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Abstract

This paper presents a simple model of parking congestion which focuses on

drivers' search for a vacant parking space in a spatially homogeneous metropolis.

Individuals' residences are distributed uniformly around an annulus.  When at home an

individual waits for a trip opportunity which is generated by an exogenous stochastic

process.  A trip opportunity provides a benefit if she visits a specific location for a

specific period of time.  The individual decides which trip opportunities to accept and

what mode of transport to take.  If she drives, she must decide how far from her

destination to start cruising for parking, and then takes the first vacant parking spot and

walks to her destination.  The mean density of vacant parking spaces is endogenous.  A

parking externality arises because individuals neglect the effect of their parking on the

mean density of vacant parking spaces.

The paper examines stochastic stationary-state equilibria and optima in the model.

Our main finding is that due to the model's nonlinearity, there may be three equilibria --

stable-congested, unstable, and stable-hypercongested (which is Pareto inferior to the

stable-congested equilibrium).  The effects of parking fees are, as a result, complex.  For

one thing, the fee may cause the appearance of a congested equilibrium and/or the

disappearance of a hypercongested equilibrium.  The important policy insight is that

parking pricing is both a delicate and potentially powerful tool for the regulation of traffic

congestion.

A variety of extensions are discussed.  One is to include flow congestion in car

travel.  If such congestion is unpriced, determination of the optimal parking fee is an

exercise in the second best.  Another is to determine the social value of a particular

parking information system.
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MODELING  PARKING

Downtown parking is a significant problem in all major cities.  Remarkably,

however, there has been very little formal economic analysis of even the most obvious

issues.  If traffic congestion is efficiently priced, how should parking fees be set?

Alternatively, what are the second-best parking fees when, as is realistic, traffic

congestion is underpriced?  Depending on the pricing of auto congestion and public

parking, should private, off-street parking fees be taxed or regulated?  For various pricing

régimes, how much land should be allocated to parking, both on- and off-street?  What is

the value of information concerning parking availability?  In this paper we develop a

simple structural model which provides a conceptual basis to answer such questions.

Various aspects of parking have been considered in the literature.  Descriptions of

parking patterns, the effects of on-street parking on traffic circulation, and the technology

of off-street parking appear (e.g. Highway Research Board (1971), Institute of

Transportation Engineers (1982)), as well as discussions of parking policy (e.g.

Segelhorst and Kirkus (1973), Miller and Everett (1982), Shoup (1982), U.S. DOT

(1982), Adiv and Wang (1987)).  Some empirical work has been done identifying the

determinants of modal choice and parking location (e.g. Gillen (1977a,b, 1978), Westin

and Gillen (1978), Hunt (1988)).  Numerous city-specific parking studies have been

undertaken (Smith (1967)).  And there are high-quality, non-technical economic

discussions of parking policy, notably Vickrey (1959) and Roth (1965).  But with the

exception of a short note by Douglas (1975) and papers by Arnott, de Palma, and Lindsey

(1991a), Glazer and Niskanen (1990), and Verhoef, Nijkamp, and Rietveld (1995) no

economic model has been developed that considers the potential efficiency gains from

parking fees or that incorporates the effects of parking on travel congestion.  The effects

may be substantial, for in major urban areas the time to find a parking spot and walk from

there to work can be an appreciable fraction of total travel time, and parking fees may be

comparable to vehicle operating costs (Lansing (1967), Gillen(1977b)).  Arnott, de

Palma, and Lindsey (1991a) explored the effects of parking fees in a deterministic model

of the morning auto commute to the central business district, with bottleneck congestion.

They showed that parking fees which vary over location can significantly reduce total

travel costs.  Glazer and Niskanen (1992) examined simple partial equilibrium models to

demonstrate that raising parking fees may increase both local traffic (by encouraging
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shorter visits) and through traffic.  And Verhoef, Nijkamp, and Rietveld (1995) compared

parking fees and parking regulations.

This paper presents a quite different model that focuses on the stochasticity of

vacant parking spaces.  This stochasticity is important to treat for several reasons.  First,

it results in drivers cruising around looking for a parking space.  It has been claimed that,

in Boston and major European cities, over one-half the cars driving downtown in rush

hour are cruising for parking.  Cruising for parking is not only frustrating and time-

consuming for the driver but also contributes significantly to traffic congestion, by

increasing traffic volume and slowing traffic down.  Second, many cities are exploring a

variety of information systems that provide information to drivers on parking availability;

to evaluate such systems, it is necessary to treat the stochasticity of vacant parking

spaces.  Third, recent studies (e.g. Small, et al. (1995)) support what intuition suggests --

that unanticipated travel time is disproportionately costly; variability in the time to find a

parking spot is a major component.

The aim of this paper is modest.  It does not attempt to treat these issues in their

full complexity.  Rather, it explores perhaps the simplest possible structural model that

incorporates the stochasticity of vacant parking spaces.  A later section discusses at some

length how the model can be extended in the direction of realism.  The structure of the

basic model is as follows.  The city is located on an annulus and is spatially symmetric.

At each location there is a fixed amount of land devoted to parking.  The demand for

parking is derived from the demand for trips.  Trip opportunities are generated according

to an exogenous, stochastic, time-invariant process.  A trip opportunity provides a benefit

to a specific individual if she travels to a specific location and visits there for a specified

period.  An individual sits at home waiting for a trip opportunity.  When she receives an

opportunity, she decides whether to accept it, and if she does accept it, what mode of

transport to take.  If she drives, she must decide how far from her destination to start

cruising for parking, and then takes the first available parking spot and walks to her

destination.  The expected walking distance depends on the mean density of vacant

parking spaces, which is determined endogenously.  A parking externality arises because

individuals collectively neglect the effect of their parking on the mean density of vacant

parking spaces.

Our main finding is that the model exhibits complex nonlinearity.  One

consequence is that there may be two stable equilibria which can be Pareto ranked.

Which obtains depends presumably on the path of adjustment to equilibrium.  Another
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consequence is that the comparative static properties of the model, including its response

to policy variables -- notably parking fees -- are complex.  The important policy insight is

that even though parking pricing is a potentially powerful tool for the regulation of traffic

congestion, it is intrinsically difficult to determine the appropriate level of parking fees.

Section I describes the basic model.  Section II examines equilibrium with no

parking fee.  Section III considers the social optimum.  Section IV treats equilibrium with

a parking fee, and explores decentralization of the social optimum via parking fees.

Section V provides quite a detailed discussion of directions for future research, and

provides an illustration of how the model can be employed to determine the social value

of parking information systems.  Brief concluding comments are given in section VI.

I.   The Basic Model

The basic model provides a highly stylized and simplified, but structural and

general equilibrium, representation of the downtown parking problem.  It is designed to

admit numerous extensions.  The model has four modules: spatial structure, trip

generation technology, technology of parking and travel, and stationary-state conditions.

I.1  Spatial structure

To abstract from complications arising from spatial heterogeneity, it is assumed

that the city is spatially symmetric.  More specifically, the city occupies a thin annulus of

arbitrarily large inner radius r  and has the same spatial structure at each location.

Population density is  Γ per unit length.  The number of parking spaces per unit distance,

the "density" of parking spaces, is D .

I.2   Trip generation technology

The demand for parking is derived from the demand for trips.  An individual takes

trips for the benefit she derives at the destination.  To avoid complications associated

with scheduling, interaction between individuals is ignored and all trips are single-

purpose.

When at home an individual receives trip opportunities according to a Poisson

process.  A trip opportunity states that if she travels immediately to a specific location

and visits for a fixed period of time   l , she will receive a fixed dollar benefit ∫.  If the
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individual accepts the trip opportunity, she travels to that location, receives the benefit,

returns home, and waits for her next trip opportunity.

The origin of trip opportunities is uniformly distributed around the circle.  The

Poisson arrival rate of trip opportunities is µ per individual.  Thus, the model is

temporally, as well as spatially, homogeneous.

Many other specifications of the trip generation technology are possible.  The

above assumptions were chosen for their simplicity.

I.3   Travel and parking technologies

There are two travel modes - walking and driving, indexed i = 1,2 , respectively.

Let x  denote the distance of a trip opportunity from home.  The expected travel time to
and from x  by mode i  is Ti x( ).  Walking speed is a constant w .  Thus,

T1 x( ) = 2x

w
. (1)

Determining auto travel time is more complex.  There are two components of car

travel time - time spent in the car, and time spent walking from the parking location to the

destination and back again.  The time spent in the car can in turn be decomposed into

time spent cruising for parking and time spent in "regular" car travel.  Since the

congestion caused by cruising for parking is of central importance to the parking

problem, as is walking time when driving, it is important to model car travel with care.

Two simplifying assumptions are made, both of which should be relaxed in more

realistic models.  The first is that cars travel at a constant speed, independent of the

density of cars both in regular traffic and cruising for parking; that is, there is no travel

congestion.  The second is that car speed is the same whether in regular traffic or cruising

for parking, v.

To provide a primitive treatment of the parking technology and to incorporate

cruising for parking, it is important to treat the stochastic nature of finding a parking spot.

Since traffic is in a stochastic stationary state, it is reasonable to assume that a driver

knows the probability of finding a vacant spot between x  and x + dx, Pdx, where P  is

the average density of vacant parking spaces.  To simplify, it is assumed that a driver

searching for a parking spot can neither stop and wait for a parking spot to become

vacant, nor back-track.  For short distances, a driver would start cruising for parking as
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soon as she leaves home.  For longer distances, she would start cruising for parking a

distance d  from her destination.  A simple argument establishes that with a non-negative

parking fee, which we assume, walking dominates driving for x < d  :  If the driver starts

cruising immediately upon leaving home, then the expected cost of taking a vacant

parking space immediately is no greater than the cost of not taking a parking space, which

is simply the expected travel cost.  The cost of taking a parking space immediately upon

leaving home is, in turn, at least as high as the cost of just walking since in both cases she

has to walk the same distance.  Thus, the expected travel cost of driving and cruising

immediately upon leaving home is at least as high as the cost of walking, and so the

option of driving and cruising immediately upon leaving home can be ignored.  Hence,

the individual will walk on shorter trips and drive on longer ones.

