when prices are distorted (here parking is underpriced) better
information is not always welfare-improving.1® A possible further refinement would
entail the planner assigning the individual the parking spot with the lowest expected
socia cost rather than the lowest expected private cost.

Responsive pricing and the provision of parking information are synergistic. The
policies are technologically complementary since information on pricing and the
availability of parking would presumably be provided by the same computer system.
Also, as noted earlier, responsive pricing is more effective the better informed are users,
while with responsive pricing (under which the individual would face expected social
cost on all parking-related decisions) better information would always be welfare-
improving.

V.6 Practical complications

Traffic engineers have recently been devoting considerable effort to the
development of parking simulation models for actual road/parking networks (Muromachi
et a. (1995) and the references therein). The level of sophistication of these modelsis
impressive. Car trips by destination are generated by time-dependent Poisson processes,
which can be made cost-sensitive; parking duration is stochastic; each user decides which
parking lot to try first on the basis of imperfect information on parking availability at the
various lots and, if unpleasantly surprised when she arrives, may adopt one of severa

19This point is made in the context of bottleneck congestion on aroad by Arnott, de Palma, and Lindsey
(1991b).
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parking search strategies, etc. Economists can make two sorts of contributions to the
development of such models. First, economic theory can be employed to strengthen their
behavioral underpinnings. And second, analytical modeling along the linesindicated in
this section can provide insight into the simulation results.

V1. Conclusion

This paper has developed a model of parking. The model was constructed with
four principal considerationsin mind. First, the model was primitive or structural, rather
than reduced-form, viz. the demand for parking and the congestion cost function were
derived rather than assumed. Second, the model was designed so that it can be extended
to incorporate a host of realistic complications, and so that, appropriately elaborated, it
can be employed in practical policy analysis. Third, the model was general equilibrium
S0 as to ensure arigorous conceptual basis for welfare analysis. And fourth, the model
was designed to focus on stochastic aspects of parking, especially cruising for parking.
The model was the ssmplest we could think of which satisfied these four criteria. This
simplicity was achieved by assuming spatial and temporal homogeneity and by ignoring
the flow congestion of cars.

The most remarkable feature of the model was that, despite extreme
simplification, its behavior was complex. In particular, multiple stable equilibriaare
possible; which equilibrium obtains depends presumably on the history of the economy
prior to reaching the stationary state. Thisis discouraging since it suggests that non-
stationary-state analysis is needed, but thiswill be difficult. The comparative static
properties of the model are complex as well; recall the sensitivity of even the qualitative
properties of the solutions to changes in the parking fee and in parking duration. The
welfare economics of the model was, however, relatively straightforward. The parking
fee should be set at the value of the parking congestion externality. However, setting the
parking fee at that level which decentralizes the social optimum does not guarantee
attainment of the optimum; the economy may remain stuck at a hypercongested
equilibrium. Unfortunately, the complexity of the model appearsto beintrinsic to the
parking problem rather than an artifact. Thus, sound analytical work on parking would
appear to be discouragingly difficult. Despite computationa problems deriving from the
"highly" nonlinear nature of the model, numerical solution would appear to be amore
fruitful avenue for future research, and the model we have constructed should provide a
useful starting point for the construction of practical parking simulation models.
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Appendix 1

Partial Derivatives of W(P.d) and T,(x,P,d)

M = E(_Ze_Pd + ]_)

od w

W _2020 267 1
o/ wH P p2

od®>  gd?

0
H

:%(ZPe_Pd)>O

od ad v w Ov vO
E:_ Dd+lm+251 10
oP w Op p20 p2hy O

2 —Pd

0°T, _ 4e %jz+2_d+gm 401 _1no
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Appendix 2

Comparative Statics of (5) and (6)

Lx —J'(:(Tl(X)dX —I;TZ(X, P,d)dx — /X - % -0

(D-P)LX-T(W+/)(x-%)=0

Total differentiation of this pair of equations gives

0 _(g_59T2 0 @PO O0(X) - To(% P,d)0
Fix-rWgog (O-Pxp O 0L s
0 P 0 HILE E —T(W+17) E
O-L+0+Tp(x,Pd) O 09Ty o o0 0
. L+ Ty(x )D_ D—ﬁdz(x—x)g B U
+D [gx-'-Do”'\N ~Bjd+D BjD
H(D-P)L+T(W+/)H HE(X‘X)S B-Lx
0 o_ % s O
g -2 g
Define O — [ ) for usein Appendix 5.
FLx-IF—(x-%) (D-P)xQ
U oP U

©)

Note that for agiven X, X, and d, there may be more than one economically sensible

solution to (5) and (6).
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Appendix 3

Stability Analysis

This appendix provides an argument that equilibria ] and [] in Fig. 1 are stable,
while equilibrium [ isunstable. We start at an equilibrium, introduce a perturbation,
and ascertain whether the economy returns to the equilibrium. A natural perturbationisa
below-average realization of trip demand for an extended period which has resulted in P
remaining steady above its equilibrium level for sometime. We say that an equilibrium
is stable if 92 <0 evaluated at the equilibrium, and unstablef &2 > 0.