Let y  be the distance the driver cruises for parking.1   Pdy  is the probability that

she finds a vacant parking space in an interval dy.  On the assumption that the

probabilities of adjacent parking spaces being vacant are independent,2 the probability

that she finds her first vacant parking space between y  and y  + dy is Pe−Pydy .

Expected driving time on the round-trip journey is therefore

R x, P,d( ) = 2 x − d( )
v

+ 2
vP

  for  x ≥ d . (2)

On the journey from home to the destination, the individual drives a distance x − d

before starting to cruise for parking and then cruises for parking for an expected distance
1
P .  Since, by assumption, driving speed is v both in regular traffic and while cruising for

parking, expected driving time on the outbound journey is x −d
v  + 1

vP .  On the homeward

journey, the individual travels an expected distance x − d  + 1
P  in regular traffic at speed

v.  Summing the times on the outbound and homeward journeys gives R ⋅( ) .

Expected walking time on a car trip is now computed.  Let y  be the distance the

driver cruises for parking.  If she finds a parking spot at y < d , she must walk a distance

d − y; and if she finds a spot at y > d , she must walk a distance y − d .  Thus,

W P,d( ) = 2
d − y

w
Pe−Pydy + 2

y − d

wd

∞
∫0

d

∫ Pe−Pydy

1It is assumed that the radius of the city is sufficiently large that the probability that a driver will drive more
than half way round the circle beyond her destination is negligible.
2This assumption is an approximation.  The accuracy of the assumption is discussed in section V.5.
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  = 2
w

2e−Pd

P
+ d − 1

P







. (3)

Finally, 3

T2 x, P,d( ) = R x, P,d( ) + W P,d( )

      = 2x

v
+ 4e−Pd

wP
+ 2 d − 1

P






1
w

− 1
v





 . (4)

I.4  Decision variables and stationary state conditions

There are three individual decision variables.  The first concerns which offers to

accept.  Since there is an opportunity cost to the individual's time, she will not accept trip

opportunities beyond x , the maximum travel distance.  The second relates to her travel

mode; she will walk shorter distances, up to the maximum walking distance x̃ , and drive

longer distances.  And the third is the cruising distance d  - the distance from her

destination a driver will start cruising for parking.  It was argued in the previous

subsection that, with a non-negative parking fee, x̃ ≥ d .

The expected trip period, L , will feature prominently in the analysis.  This has

three components: expected travel time, visit length   l , and expected time waiting at

home for an accepted trip opportunity.  Expected travel time is T x( )g x( )dx
0

x

∫  , where

g x( )  is the p.d.f. of x   on trips taken and T x( ) is travel time to x  with the chosen mode.

Since the location of trip opportunities is uniform on the circle, and since all trips up to x

are accepted, g x( ) = 1
x

.  Furthermore, T x( ) = T1 x( ) for x ≤ x̃  and T x( )  = T2 x, P,d( ) for

x ∈ x̃, x( ).  Hence, expected travel time is

1
x

T10

x̃

∫ (x)dx + T2 (x, P,d)dx
x̃

x

∫




.

Since the arrival rate of trip opportunities is µ and the proportion of trip opportunities

accepted is 2x
2πr  , the arrival rate of accepted trip opportunities is µ x

πr( ).  The expected

time waiting for an accepted trip opportunity between trips is therefore πr
µx  .  Thus,

3The partial derivatives of W(P,d) and T2(x,P,d) are provided in Appendix 1.
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L( x̃, x, P,d) = 1

x
T1(x)dx + T2 (x, P,d)dx

x̃

x

∫0

x̃

∫





+ l + πr

µx
. (5)

Finally there is a stochastic stationary-state condition, which can be interpreted in various

ways.  One is that the average rate at which parking spaces become occupied equal the

average rate at which they are vacated.  In stationary state, the rate at which parking

spaces become occupied equals the rate at which car trips are initiated, which equals the

rate at which trips are initiated, Γ
L , times the proportion of trips that are by car, x − x̃

x .  And,

also in stationary state, the rate at which parking spaces are vacated equals the density of
occupied spaces times the rate at which each occupied space is vacated, 

  
D− P

W P,d( )+l .  Thus4

  
D − P =

Γ W P,d( ) + l( ) x − x̃( )
Lx

. (6)

II.   Equilibrium with No Parking Fee

This is the natural base case.

II.1  Derivation of equilibrium

The individual chooses x̃ , x , and d  to maximize benefits per unit time, taking P

as fixed.  Because P  in fact depends on everyone's choice of x̃ , x , and d  , there is an

uninternalized parking externality.  Since the benefit per trip is fixed, maximization of

benefits per unit time is equivalent to minimization of the average trip period.  Thus,

using (5), the individual's optimization problem is

  
min
x̃,x ,d

1
x

T1 x( )dx + T2 x, P,d( )dx
x̃

x

∫0

x̃

∫





+ l + πr

µx
. (7)

The first-order conditions are

x̃  : 
1
x

T1 x̃( ) − T2 x̃, P,d( )[ ] = 0 (8a)

x  : − 1

x2 T1 x( )dx + T2 x, P,d( )dx + πr

µx̃

x

∫0

x̃

∫








 + 1

x
T2 x, P,d( ) = 0 (8b)

or, using (5),

4Later we shall have occasion to determine how P responds to changes in x̃, x, and d.  For this purpose we
regard (5) and (6) as two equations in the unknowns L and P.  The comparative statics of this pair of
equations is given in Appendix 2.
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1
x

−L x̃, x, P,d( ) + l + T2 x, P,d( )[ ] = 0 (8b´)

d  : 
1
x

∂T2 x, P,d( )
∂d

dx
x̃

x

∫





= 0. (8c)

Eq. (8a) indicates that, in the absence of a parking fee, the individual chooses the mode

with the lower travel time.  Eq. (8b´) has the following interpretation: The individual will

accept a trip opportunity if the benefit from doing so covers the opportunity cost of the

expected trip time.  The trip benefit is β .  Since the opportunity cost of time is β
L , the

opportunity cost of expected trip time to x  is   
β
L T x, P,d( ) + l( ).  Hence, she is indifferent

between accepting and declining a trip opportunity to x .  Eq. (8c) indicates that the

individual will choose d  to minimize expected travel time by car.  An increase in d  will

decrease  expected driving time.  Thus, she will choose d  so that the decrease in expected

driving time from a small increase in d  is just offset by an increase in expected walking

time.  Using (4), (8c) gives

d = θ
P

  where  θ = − ln
1
2

1 − w

v












. (8c´)

The cruising distance is inversely proportional to the density of vacant parking spaces.

The individual's optimization problem is well-behaved.  The second-order
conditions are satisfied so that the optimum is unique.  Furthermore, as long as πr

µ > θ 2

D2 w
,

which we assume, then, x > d ≥ x̃.

The equilibrium with no parking fee is characterized by (8a), (8b´), (8c´), (5), (6),

and (3) where the six unknowns are x̃, x,d, L, P,  and W .  Unlike the system of equations

characterizing the social optimum and positive parking fee equilibria, which shall be

examined in subsequent sections, this system of equations can be reduced to two

equations in x̃  and x :

H x̃, x( ) ≡ x 2

v
+ x̃2 1

w
− 1

v




 − πr

µ
= 0 (9)

  
G x̃, x( ) ≡ D − θ

x̃




 x 2

x

v
+ x̃

1
w

− 1
v













+ l






− Γ 2 x̃

θ
θ
w

− 1
v





 + l







x − x̃( ) = 0. (10)



10

The solution to (8a) is5

x̃ = d = θ
P

. (8a´)

Eq. (10) is obtained by substituting (8a´), (8c´), (5), and (3) into (6).  Thus, it has the

interpretation as the locus of ( x̃ , x ) such that parking is in equilibrium.  Eq. (9) is

obtained from (8a) and (8b).  Since (10) incorporates (8a), (9) is appropriately interpreted

as the x  chosen by the individual as a function of the x̃  he chooses.  Eq. (9) describes an

ellipse with the origin as center.  Eq. (10) has a far more complex form.  The substitution

of (9) into (10) gives a sixth-order polynomial equation (in x̃  or x ).

The rest of this section explores the characteristics of equilibrium.

II.2  Two numerical examples

We have been unable to obtain a complete analytical characterization of the

solutions to (9) and (10), though we have proved that there is at least one real solution

with x̃  and x > 0. To gain some insight into the properties of the no-parking-fee

equilibrium, we examine two numerical examples.

a) example 1

We employ the following parameter values:6

w = 3.0mls./hr. D = 200 spaces/ml.

v = 12.0mls./hr. Γ = 2533.3 persons/ml.
πr

µ
=.79052 ml.-hrs.   l = 0  hrs.

These parameter values imply that ç — 0.98083.