Now, P eguals the number of driversleaving parking spaces per unit distance
minus the number entering. The temporal evolutions of P and P are determined by a
complex dynamic stochastic process. Consequently, it isvery difficult to provide a
precise characterization of the disequilibrium adjustment process. We can, however,
obtain an approximation to it, on the assumption that the current values of X,X, W, and
L are based on the current value of P . Then,

- D-P T [X-X[O
pP= - A3.1
W+/¢ LUO x O ( )
with
. B ,
X= P (from (82a)) (A3.2)
and
206 10 ,
W=—=—+—-= from (3) and (8¢ A3.3
50y yO ( (3) and (8¢c) (A3.3)

We wish to conduct our analysisin X — X space. To do this, we substitute out W,
P, and P from (A3.1), using (A3.2) and (A3.3), to obtain

X = % X—X ﬂﬁ_—wgg (A34)



Using the definitions of H(%,X) and G(%,x) from (9) and (10), (A3.4) reducesto

%= Fra(x,x) + H(% D 9%/@ %E@ o % (A3.5)

According to our assumptionsthat X, X, and d are based on the current val ueof P,
from (8a) - (8c), H(%,X) = 0 even out of equilibrium. Then differentiating X with respect
to X, varying X suchthat H(X,X) =0, and evaluating at an equilibrium:

dx _0 dG| O%2 %De 10,
— =T A3.6
dx E_df( (9)?/@ Dw VD % ( )
From (10), G(%,X) >0 on (9) along the 45° line which is south-east of the
hypercongested equilibrium [ in Figure 1. Hence f,—§|(g) >0 at . That ‘jj—§|(9) <0at [
d‘j,—‘;|(9) >0 at [J follow immediately.
Thus, OIX<O«=»dp<0atDandD and OIX>O >0atD Hence, given

the assumed disequilibrium adjustment process, equilibria D and [ are stable, while
equilibrium [ is unstable.



Appendix 4

The solution to the individual's maximization problem is unique

We ignore corner solutions since they are not of practical interest. Hence, we
need only show that the second-order conditions for the individual's maximization
problem are satisfied. The first-order conditions are given in (15). The corresponding
second-order conditions are:

VT (X) dT,(%,Pd)0_ V@2 20 :
Veo: —— - =————-—-<0 (using (1) and (4),and A>0
X AE&)? ox E ADy vU (using (1) “) )
Vg: O
11 oW JT, O
Vo, —p—+VZ2-=0 from (15c
xd Agoﬁd ad B (from (15¢)
V. Vv de(x,P,d)__yg«)
A 17)4 A
10 oW a1, 0
Voy: — 7 p—-V—=+7=0 from (15¢c
xd ABPod Y ad B (from (150))
x—xU 2 21 [
Vyg: =2 §W—VdTZD<O since

A Dpdd2 dd?

0*W _ 9°T, _ 4P &P

~ >0 (from Appendix 1).
o2~ a2 w ( P )

Thus, the Hessian matrix for V is negative definite when the first-order
conditions are satisfied.
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Appendix 5

Proof that there exists a parking fee such that the first-order conditions of the
individual's maximization problem are consistent with the first-order conditions
of the planning problem

Let * denote the value of avariable at the social optimum and P(X,X,d) denote

the optimal value of P consistent with (5) and (6) for agiven X, X, and d. Thenthe
socia optimization problem can be written as

. 1% X o~ _ 0 m
min L==H T,(x)dx+ [_ To(x,P(X,X,d),d)dx=+ ¢ +—. A5.1
min L= foTa(o+ [ To(x P(Rx.d) d)axe(+ (A5.1)
With this formulation of the socia optimization problem, the first-order condition with
respectto X is

. . . < \OTo* OP*
Ty (X*) =T, (%, P* (%*,x*,d*),d*) + (X * —%*) =2 —=0. A5.2
1(5) =T[5 P (5 0 ) )+ (0 —5) 22 O (52
From Appendix 2,
Ty (%*) = To(%*,P*,d*) X *
oP(xee,dr) | (W) (D-P)r| 53
ox =*
Substituting (A5.2) into (A5.3) yields
_()—(*_)"(*)&dl~ X *
*dP oxX o
Y* * — —_ Y
IP(% X, d ) _ r(w +z)_ (D-P*)x*| (A5.4)
oX =*
Factoring out %% gives
* Y * *
IgP* _ X r(w +£)’ (A5.5)