5The intuition for x̃ ≥ d  with a non-negative parking fee was given earlier.  Suppose with a zero parking
fee that x̃ > d .  Then a person driving to x̃   would be better off not taking a parking spot immediately
upon leaving home.  Since the cost of taking a parking spot immediately upon leaving home is the same as
walking, she is better off driving, which is inconsistent with the definition of x̃ .
6D was chosen such that there is continuous parking on one side of the street, with each parking space 26.4´
long.  Ì was chosen on the basis of 6-story apartment buildings on each side of the street, with each
apartment having a frontage of 25.01´.  Thus, there is one household per 25.01/12 ft., which corresponds to

2533.3 households per mile.  
π r
µ  was chosen so that, with no congestion in parking, the longest trip taken

would be approximately 3.08 miles.
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Three solutions7 of economic interest to (9) and (10)were found:

x̃ x P L d

① 0.0052382 3.0800 187.25 0.51595 0.0052382

② 0.085619 3.0764 11.456 0.55554 0.085619

③ 1.4924 1.6747 0.65722 1.0253 1.4924

Eqs. (9) and (10) are plotted for this example in Figure 1.  As already noted, (9)
H x̃, x( ) = 0( )  is an ellipse.  The properties of (10) can be explained by noting that with x̃

fixed, the equation is a quadratic function in x .  The upper curve for (10) corresponds to

the positive root of the function and the lower curve to the negative root.  Note that

P ≤ D  since the number of vacant parking spaces cannot exceed the number of parking
spaces.  From (8a´) this implies that x̃ ≥ θ

D  so that lower values of x̃  are not of economic

interest; relatedly, the singularity in the positive root function of (10) at x̃ = θ
D  is not of

economic interest.

Figure 1:  The zero-parking-fee equilibrium with   l = 0.0

7All numerical results are presented with five non-zero  digits.  The computed accuracy was the maximum
allowed by EUREKA, namely to 13 digits.
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In Appendix 3, we provide an argument that equilibria ① and③  are stable, while

equilibrium ②  is unstable.  The argument is supported by the fact that comparative static

results in the neighborhood of equilibria①  and ③ are intuitive, while those in the

neighborhood of equilibrium②  are perverse.  Following the economic terminology

applied to road congestion, which we shall explain shortly, we term equilibrium ① the

congested equilibrium and ③ the hypercongested equilibrium.

In the congested equilibrium ①, over 90% of parking spaces are vacant.  On car

trips, individuals start cruising for parking 28´ before reaching their destination, and walk

an average distance of 21´ to their destination which takes 4.7 seconds.  Since   l = 0 , the

average time parked on a car trip therefore equals 9.4 seconds.  With a zero parking fee,

x̃ = d ; hence individuals drive on trips exceeding 28´.  Average trip duration, L , is about
33 1

2  minutes of which about 15 1
2  are spent at home with the rest spent traveling.

Evidently, this equilibrium entails very little parking congestion.

The hypercongested equilibrium ③   is very different.  Only about one in three

hundred parking spaces is vacant.  On car trips individuals start cruising for parking
almost  1 1

2  miles before reaching their destination, and walk an average distance of 1.1

miles to their destination which takes somewhat over 22 minutes.  The average time

parked on a car trip therefore equals about 45 minutes.  Average trip duration is about
61 1

2  minutes, of which about 28 1
2  minutes are spent at home with the remainder spent in

travel.  This equilibrium exhibits extreme parking congestion.

Why are there multiple equilibria?  To provide an answer, we explore the analogy

between flow congestion on a highway and the parking congestion considered in this

paper.



13

Figure 2:  Equilibrium with highway flow congestion

A central tenet of traditional highway engineering (Institute of Transportation

Engineers (1982)) is that on a given section of road, there is a stable relationship between

flow, q , and velocity, v .  This relationship has the characteristic that for any flow rate

between zero flow and maximum (capacity) flow, there are two velocities; for example,

zero flow corresponds to zero velocity (completely jammed traffic) and also to free-flow

velocity (when there are no cars on the road).  Travel at the lower velocity for a given

flow rate is termed hypercongested, and at the higher velocity congested.  Now plot travel

time against flow -- shown as Ω  in Figure 2.  The upper portion of the travel time curve

corresponds to hypercongested travel, and the lower portion to congested travel.  To

simplify, ignore the money costs of travel and normalize so that the shadow cost of time

equals 1.0.  Then the travel time curve can be interpreted as the marginal price cost or

user cost curve.  Now draw in a set of demand curves which relate the number of trips

demanded per unit time to travel time.  As drawn, there may be only a congested
equilibrium (with d5), three equilibria (with d3), or only a hypercongested equilibrium
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(with d1 ).  In the case where there are three equilibria, conventional stability arguments

imply that the top and the bottom equilibria are stable and the middle one unstable; also

the top equilibrium is termed the stable, hypercongested equilibrium and (with a slight

abuse of terminology) the bottom one the stable, congested equilibrium.

2 4 6 8
1/L

0.6

0.7

0.8

0.9

1

1.1

L

Negative Root

Positive Root

Demand Function

Figure 3:                The analog for the parking problem 
                   of the 'supply-demand' diagram of flow congestion

We now develop an analogous analysis for the parking problem.  We take as the

flow rate the expected number of trips by an individual per unit time, and as the travel

time the expected trip period.  Since under our assumptions the individual is either

traveling or waiting to travel, the demand curve is trivial:  The flow rate is 1
L  and travel

time L , so that the demand curve is simply the unit rectangular hyperbola.  To derive the

user cost curve, we first substitute out x̃ , x , and d  from (5), using (8a), (8b), and (8c),

which gives an equation L = L̂ P( ).  We then substitute out x̃ , x , and d  from (6), again

using (8a), (8b), and (8c), which gives an equation S 1
L , P( ) = 0 .  Then we vary P  over the

relevant range plotting the L 's which satisfy L̂ ⋅( ) = 0 against the 1
L 's which satisfy
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S ⋅( ) = 0, which yields the analog of a user cost curve.  Figure 3 plots the curves for the

parameter values of example 1.  The congestion technology is evidently more complex

than that for highway flow congestion, which is perhaps not surprising considering that it

incorporates the three behavioral margins of adjustment, x̃ , x , and d .  The upper portion

of the user cost curve, shown by the dashed line, corresponds to the negative root of G ⋅( )
in Figure 1, and may be interpreted as corresponding to hypercongestion.  The lower

portion, shown by the dotted line, corresponds to the positive root of G ⋅( )  = 0 in Figure 1,

and may be interpreted as corresponding to congested travel.  Thus, there is an analogy

between flow congestion on highways and the parking congestion of the paper, but the

analogy is not perfect because of differences in the two technologies.

b) example 2

This example has the same parameters as the previous one, except that   l =.25.

Thus, the minimum time parked on a car trip is 15 minutes.  If x̃  and x  were to remain

the same as in the congested equilibrium of the previous example, the level of parking

congestion would increase very substantially.  Thus, one might expect the parameter

change to cause the congested equilibrium to more closely resemble the hypercongested

equilibrium.  In fact, the parameter change eliminates the congested and unstable

equilibria.  Only the stable, hypercongested equilibrium remains, with x̃ = 1.4962,

x = 1.6644, P = 0.65554, and L = 1.2755.  If the analog to Figure 1 were plotted, then
H x̃, x( ) = 0 would remain unchanged, the upper (positive root) portion of G x̃, x( ) = 0

would lie above H x̃, x( ) = 0, and the lower (negative root) portion of G x̃, x( ) = 0  would

intersect H x̃, x( ) = 0 at the hypercongested equilibrium.  The equilibrium is very similar

to the hypercongested equilibrium ¬ of example 1, except that L  is higher by about .25.

II.3  Comments

The comparative static properties of the equilibria can be obtained

straightforwardly from (9) and (10), but the analysis is messy.  The only simple

comparative static exercise is with respect to µ.  In terms of Figure 1, an increase in µ, the

Poisson arrival rate of trip opportunities, shifts (9) inwards, towards the origin.  Consider,

for instance, the congested equilibrium ¿ in Figure 1.  The inward shift in (9) causes x  to

fall and x̃  to rise.  The mechanism is as follows: The immediate effect is that time

waiting at home falls, causing the expected trip period L  to fall.  This in turn has two

first-round effects.  First, since the opportunity cost of time β
L  rises, the individual

refuses some longer trips that she previously accepted -- x  falls (eq. (8b´)).  Second, trip
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frequency rises, which increases the parking occupancy rate (eq. (6)).  The increased

parking congestion in turn causes the individual to walk on some trips on which she

would previously have driven -- x̃  rises (eq. (8a)) -- and to increase cruising distance -- d

rises (eq. (8c)).  The qualitative effects of the full adjustment are the same as for these

first-round effects.

The possibility of multiple stable equilibria raises the issue of equilibrium

selection.  Which equilibrium obtains presumably depends on the path of adjustment to

the stationary state.  If the economy were previously highly congested, the economy

should settle at the hypercongested equilibrium, while if congestion built up towards the

stationary state the economy should settle at the congested equilibrium.  Unfortunately,

this intuition is very difficult to make precise because the transient behavior of the

economy is highly complex.  For example, in deciding between walking and driving, with

perfect foresight an individual would have to take into account that the density of vacant

parking spaces would change as she was cruising for parking.

The complexity of the model's solution is discouraging.  It is, however, intrinsic to

the problem.  We chose our assumptions to obtain the simplest structural model that in

our opinion captures the essential elements of the problem.  Much of the complexity

derived from the stochastic nature of finding a parking space.  But, without this

stochasticity, there would be no cruising for parking, which we judge to be an essential

feature of the problem.  Fortunately, the first-best welfare economics is relatively

straightforward.  However, the second-best welfare economics is comparably complex.

This suggests that practical parking policy should be investigated employing realistic

simulation models.

III.  Social Optimum

III.1  First-order conditions and interpretation

The planner's aim is to maximize trip frequency.  Unlike individuals, however, the

planner takes into account the dependence of the density of vacant parking spaces on x̃ ,

x  and d .  His optimization problem is

min
x̃,x ,d,P

L    s.t    i)  
  
L = 1

x
T1 x( )dx + T2 x, P,d( )dx

x̃

x

∫0

x̃

∫





+ l + πr

µx
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 ii)  
  

Γ W P,d( ) + l( ) x − x̃

x






D − P
= L

Constraint i) is the definition of L   (eq.(5)), while constraint ii) is the parking equilibrium

condition (eq.(6)).  Eliminating L , the optimization problem in Langrangean form is

min
x̃,x ,d,P

   Z  
  
= 1

x
T1 x( )dx + T2 x, P,d( )dx

x̃

x

∫0

x̃

∫





+ l + πr

µx







1 − λ( )

  

+λ
Γ W P,d( ) + l( ) x − x̃

x






D − P

















, (11)

where ¬ is the Lagrange multiplier on ii), with L substituted out.  The corresponding first-

order conditions are:8

  
x̃ :

1
x

1 − λ( ) T1 x̃( ) − T2 x̃, P,d( )( ) − λ
Γ W P,d( ) + l( )

D − P









 = 0 (12a)

  
x :

1
x

− 1 − λ( ) L x̃, x, P,d( ) − l − T2 x, P,d( )( ) + λ
Γ W P,d( ) + l( )

D − P

x̃

x









 = 0 (12b)

d :
x − x̃

x
1 − λ( ) ∂T2 x, P,d( )

∂d
+ λ Γ

D − P

∂W P,d( )
∂d







= 0 (12c)

  
P:

x − x̃

x
1 − λ( ) ∂T2 x, P,d( )

∂P
+ λΓ

D − P

∂W P,d( )
∂P

+ W P,d( ) + l

D − P












= 0. (12d)

Consider first the interpretation of (12a).  When an individual walks to x̃ , the
social time it takes is T1 x̃( ) .  When instead she drives to x̃ , the expected social time of

the trip equals her expected travel time plus the expected parking congestion externality

she imposes through reducing the density of vacant parking spaces and hence increasing

the expected travel time of other drivers.  Thus, the condition for the optimal choice of x̃

is

T1 x̃( ) = T2 x̃, P,d( ) +  parking congestion externality. (12a´)

8We have proved that with P fixed, the minimization problem has a unique interior minimum.  We
conjecture, but have not proved, that there is a unique interior minimum with P variable in the economically

meaningful region of x̃, x,d, P( ) .  This conjecture is supported by the numerical results reported in fn. 9.
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The parking congestion externality is proportional to the length of time parked.  Define

E  to be the time lost by other drivers per extra minute parked (note that E  is

dimensionless).  Hence

T1 x̃( ) = T2 x̃, P,d( ) +   E W P,d( ) + l( ) . (12a´´)

Comparing (12a) and (12a´´) yields

E = λ
1 − λ

Γ
D − P





 (13a)

Eq. (12b) has a similar interpretation.  The individual should accept a trip

opportunity to x  if the expected social time of the trip is not greater than the expected

social time until completion of the next accepted trip.  Since a trip to x  is by car, its
expected social time is   T2 x, P,d( ) + l + E W P,d( ) + l( ).  If the trip opportunity to x  is

declined, the expected social time until completion of the next acceptable trip is L  plus

the expected parking congestion externality.  Since a proportion x − x̃
x  of trips entail

parking, the expected parking congestion externality is 
  

x − x̃
x( )E W P,d( ) + l( ).  Thus, x   is

characterized by

  
T2 x, P,d( ) + l + E W P,d( ) + l( ) = L x̃, x, P,d( ) + x − x̃

x




 E W P,d( ) + l( ) , (12b´)

which, using (13a), is consistent with (12b).

Similarly, in deciding on cruising distance the planner takes into account the

parking congestion externality.  The privately optimal cruising distance minimizes the

sum of expected driving time and expected parking time.  Since the externality derives

from parking, the planner chooses a shorter expected parking time and a longer expected

driving time, which entails a shorter cruising distance.

Eq. (12d) gives the value of λ .  Combining (13a) and (12d) yields

  

E =
− ∂T2 x, P,d( )

∂P
W P,d( ) + l

D − P
+ ∂W P,d( )

∂P

. (13b)

Eq. (9) continues to hold at the social optimum and we shall show in the next

section that it holds as well in equilibria with a parking fee.  An explanation for why (9)
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holds in all these situations is as follows:  Let Ci x( ) be the cost (social cost for the social

optimum, and private cost for the equilibria) of travel to x  by mode i .  The optimality

condition  with respect to x̃  is

C1 x̃( ) = C2 x̃( ), (i)

which has an obvious interpretation.  That with respect to x  is

C2 x( ) − C = V
π r

µ x
, (ii)

where C  is the average cost of travel on a trip and V  is the opportunity cost of time.  Eq.

(ii) states that x  is such that the expected travel cost savings from refusing a trip

opportunity to x  and waiting for the next acceptable trip opportunity equals the

opportunity cost of the expected time until the next trip opportunity arrives.  Now

C = 1
x

C1 x( )dx + C2 x( )dx
x̃

x

∫0

x̃

∫





    = x̃

x

C1 x̃( )
2

+ x − x̃

x

C2 x( ) + C2 x̃( )
2







(iii)

since C1 x( )  and C2 x( )  are linear in x  and C1 0( ) = 0.

Combining (i) - (iii) yields

C2 x( ) − C2 x̃( )
2







x + x̃( ) +
C1 x̃( )x̃

2
= Vπr

µ
. (iv)

Now C1 x̃( ) = 2Vx̃
w  while C2 x( ) − C2 x̃( ) = 2V x − x̃( )

v .  Thus, (iv) reduces to (9).

III.2  Examples

We return to our previous examples and report the corresponding social optima.9

a)  example 1   l = 0.0( )

Recall that the congested equilibrium ¿ in example 1 of the previous section

(shown in Fig. 1) entailed the lowest average trip duration of the three equilibria, and

9To solve for the social optimum, we employed two separate packages (EUREKA and GINO) to check for
accuracy.  We first optimized with respect to x̃, x, and d  , holding P fixed, and then did a search for the
optimal P.  In our computational experience, every problem had a unique interior minimum (recall fn. 8).
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entailed very little parking congestion.  Thus, one would expect the social optimum (s.o.)

to closely resemble this equilibrium, and indeed it does.

x̃ x P L d

s.o. 0.0056159 3.0800 187.35 0.51595 0.0051148

② 0.0052382 3.0800 187.25 0.51595 0.0052382

Because it takes into account the parking congestion externality, the social

optimum entails a larger maximum walking distance and a smaller cruising distance than

in equilibrium ② .  The level of parking congestion in the no-parking fee equilibrium is,

however, so low that the lower average trip duration for the social optimum shows up

only in the sixth non-zero digit.  Thus, in this example the social loss in the no-parking-

fee equilibrium from the uninternalized parking congestion is negligible.

b)  example 2   l = 0.25( )

Again, example 2 stands in strong contrast to example 1.

x̃ x P L d

s.o. 1.3874 1.9265 20.966 1.0774 0.036637

e 1.4962 1.6644 0.65554 1.2755 1.4962

There are several noteworthy features of the social optimum.  In contrast to the no-

parking-fee equilibrium (e) where x̃  and d  are equal, in the social optimum they are very

different.  There are two reasons.  First, the planner takes into account that driving entails

the parking externality, whereas walking does not.  Recall from the discussion of (12a)
that T1 x̃( ) − T2 x̃, P,d( )  gives the magnitude of the parking externality in time units.

At the social optimum, T1 x̃( ) = 2 x̃
w =.92493 while T2 x̃( ) = 2 x̃

v + 4e−Pd

wP + 2 d − 1
P( ) 1

w − 1
v( ) =.25520 ;

thus, the parking externality in time units is .66973.  Second, the planner favors a shorter

cruising distance, since even though this increases travel time, holding P  fixed, it reduces

the length of time the driver is parked and hence the magnitude of the parking externality.

To ascertain the importance of this, we may calculate the cruising distance the driver

would choose with P  = 20.966 and no parking fee; it is d  = .046782, which exceeds the

socially optimal value of d , .036637.  Another feature of the social optimum is that it

entails a considerably lower walking time when driving; in the no-parking-fee

equilibrium it is .74323, while in the social optimum it is .022128.  At the social optimum
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the average parking duration on a car trip is .272128, and hence the parking externality

per unit time parked, E,  is 2.4611, which indicates that for each extra minute a driver

parks she causes a time loss to others of 2.4611 minutes.  And finally, the social optimum

entails a substantial reduction in average trip duration, from 1.2755 to 1.0774 hours,

about 15%.

III.3  Comments

The reader may wonder why we have investigated the social optimum at some

length when in fact the planner can control none of x̃ , x , d , and P  directly.  Obviously,

doing so provides an insightful benchmark.  But more than this, as we shall see, subject to

a strong qualification, the social optimum is decentralizable.  The only distortion is that

the individual fails to take into account the externality associated with her parking, and

this can be corrected via a parking fee.

Some analytical comparative static results could be derived.  Given the

complexity of the analysis, however, it would seem preferable to determine the

comparative static properties of the social optimum numerically.

IV.  The Equilibrium with a Parking Fee

This section examines both the equilibrium with a positive parking fee10 and the

decentralizability of the social optimum.

IV.1  Derivation of equilibrium

The parking fee per unit time, p,  is specified in money units.  The individual aims

to maximize trip benefits net of parking fees per unit time.  The average benefit per trip is

  
β − p x − x̃

x( ) W P,d( ) + l( ) since x − x̃
x( ) is the proportion of trips taken by car and the

average parking fee per car trip is the parking fee per unit time multiplied by the average

time parked.  Thus, the maximand is 
  
β − p x − x̃

x( ) W P,d( ) + l( )[ ] L.   If parking revenues

10One can solve for equilibrium with a negative parking fee.  But the analysis needs to be altered somewhat
to reflect the fact that a person cannot start cruising for parking before she leaves home.  We do not
investigate negative parking fees since their economic relevance is dubious.  For one thing, individuals
would then have an incentive to park their cars on the street when at home so as to collect the parking
subsidy.
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are redistributed, the individual regards the payment as a fixed  sum per unit time.  The

analysis is therefore unaffected by the redistribution of parking revenue.