17) Q*

where
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(A5.6)

Comparing (15a) and (A5.2), we have that (15a) is consistent with the social optimum if

P _ « .\ OT, OP*

P . d*)+/)= -X* : A5.7
—ys (WP d®)+ ) = (xx %) 22 = (A5.7)
Let p’ bethevaueof p solving (A5.7). Substituting (A5.5), (A5.6), (13b) and (6) into
(A5.6) yields

p=V*E*, (A5.8)

We proceed analogously for X and d. Let p'' bethe parking fee such that the
first-order condition for X in the individual's maximization problem is consistent with the
corresponding first-order condition in the planning problem, both evaluated at the social
optimum. Andlet p'’’ bethe corresponding parking feefor d. Thenitis
straightforward to show that p' = p’’ = p'"'. Denotethis p by p*.

Now, from (14)

B-p* (55w +1)
L* '

V* = (A5.9)

Substituting (A5.9) into (A5.8) gives (16°), which is the parking fee which decentralizes
the social optimum.
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Appendix 6

This appendix is organized as follows.
~ calculation of the cdf of travel time, t, conditional on x.
~ calculation of the unconditional cdf of travel time.
~ calculation of the expected parking time on tripswith t <t’.

A6.1 Cdf of travel time conditional on X

Let z denote parking location relative to the destination (so that z <0
corresponds to parking before reaching the destination) and t(z x) (return journey) travel

time as afunction of z and x. Now

X —2(L -4z for z[[-x,0)
t(zx) =& +2(t+%)z for z0[0,2) (A6.1)
H for z>z
where z = X(v=w) (A6.2)

V+w
is the parking distance beyond the destination for which walking to the destination takes
the same time as driving.

For z[-x,0), theindividual drives adistance x + z and then walks a distance -z to his
destination, and also on the return journey; thus, t(z x) = 252 — 22 For z[J[0,2), the

individual drives adistance x + z, then walks adistance z to his destination, and also on
the return journey; thus, t(z,x) = 22 + 22 By definition, Z satisfies 2x = 252 4 22
X(v-w

implying that z = V+W). Beyond z, |ttak&elesst|meto walk to thedestlnatlon than to
driveto x + z and then walk from x + z to x; thus, for z > Z, t(zx) = 2.

Let G(t[x) be the probability that travel timeto x islessthan t, and g(t[x) be the
corresponding pdf. Note that

G(tjx) = 0for t <2 since 2 isthe minimum timeto travel to x and back.

G(t/x) has amass point at t = 2%, since t(z,x) = 2 for z > z.
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Let P denote the density of available parking spaces. A parking spaceisavailableif itis
neither occupied nor reserved. (Recall that if an individual drives, she reserves a parking

space on the outbound journey when she leaves home.) Then, from (A6.1), for
t 0(2,2), 1- G(tx) isthe probability that there is no available parking space for

v w
t—2x t—2x 0

0 . . . .
ZDHZ(%—%)’ 2(%+%)E Since, by assumption, available parking spaces are generated

by a Poisson process at rate P per unit distance:

for t<2*
— 2x\\/2
G(t)x) = %L expD P( t )\2/ WE for tO(2,%) (A6.3)
for t>2
and
[0 for t<2
_ )2
g(t}x) = %%expg— P(:/z Vv?/\zl WE for t0O(2,%) (A6.4)
D for t>2
with probability mass exp(—22) at t = 2.

A6.2 Unconditional cdf of travel time

Let H(t') denote the unconditional probability that travel time on atrip

opportunity islessthan t'. Then
1-H(t) =IXPr(t > t'|x) f (x)dX,

where f(x) =1 isthepdf of x since trip opportunities are uniformly distributed over
[0, 7r] by assumption. Using (A6.3),

~ P(t’—z—vx)vzw 1

=J’f0%dx +IV;e v -w? de +’[v;%dx (AB.5)

At distances x < ¥, travel timeisawayslessthan t' since theindividual can walk to the
destination and back in lessthan t'; at distances x > % travel time is always greater than

t' since even if the closest parking spot is right at the destination, travel time exceeds t';
for intermediate distances, Pr(t >t'|x) isgiven by 1-G(tx).
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Now simplify the expression for 1- H(t'):

P(t

O, _Pl-3)w .
=2 G -0

Let A=_—"" and make the transformation x' =% —x. Then

10" a vt' O
1-H(t')=— Mdx + -
(t) mao e ™dx' + 77 >0

_iD‘L a _A(v;w)t’ _EED
_anK(l © )+E(1r ZEE

Thenreplacing t' by t

_%\(1_e—’“vzw")m A= _2PwW (AB.6)

and

V- (v—w)e'A(V;W)t]. (AB.7)