Thus, the individual's maximization problem is

  

max
x̃,x ,d

V x̃, x,d; p, P( ) =
β − p x − x̃

x( ) W P,d( ) + l( )
1
x T1 x( )dx + T2 x, P,d( )dx

x̃

x

∫0

x̃

∫





+ π r
µ x + l

. (14)

V ⋅( ) is the private value of time.  In undertaking the maximization, the individual regards

P   as given.  Thus, the first-order conditions are:

  
x̃ :

1
∆

p W P,d( ) + l( ) − V T1 x̃( ) − T2 x̃, P,d( )( )[ ] = 0 (15a)

  
x :

1
∆

β − p W P,d( ) + l( ) − V T2 x, P,d( ) + l( )[ ] = 0 (15b)

d :
x − x̃

∆
− p

∂W P,d( )
∂d

− V
∂T2 x, P,d( )

∂d






= 0, (15c)

where ∆ ≡ Lx .  Each of these conditions has a straightforward interpretation.  For

example, (15a) indicates that the individual will choose the mode which costs less in

money terms, where the price of time is its private value.  The maximization problem has

a unique, interior maximum (see Appendix 3).  And the equilibrium is obtained by

combining (15a) - (15c) with (5) and the definition of V , giving five equations in five

unknowns, x̃, x,d, P,  and V .  Eq. (9) continues to hold.  Comparative static analysis of

this system of equations is very messy, so numerical determination of the comparative

static properties of the model is justified.

IV.2  Decentralization of the social optimum

We have argued previously that there is only one distortion in the model --

individuals do not pay the full social cost associated with their parking.  By setting the

parking fee at the appropriate level, it should be possible to correct this distortion.

We proceed by solving for the parking fee which supports the optimum and then

turn to a fuller analysis of decentralizability.

Comparison of (12a) - (12c) with (15a) - (15c) indicates that the two sets of first-

order conditions can be made consistent by setting
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p *
V *

= λ * Γ
1 − λ *( ) D − P *( )

 or p* = V * E *, (16)

where * denotes evaluation at the social optimum (see Appendix 5).  Eq. (16) states that

the parking fee should be set equal to the parking externality in time units multiplied by

the private value of time, both evaluated at the social optimum.  Observe that the parking

fee causes a divergence between the private and social value of time; the latter is β
L .

Since V  is a function of p,  (16) is an implicit equation.  Combining (16) and (14) gives

the following explicit equation for p*:

  

p* = E * β
L * +E * x*− x̃*

x*( ) W * +l( )
. (16´)

Now recall example 1.  There were two stable equilibria, one congested and one

hypercongested.  There was very little parking congestion in the congested equilibrium,

and the social optimum was very similar to the congested equilibrium.  These

observations suggest that application of the optimal parking fee, computed per (16´),

should cause the congested equilibrium to coincide with the social optimum but, since the

optimal parking fee is so low, should not eliminate the hypercongested equilibrium.  As

we shall see, such is indeed the case.  Thus, application of the optimal parking fee given

by (16´) does not necessarily result in attainment of the social optimum.

We provided an intuitive argument earlier that one should expect the

hypercongested equilibrium to occur if parking is highly congested in the adjustment to

the stationary state, and the congested equilibrium to occur otherwise.  This argument

suggests that the social optimum can always be attained by an appropriate dynamic

parking fee.  By setting the parking fee sufficiently high in the adjustment to the

stationary state, the planner should be able to ensure that the economy ends up at the

social optimum.  Investigation of the conjecture will require exploration of the non-

stationary dynamics of the model, which we do not explore here.11

IV.3  Examples

We return to our previous examples, and explore the effects of parking fees on the

equilibrium.

11Support for this conjecture is provided by Figure 4a, which plots equilibria as a function of the parking
fee for   l = 0 .  If the parking fee is set sufficiently high, the hypercongested equilibrium disappears.
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a)  example 1   l = 0.0( )

We start by computing the optimal parking fee and then solving for the

corresponding equilibria.  The optimal parking fee, with β = $10,  is p* = $1.4232 / hr.

The results are presented in the table below.  A heavy dot in a cell indicates that the

values are the socially optimal ones.  The table contains few surprises.  Since the

congested no-parking-fee equilibrium was very little congested, the optimal parking fee is

low.  Application of the fee does indeed result in the congested equilibrium coinciding

with the social optimum.  But since the optimal fee is low, its application does not

substantially alter the other equilibria.  It is, however, worthy of note that application of

the parking fee increases trip duration for the unstable equilibrium.12

x̃ x P L d
¯ ¯ ¯ ¯ ¯

p=p* 0.0056162 3.0800 187.35 0.51595 0.0051149
①

p=0 0.0052382 3.0800 187.25 0.51595 0.0052382

p=p* 0.093515 3.0757 11.315 0.55608 0.084541
②

p=0 0.085619 3.0764 11.456 0.55554 0.085619

p=p* 1.4878 1.6967 0.75598 1.0132 1.2425
③

p=0 1.4924 1.6747 0.65722 1.0253 1.4924

We next investigate the effects of imposing a non-optimal parking fee on the

equilibrium.13 These effects can be explained using Figure 4a, which plots the

equilibrium x̃  as a function of p .  A feature of special interest is that for p  > $56.45/hr.,

the unstable and hypercongested equilibria disappear.  Thus, a sufficiently high parking

fee "unlocks" the hypercongested equilibrium.  As the parking fee is increased, for each

stable equilibrium type the density of vacant parking spaces increases.  Whether x̃  is

positively or negatively related to p  depends on two competing effects.  On one hand, a

higher parking fee makes driving less attractive; on the other hand, it makes parking less

congested which makes driving more attractive.  In the examples the former effect

dominates for the congested equilibrium (since there is little congestion) and the latter

12Since perverse comparative static results are characteristic of unstable equilibria, this result supports the
argument that the intermediate equilibrium is unstable.
13We determined these equilibria by employing a combination of MATHEMATICA and numerical
comparative statics.  Using MATHEMATICA alone, we encountered serious difficulties in the numerical
solution.  We developed a solution procedure supplementing MATHEMATICA which circumvented these
numerical problems.  The procedure is described in Arnott and Rowse(1995).
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effect dominates for the hypercongested equilibrium (since an increase in the parking fee

reduces congestion substantially).

Figure 4a:  Equilibrium as a function of the parking fee,   l = 0.0

b)  example 2   l = 0.25( )

The optimal parking fee is p *= $19.459/hr.  Application of the optimal parking

fee decentralizes the social optimum.  Prior to the application of the parking fee, benefit

per hour is V = β
L  = $7.843.  With the optimal parking fee, benefit per hour without

redistribution of parking fee revenues is   V =
β − p x − x̃

x( ) W +l( )
L  = $7.906.  Thus, even without

redistribution of parking fee revenues, individuals are made better off by the parking fee.

In contrast, in example 1 individuals are worse off in the decentralized social optimum if

toll revenues are not redistributed than in the no-parking-fee equilibrium ①.  These

results are consistent with the economics of congestion pricing, where unredistributed

optimal tolls help drivers if the pre-toll equilibrium is hypercongested but hurt them if it

is congested.
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The effects of imposing a non-optimal parking fee can be explained using Figure

4b.  For p  between 0 and $18.90/hr., x̃  decreases with p  -- driving becomes more

attractive since the reduction in congestion more than compensates for the higher parking

fee.  For p  between $18.90/hr. and $23.80/hr., x̃  increases with p  -- the reduction in

congestion does not compensate for the higher parking fee.  At a parking fee slightly

above $23.80/hr., no one drives.  The parking fee is so high that even though there is no

congestion, the cost of parking on a car trip (  pl ≈$5.95) makes walking cheaper, even on

the longest trips.

Figure 4b:  Equilibrium as a function of the parking fee,   l = 0.25
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The effects of the parking fee were so different for   l = 0.0 and   l = 0.25 that we

explored an intermediate case,   l = 0.03.

c)  example 3    l = 0.03( )

Figure 4c:  Equilibrium as a function of the parking fee,   l = 0.03

Figure 4c plots p  against x̃  for this example.  With a zero parking fee, there is

only a single equilibrium which is hypercongested.  As the parking fee is raised, a critical

parking fee, p̂ , is reached at which the congested and unstable equilibria appear.  As p  is

raised further, another critical parking fee, ˆ̂p , is reached at which the unstable and

hypercongested equilibria disappear.14  For parking fees above ˆ̂p , there is only a single

equilibrium which is congested.  This example is interesting since it demonstrates that

14Thus, there are three equilibria for p ∈ p̂, ˆ̂p( ) .  For example, with p  = 61.5, x̃  = .804 for the

hypercongested equilibrium, .489 for the unstable equilibrium, and .414 for the congested equilibrium.
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raising the parking fee may not only cause a hypercongested equilibrium to disappear, as

in example 1, but may also cause a congested equilibrium to appear where one did not

exist in the absence of a parking fee.

The results for this example are broadly analogous to those obtained in the

economic analysis of flow congestion on highways.  Refer to Figure 2, and suppose that

the demand curve in the absence of a toll is  d1 .  Then initially there is a single

equilibrium, which is stable and hypercongested.  Raising the toll causes the demand

curve to shift down.  When the demand curve falls to d2 , two new equilibria appear, one

an unstable, hypercongested equilibrium, the other a stable, congested equilibrium.

When the toll is further increased to the level associated with d4 , both the hypercongested

equilibria disappear.

V.  Extensions

We have deliberately kept the model as simple as possible, both to elucidate basic

points and to keep the algebra manageable.  Numerous extensions in the direction of

realism are possible.  Since the algebra for even the basic model is quite difficult, with

many of the extensions numerical solution will probably be necessary.  In this section, we

simply discuss most of the extensions.  We do, however, present one extension in some

detail since the model is so well-suited to treating it -- the provision of information on

parking availability and its effect on equilibrium.

V.1  Demand

It is useful to think of an individual as deriving utility from activities -- e.g.

commuting to work, attending a baseball game, playing with the kids, eating out with

friends.  Each of these activities can be undertaken at only a subset of locations and over

certain intervals of time.  Furthermore, the utility from an activity depends on the length

of time spent at it as well as the goods which are purchased in conjunction with it.

According to this conceptualization, the individual's utility maximization entails solving a

scheduling cum budget allocation problem, the demand for parking is derived from the

solution to this problem, and trip chaining -- whereby the individual undertakes several

different activities on a trip from home and back again -- occurs.  The problem is further
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complicated if account is taken of the uncertainties associated with travel time and the

length of time needed to undertake various activities, for then the individual continuously

updates the solution to a stochastic scheduling problem.

While there is broad agreement among experts that this is the "right" way to think

about transport demand, because of the complexity of its implementation this

conceptualization has not been made operational.  A less conceptually satisfying but more

operational method is to enrich the approach taken in this paper, whereby an individual

receives trip opportunities according to a stochastic process.  Trip length and trip benefit

could be made random variables.  Alternatively, a trip opportunity could be characterized

by a random function, the realization of which would specify trip benefit as a function of

length of time spent at the destination, and the individual would choose how long to

spend at the destination.  A trip opportunity could also specify the period of time over

which the opportunity was in effect, which would permit the treatment of trip chaining.

In this paper, the individual allocates her time so as to maximize per unit time the

expected benefit received at trip destinations, which implies that the individual's value of

time is the same whether she is driving on a freeway, cruising for parking, walking, or at

home.  It is well-documented, however, that individuals value time in different activities

significantly differently.  The model can be augmented to take this into account.  A

simple way of doing this is to assume that the individual maximizes benefits minus costs

per unit time, where the costs includes the time cost in various activities (relative to, say,

being at home).  A slightly more sophisticated approach is to assume that the individual

maximizes utility, which is a function of the time spent in various activities.

It should be possible to calibrate the specification of demand in such a way that

the pattern of trips, by origin/destination/parking duration is close to that observed, which

will permit calculation of how the pattern of parking demand is altered in response to

policy changes.

V.2  Parking supply

In the model, all parking was operated by the planner and the number of parking

spaces was fixed.  It would be relatively straightforward to provide a more sophisticated

treatment of parking supply.  At each location the supply of land for roads and for other

uses would be specified.  The land for roads would be used for either traffic or on-street

parking.  Allocating more land to on-street parking would increase the availability of

parking, but would exacerbate traffic congestion.  The land for other uses would be



30

allocated between housing and off-street parking.  Increasing the amount of off-street

parking would cause construction of housing at higher density, which would increase

housing costs.  The allocation of land between these uses could be optimized.

While on-street parking is provided by the government, much off-street parking,

at least in North American cities, is operated by the private sector.  Even if traffic

congestion were efficiently priced, the private pricing of off-street parking would likely

be inefficient since the friction of space provides private parking operators with market

power.  And if traffic congestion were inefficiently priced, parking operators would base

their decisions on distorted prices.  Since land values would be distorted, the market

allocation of land between off-street parking and housing would be inefficient.  Also, in

making their pricing decisions, private parking operators would collectively neglect the

effect of their pricing on traffic congestion.  Thus, the taxation/regulation of private, off-

street parking is an important issue in parking policy.

V.3  Traffic congestion

The model ignored traffic congestion -- car travel speed was assumed to be

independent of the density or flow of cars on the road.  Incorporating traffic congestion

would not be difficult.15  Flow congestion can be treated by assuming that travel speed in

regular traffic depends on the density of cars in regular traffic as well as on effective

capacity which is influenced by the amount of on-street parking, the rate at which cars

enter and leave on-street parking spaces, the volume of pedestrian traffic, and the density

of cars cruising for parking.  Cruising-for-parking congestion is also important and can be

modeled similarly to flow congestion.  Other forms of congestion which may be desirable

to incorporate include parking entry-and-exit congestion, both for on- and off-street

parking, pedestrian congestion and, in network models, intersection congestion and

gridlock.

The incorporation of traffic congestion is not only quantitatively very important,

but also, when- -as is typically the case- -traffic congestion is underpriced, qualitatively

changes the economics since parking policy is then an exercise in the second best.

Suppose, for example, that the only forms of congestion are traffic flow congestion and

parking congestion, and that the distribution of parking duration is independent of the

distance driven on the trip.  Then the second-best parking fee would include a fixed,

15Flow congestion can be incorporated straightforwardly into the model by making car speed depend on
traffic density which can be calculated straightforwardly.
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second-best component approximately equal to the average flow congestion externality

associated with car trip16 plus a first-best component linear in time parked to cover the

parking congestion externality.  More generally, the second-best parking fee would be set

to minimize the deadweight loss associated with the myriad forms of unpriced

congestion.

V.4  Alternative parking strategies

In the paper it was assumed that an individual starts cruising for parking a certain

distance from her destination and then continues cruising on the single road until she

finds a parking spot.  But with the single road the individual can also backtrack, sit and

wait for a spot to become available, or simply double park.  If the model were extended to

two dimensions -- a Manhattan grid network of streets, for example -- the range of

parking strategies would be considerably greater.  It would be interesting to explore

which parking strategies are privately and socially optimal under different traffic

conditions, and also to solve for the optimal fine for double-parking.17

V.5  Stochasticity

Parking may be modeled at varying degrees of sophistication.  At the simplest,

one can suppress the stochasticity associated with finding a parking space and posit a
function s = s φ( )  which gives time spent parked on a car trip as a function of the

occupancy rate of parking spaces, φ .  With such a specification, one would obtain most

of the qualitative results we have found -- the optimal parking fee equals the parking

congestion externality, there may be multiple equilibria, etc.  The danger of such an

implicit approach is that important insights may be lost.  In the current context, for
example, if we had started with the function s φ( ) and assumed it to be technological, we

would have overlooked the efficiency gains from congestion pricing that derive from its

impact on the modal choice and the cruising-for-parking decisions.

At the other extreme, one can provide an exact mathematical treatment of the

stochasticity associated with finding a parking spot by employing stochastic queuing

theory (Cooper (1981), Syski (1986)).  Each parking spot can be regarded as a separate

16Short trips then would be priced above marginal cost and long trips below marginal cost.  Whether the
second-best component would be greater than or less than the average flow congestion externality would
depend on the relative demand elasticities of short and long trips.
17This was discussed by Polinsky and Shavell (1979).  Their aim was to provide an explanation for why the
optimal fine for all crimes is not infinite.  There are situations in which the social benefit from double
parking exceeds the social cost.
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server, with the service time equal to the length of time parked and the distribution of

service times endogenously determined.  Servers are spatially ordered and the customer

travels from server to server at a specified speed until she finds one that is idle.  This is

not a conventional stochastic-queuing-theoretic problem.  While it can presumably be

solved from first principles, doing so would be difficult and the solution would be messy.

We adopted an intermediate strategy, explicitly treating individuals' behavioral

decisions and the stochasticity of parking availability, but making the approximation that

the probabilities of adjacent parking spaces being vacant are statistically independent,

which permitted application of the simple mathematics of Poisson processes.  An

analogous approximation is made in intersection congestion analysis (Institute of

Transportation Engineers (1982)), where it is assumed that the arrival rate of cars at an

intersection is generated by a Poisson process, even though it evidently is not (if cars

were delayed by a traffic light at an upstream intersection, for example, they will have

traveled as a platoon to the intersection under consideration).

In the paper, parking fees were independent of the particular realization of vacant

parking spaces.  Back in the fifties, Vickrey (1959) proposed responsive pricing for

parking, whereby the parking fee for a parking space would be based on the realized

availability of nearby vacant parking spaces.  The efficiency gains from responsive

parking pricing are larger the better-informed is the individual concerning the pattern of

vacant parking spaces when making her usage decisions.  At one extreme, when the

individual is perfectly informed, responsive pricing provides the first-best allocation of

parking spaces; at the other extreme, where the individual knows only the mean density

of parking spaces when making her trip and parking decisions, responsive pricing simply

adds insult to injury -- if, by bad luck, all the parking spaces close to her destination are

occupied, she has to pay more for parking.

Because it explicitly treats the stochasticity of vacant parking spaces, our model is

particularly well-suited for examining the value of parking information.  Many cities in

Europe and Japan put signs on major arterial roads indicating the availability of parking

at the major parking lots.  And there is talk of providing parking information to drivers

via computer either before they start a trip or when they are in transit (Asakura and

Kashiwadani (1995)).

To illustrate how the model can be adapted to deal with "informatics," we now

consider a particularly simple parking information system (PIS) in which each driver is
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informed, at the time she receives a trip opportunity, of the available parking spot that is

closest to her destination in terms of travel time.  If she decides to drive, the parking spot

is then reserved for her and she must take that spot.  There is no parking fee.

Since the individual is tentatively assigned a parking spot when she receives a trip

opportunity, she knows exactly the duration of the trip opportunity -- the lesser of the

travel times walking and driving.  Thus, she will adopt a reservation travel time rule in

accepting trip opportunities.  It is shown in Appendix 6 that the probability that travel

time for a trip opportunity is less than t  is18

H t( ) = 1
πr

vt

2
− 1

A
1 − e− A v−w( )t

2( )

, A = 2Pvw

v2 − w2 , (17)

(with h t( )  denoting the corresponding pdf) where P  is the density of available parking

spaces.  A parking space is available if it is vacant and unreserved.