A6.3 Expected parking time on tripswith t <t’

This can be calculated as
k(t',P) = ﬁ ﬁ k(t, x)g(t[x) f (x)dtax + H(t') (A6.9)

where k(t, x) is the average parking time on ajourney to x with travel time t. The upper
limit on the first integral reflectsthat all tripswith x > % have travel time greater than t',
while the lower limit on the second integral reflects that the minimum travel timeto X is

2x
X

The computation of k(t,x) is complicated by the fact that, corresponding to a
given (t,x), there may be two parking locations, one before the destination, the other
beyond the destination. Let k™(t,x) denote the parking time on ajourney to x with travel
time t with parking before the destination, and k*(t,x) the corresponding parking time
with parking beyond the destination.
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For parking before the destination (z < 0), parking time as afunction of z and x
is k*(z,x) = %22 = 27+ ¢; thefirst term on the RHS is the time the individual takes to
drive to the parking location when the parking spot is reserved for her; the second termiis
her walking time; and the third, the time spent at the destination. Also, from (A6.1),
t=20a) 22 Solving for z asafunction of x and t from this equation, and substituting

v

into k™(z,x) yields

O2v-w  x
(v—w)% vV-w

k™(t,x) =t +/(

Account must be taken of two complications. First, the individual has the option to walk;
but she will never exercise the option if a parking space is available before the

destination. Second, since the maximum travel time with parking before the destination
occurs when parking isright at the origin (z = - x), travel time cannot exceed 2%. Thus,

k‘(t,x):%(ﬁ)‘ﬁw for t<2x
2X
P for t>=*

(A6.99)

For parking beyond the destination (z > 0), parking time as afunction of z and x
isk*(z,X)=%z+2z+/¢. Also, from (A6.1), t =22 + 22 Solying for z asafunction
of x and t from this equation, and substituting into k*(z,x) yields

. _b2v+w O x
X (t’x)_tEQ(v+w)E vew f

Account must be taken of the individual's option to walk. Thus,

K*(t,x) = H{dveg) g+ for b (A6.9b)
%) for t=

Now, k(t,x) isaweighted average of k™(t,x) and k*(t,x), where the weights are
the probabilities that acar trip to x with travel time t entails parking before and beyond
the destination, respectively.

Theratio of the probability of parking before the destination to that of parking beyond
the destination equals the ratio of ‘%‘ for zt[-x,0] to ‘%‘ for zt[0; Z] , which from (A6.1)

or -1 to -L.. Thus, the probabilitiesare 4 and %2, and sO

v+w *

1
equals —;_;t°;+;

w \% w \
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k(t,x) = %(
[t

[vz " ]—é[“ tw ]+£ for t<2

Ep for t=2*

Thus,

)+ S (5] - (&

J(50) + () (5m)] + ¢ for t<2

2
for t==x

(A6.10)

K(t',P)=—— 5 f“"k(t X)g(tx) f (x)dltcx

H(t

)

+J'J’ktx o(tx) f(

dtdxa (AB.11)

The first double integral corresponds to those locations for which walking timeisless
than t', the second to those locations for which walking time exceeds t'.

These integrals can be simplified somewhat by making the transformation of

variablesu=t—-2. Then

K(t',P) = —) a'm; J’ZX(* R k(u, x)§(uix) f (x)dudx

~ v
where k(u,x) =u +=+/
(1) Vi-w? v
G(ux) = Pe™, P= w
’ V2 — W2
1
f(x)= =
() m

and H(t') isgiven by (A6.6).
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Notational Glossary
(in order of first usein paper)

radius of annulus

population density (per unit distance)

density of parking spaces (per unit distance)

length of avisit

dollar benefit from avisit

Poisson arrival rate of telephone calls

distance from home

timeto walk to x and back

walking speed

density of vacant parking spaces (per unit distance)
car speed

distance from destination that cruising for parking starts ("cruising
distance")

distance cruising for parking

expected driving time on around-trip car journey to X
expected walking time on a round-trip car journey
expected travel time on around-trip car journey to x
maximum travel distance

maximum walking distance

expected period between trips

intermediate variable

Lagrange multiplier on (6)

shadow parking fee in time units

parking fee per unit time

private value or opportunity cost of time

= LX

(superscript) value at social optimum

parking fee consistent with social optimum
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parking location relative to destination

travel time asafunction of z and x

probability that travel timeto x islessthan t (g(t|x) the
corresponding pdf)

probability that travel time on atripislessthan t (h(t) the
corresponding pdf)

pdf of location of trip opportunities (= 1)

intermediate variable

average parking time on trips with travel timelessthan t given P
average parking time on ajourney to x with travel time t
intermediate variable

intermediate variable