The individual chooses ′t , reservation travel time, to minimize expected trip

period

  
L ′t( ) = T ′t( ) + l + 1

µH ′t( ) , (18)

where T ′t( )  is average travel time as a function of ′t :

T ′t( ) = 1
H ′t( ) th t( )dt

0

′t

∫

         
  
= 1

H ′t( ) tH t( )( )0

′t − H ′t( )( ), H ′t( ) = H t( )
0

′t

∫ dt





         
  
= ′t − H ′t( )

H ′t( ) . (19)

The first-order condition is

′T ′t( ) − h ′t( )
µH ′t( )2 = 0,

which using (19) reduces to   H ′t( ) = 1
µ , or

18Again under the working assumption that the probabilities of adjacent parking spaces being available are
statistically independent.
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v ′t( )2

4
− ′t

A
+ 2

A2 v − w( )
1 − e− A v−w( )

2 ′t( ) = πr

µ
. (20)

From (18), (19) and   H ′t( ) = 1
µ ,   L ′t( ) = ′t + l.  If the individual is offered a trip with travel

time ′t , she is indifferent between accepting and refusing it.  If she accepts it, the

duration of the trip is   ′t + l ; if she rejects it, the expected time waiting for the next
acceptable trip opportunity plus the expected duration of the trip is L ′t( ) .

Then there is the stationary-state condition.  This can be calculated as "the ratio of

unavailable parking spaces to the population equals the ratio of average "parking time" on
a trip, K ′t , P( ), to average trip period," where the parking time on a trip equals the time

the parking spot is occupied plus the time the parking spot is unoccupied but reserved,

while the individual is driving from home to the parking spot:

D − P

Γ
= K ′t , P( )

L
. (21)

The average parking time on a trip is calculated as

K ′t , P( ) = k t, x( )
0

′t

∫0

∞

∫ g t x( ) f x( )dt dx ÷ H ′t( ), (22)

where k t, x( ) is the average parking time on a journey to x  with travel time t , and

g t x( ) f x( )  is the joint p.d.f. of x  and t , which are given in Appendix 6.  With K ′t , P( )
substituted out, (20) - (22) provide two equations in ′t  and P .

We now investigate a numerical example.  Recall that, in the absence of PIS, there

were three equilibria:  a stable, congested equilibrium with P, L( ) = (187.25, 0.51595), an

unstable, congested equilibrium with P, L( ) = (11.456, 0.55554), and a stable,

hypercongested equilibrium with P, L( ) = (0.65722, 1.0253).  With the PIS

P  = .042052 L = ′t( ) = 0.98042.

Introduction of the PIS causes the two congested equilibria to disappear, but results in a

reduction in expected trip time of about 4.4% in the hypercongested equilibrium.

The PIS is very inefficient when without it the parking occupancy rate would be

low.  To see why, suppose that the economy is in the stable, congested equilibrium

without the PIS, and that one individual is provided with the PIS.  Her trip length would

be reduced by about three seconds but this would come at the social cost of holding an
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unoccupied parking spot reserved on each of her outbound car trips, for an average of

about nine minutes, which would generate a parking externality of about 40 seconds

(calculated as E  times nine minutes).  In fact, the PIS does even worse than this

calculation suggests -- it eliminates the stable, congested equilibrium.

But when the parking occupancy rate would be high without the PIS, the PIS is

welfare improving.  The gains from directing drivers to the closest parking spaces and

from having them reject trips they would have taken without parking information more

than offsets the costs of unoccupied but reserved parking spaces.

Intuition suggests that this parking information system would be improved by

reserving a parking spot for an individual only if parking close to her destination is

scarce, and would be further improved by updating the reserved parking spot as parking

spots become available while the individual is en route.  This intuition is not completely

correct, however, since when prices are distorted (here parking is underpriced) better

information is not always welfare-improving.19  A possible further refinement would

entail the planner assigning the individual the parking spot with the lowest expected

social cost rather than the lowest expected private cost.

Responsive pricing and the provision of parking information are synergistic.  The

policies are technologically complementary since information on pricing and the

availability of parking would presumably be provided by the same computer system.

Also, as noted earlier, responsive pricing is more effective the better informed are users,

while with responsive pricing (under which the individual would face expected social

cost on all parking-related decisions) better information would always be welfare-

improving.

V.6  Practical complications

Traffic engineers have recently been devoting considerable effort to the

development of parking simulation models for actual road/parking networks (Muromachi

et al. (1995) and the references therein).  The level of sophistication of these models is

impressive.  Car trips by destination are generated by time-dependent Poisson processes,

which can be made cost-sensitive; parking duration is stochastic; each user decides which

parking lot to try first on the basis of imperfect information on parking availability at the

various lots and, if unpleasantly surprised when she arrives, may adopt one of several

19This point is made in the context of bottleneck congestion on a road by Arnott, de Palma, and Lindsey
(1991b).
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parking search strategies, etc.  Economists can make two sorts of contributions to the

development of such models.  First, economic theory can be employed to strengthen their

behavioral underpinnings.  And second, analytical modeling along the lines indicated in

this section can provide insight into the simulation results.

VI.  Conclusion

This paper has developed a model of parking.  The model was constructed with

four principal considerations in mind.  First, the model was primitive or structural, rather

than reduced-form, viz. the demand for parking and the congestion cost function were

derived rather than assumed.  Second, the model was designed so that it can be extended

to incorporate a host of realistic complications, and so that, appropriately elaborated, it

can be employed in practical policy analysis.  Third, the model was general equilibrium

so as to ensure a rigorous conceptual basis for welfare analysis.  And fourth, the model

was designed to focus on stochastic aspects of parking, especially cruising for parking.

The model was the simplest we could think of which satisfied these four criteria.  This

simplicity was achieved by assuming spatial and temporal homogeneity and by ignoring

the flow congestion of cars.

The most remarkable feature of the model was that, despite extreme

simplification, its behavior was complex.  In particular, multiple stable equilibria are

possible; which equilibrium obtains depends presumably on the history of the economy

prior to reaching the stationary state.  This is discouraging since it suggests that non-

stationary-state analysis is needed, but this will be difficult.  The comparative static

properties of the model are complex as well; recall the sensitivity of even the qualitative

properties of the solutions to changes in the parking fee and in parking duration.  The

welfare economics of the model was, however, relatively straightforward.  The parking

fee should be set at the value of the parking congestion externality.  However, setting the

parking fee at that level which decentralizes the social optimum does not guarantee

attainment of the optimum; the economy may remain stuck at a hypercongested

equilibrium.  Unfortunately, the complexity of the model appears to be intrinsic to the

parking problem rather than an artifact.  Thus, sound analytical work on parking would

appear to be discouragingly difficult.  Despite computational problems deriving from the

"highly" nonlinear nature of the model, numerical solution would appear to be a more

fruitful avenue for future research, and the model we have constructed should provide a

useful starting point for the construction of practical parking simulation models.
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Appendix 1

Partial Derivatives of W P,d( ) and T2 x, P,d( )

∂W

∂d
= 2

w
−2e−Pd + 1( ) (A1.1)
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Appendix 2

Comparative Statics of (5) and (6)

  
Lx − T1 x( )dx − T2 x, P,d( )dx − lx − πr

µ
= 0

x̃

x

∫0

x̃

∫ (5)

  D − P( )Lx − Γ W + l( ) x − x̃( ) = 0 (6)

Total differentiation of this pair of equations gives
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  for use in Appendix 5.

Note that for a given x̃, x,  and d , there may be more than one economically sensible

solution to (5) and (6).
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Appendix 3

Stability Analysis

This appendix provides an argument that equilibria ① and ③ in Fig. 1 are stable,

while equilibrium ② is unstable.  We start at an equilibrium, introduce a perturbation,

and ascertain whether the economy returns to the equilibrium.  A natural perturbation is a

below-average realization of trip demand for an extended period which has resulted in P

remaining steady above its equilibrium level for some time.  We say that an equilibrium

is stable if dṖ
dP < 0 evaluated at the equilibrium, and unstable if dṖ

dP > 0.

Now, Ṗ  equals the number of drivers leaving parking spaces per unit distance

minus the number entering.  The temporal evolutions of P  and Ṗ   are determined by a

complex dynamic stochastic process.  Consequently, it is very difficult to provide a

precise characterization of the disequilibrium adjustment process.  We can, however,

obtain an approximation to it, on the assumption that the current values of x̃, x,  W, and

L  are based on the current value of P  .  Then,

  
Ṗ = D − P

W + l
− Γ

L

x − x̃

x




 (A3.1)

with

x̃ = θ
P

 (from (8a´)) (A3.2)

and

W = 2
P

θ
w

− 1
v





 . (from (3) and (8c´) (A3.3)

We wish to conduct our analysis in x̃ − x  space.  To do this, we substitute out W,

P , and Ṗ  from (A3.1), using (A3.2) and (A3.3), to obtain

  

˜̇x = Γ
Lx

x − x̃( ) − D − θ
x̃

2 x̃
θ

θ
w − 1

v( ) + l







x̃2

θ
. (A3.4)
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Using the definitions of H x̃, x( ) and G x̃, x( ) from (9) and (10), (A3.4) reduces to

  
˜̇x = −G x̃, x( ) + H x̃, x( ) D − θ

x̃












x̃2

θ
Lx

2 x̃

θ
θ
w

− 1
v





 + l












. (A3.5)

According to our assumptions that x̃ , x , and d  are based on the current value of P ,

from (8a) - (8c), H x̃, x( ) = 0 even out of equilibrium.  Then differentiating ˜̇x  with respect

to x̃ , varying x  such that H x̃, x( ) = 0, and evaluating at an equilibrium:

  

d ˜̇x
dx̃

= − dG

dx̃ 9( )







x̃2

θ
Lx

2 x̃

θ
θ
w

− 1
v





 + l












. (A3.6)

From (10), G x̃, x( ) > 0 on (9) along the 45° line which is south-east of the

hypercongested equilibrium ③ in Figure 1.  Hence dG
dx̃ 9( ) > 0  at ③.  That dG

dx̃ 9( ) < 0 at ②

and dG
dx̃ 9( ) > 0 at ① follow immediately.

Thus, d ˜̇x
dx̃ < 0 ⇔ dṖ

dP < 0 at ① and ③, and d ˜̇x
dx̃ > 0 ⇔ dṖ

dP > 0 at ②.   Hence, given

the assumed disequilibrium adjustment process, equilibria ① and ③ are stable, while

equilibrium ② is unstable.
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Appendix 4

The solution to the individual's maximization problem is unique

We ignore corner solutions since they are not of practical interest.  Hence, we

need only show that the second-order conditions for the individual's maximization

problem are satisfied.  The first-order conditions are given in (15).  The corresponding

second-order conditions are:

Vx̃x̃ : − V

∆
∂T1 x̃( )

∂x̃
−

∂T2 x̃, P,d( )
∂x̃







= − V

∆
2
w

− 2
v





 < 0  (using (1) and (4), and ∆ > 0)

Vx̃x : 0

Vx̃d :
1
∆

p
∂W

∂d
+ V

∂T2

∂d






= 0 (from (15c))

Vxx : − V

∆
∂T2 x, P,d( )

∂x
= − V

∆
2
v

< 0

Vxd :
1
∆

− p
∂W

∂d
− V

∂T2

∂d






= 0 (from (15c))

Vdd :
x − x̃

∆
− p

∂ 2W

∂d2 − V
∂ 2T2

∂d2









 < 0  since

∂ 2W

∂d2 = ∂ 2T2

∂d2 = 4P

w
e−Pd > 0   (from Appendix 1).

Thus, the Hessian matrix for V  is negative definite when the first-order

conditions are satisfied.
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Appendix 5

Proof that there exists a parking fee such that the first-order conditions of the

individual's maximization problem are consistent with the first-order conditions

of the planning problem

Let * denote the value of a variable at the social optimum and P x̃, x,d( )  denote

the optimal value of P  consistent with (5) and (6) for a given x̃ , x , and d .  Then the

social optimization problem can be written as

  
min
x̃,x ,d

L = 1
x

T1 x( )dx + T2 x, P x̃, x,d( ),d( )dx
x̃

x

∫0

x̃

∫





+ l + πr

µ x
. (A5.1)

With this formulation of the social optimization problem, the first-order condition with

respect to x̃  is

T1 x̃ *( ) − T2 x̃*, P * x̃*, x*,d *( ),d *( ) + x * − x̃ *( ) ∂T2 *
∂P

∂P *
∂x̃

= 0. (A5.2)

From Appendix 2,

  

∂P x̃*, x*,d *( )
∂x̃

=

T1 x̃ *( ) − T2 x̃*, P*,d *( ) x *

−Γ W * +l( ) D − P( )x *

Ξ *
. (A5.3)

Substituting (A5.2) into (A5.3) yields

  

∂P x̃*, x*,d *( )
∂x̃

=

− x * − x̃ *( ) ∂T2
*

∂P

∂P *
∂x̃

x *

−Γ W * +l( ) D − P *( )x *

Ξ *
 . (A5.4)

Factoring out ∂P*
∂x̃  gives

  

∂P *
∂x̃

= x * Γ W * +l( )
Ω *

, (A5.5)

where
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Ω* ≡ Ξ * + D − P *( )x * x * − x̃ *( ) ∂T2
*

∂P

= x * L * x * +Γ ∂W *
∂P

x * − x̃ *( )



 .

(A5.6)

Comparing (15a) and (A5.2), we have that (15a) is consistent with the social optimum if

  
− p

V *
W P*,d *( ) + l( ) = x * − x̃ *( ) ∂T2

*

∂P

∂P *
∂x̃

. (A5.7)

Let ′p  be the value of p  solving (A5.7).  Substituting (A5.5), (A5.6), (13b) and (6) into

(A5.6) yields

′p = V * E *. (A5.8)

We proceed analogously for x  and d .  Let ′′p  be the parking fee such that the

first-order condition for x  in the individual's maximization problem is consistent with the

corresponding first-order condition in the planning problem, both evaluated at the social

optimum.  And let ′′′p  be the corresponding parking fee for d .  Then it is

straightforward to show that ′p = ′′p = ′′′p .  Denote this p  by p*.

Now, from (14)

  
V* =

β − p * x*− x̃*
x*( ) W * +l( )
L *

. (A5.9)

Substituting  (A5.9) into (A5.8) gives (16´), which is the parking fee which decentralizes

the social optimum.
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Appendix 6

This appendix is organized as follows.

¯  calculation of the cdf of travel time, t , conditional on x .

¯  calculation of the unconditional cdf of travel time.

¯  calculation of the expected parking time on trips with t < ′t .

A6.1 Cdf of travel time conditional on x

Let z  denote parking location relative to the destination (so that z  < 0

corresponds to parking before reaching the destination) and t z, x( ) (return journey) travel

time as a function of z  and x .  Now

t z, x( ) =

2 x
v − 2 1

w − 1
v( )z for z ∈ −x,0[ )

2 x
v + 2 1

w + 1
v( )z for z ∈ 0,z[ )

2 x
w for z ≥ z






(A6.1)

where  z = x v − w( )
v + w

 (A6.2)

is the parking distance beyond the destination for which walking to the destination takes

the same time as driving.

For z ∈ −x,0[ ), the individual drives a distance x  + z  and then walks a distance −z  to his

destination, and also on the return journey; thus, t z, x( ) = 2 x + z( )
v − 2z

w .  For z ∈ 0,z[ ), the

individual drives a distance x  + z , then walks a distance z  to his destination, and also on

the return journey; thus, t z, x( ) = 2 x + z( )
v + 2z

w .  By definition, z  satisfies 2 x
w = 2 x + z( )

v + 2z
w ,

implying that z = x v−w( )
v+w .  Beyond z , it takes less time to walk to the destination than to

drive to x  + z  and then walk from x  + z  to x ; thus, for z  > z , t z, x( ) = 2 x
w .

Let G t x( )  be the probability that travel time to x  is less than t , and g t x( ) be the

corresponding pdf.  Note that

¯  G t x( )  = 0 for t < 2 x
v  since 2 x

v  is the minimum time to travel to x  and back.

¯  G t x( )  has a mass point at t = 2 x
w , since t z, x( ) = 2 x

w  for z  > z .
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Let P  denote the density of available parking spaces.  A parking space is available if it is

neither occupied nor reserved.  (Recall that if an individual drives, she reserves a parking

space on the outbound journey when she leaves home.)  Then, from (A6.1), for
t ∈ 2 x

v , 2 x
w( ), 1 - G t x( )  is the probability that there is no available parking space for

z ∈ − t − 2 x
v

2 1
w − 1

v( ) ,
t − 2 x

v

2 1
w + 1

v( )






.   Since, by assumption, available parking spaces are generated

by a Poisson process at rate P  per unit distance:

G t x( ) =

0 for t < 2 x
v

1 − exp −
P t − 2 x

v( )v2w

v2 − w2







for t ∈ 2 x
v , 2 x

w( )
1 for t > 2 x

w










(A6.3)

and

g t x( ) =

0 for t < 2 x
v

Pv2 w
v2 −w2 exp −

P t − 2 x
v( )v2w

v2 − w2







for t ∈ 2 x
v , 2 x

w( )
0 for t > 2 x

w










(A6.4)

with probability mass exp − 2 Pxv
v+w( ) at t = 2 x

w .

A6.2 Unconditional cdf of travel time

Let H ′t( ) denote the unconditional probability that travel time on a trip

opportunity is less than ′t .  Then

1 − H ′t( ) = Pr t > ′t x( )
x∫ f x( )dx ,

where f x( ) = 1
πr  is the pdf of x   since trip opportunities are uniformly distributed over

0,πr[ ] by assumption.  Using (A6.3),

1 − H ′t( ) = 0
1
πr0

w ′t
2∫ dx + e

−
P ′t − 2x

v( )v2 w

v2 −w2

w ′t
2

v ′t
2∫ 1

πr
dx + 1

πr
dx

v ′t
2

πr

∫ (A6.5)

At distances x < w ′t
2 , travel time is always less than ′t  since the individual can walk to the

destination and back in less than ′t ; at distances x > v ′t
2  travel time is always greater than

′t  since even if the closest parking spot is right at the destination, travel time exceeds ′t ;
for intermediate distances, Pr t > ′t x( )  is given by 1 − G t x( ).
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Now simplify the expression for 1 − H ′t( ) :

1 − H ′t( ) = 1
πr

e
−

P ′t − 2x
v( )v2 w

v2 −w2

w ′t
2

v ′t
2∫ dx + πr − v ′t

2

















.

Let A = 2 Pvw

v2 −w2  and make the transformation ′x = v ′t
2 − x .  Then

1 − H ′t( ) = 1
πr

e− A ′x

0

v−w( ) ′t
2∫ d ′x + πr − v ′t

2






= 1
πr

1
A

1 − e− A v−w( ) ′t
2( ) + πr − v ′t

2












Then replacing ′t  by t

H t( ) = 1
πr

vt

2
− 1

A
1 − e− A v−w( )t

2( )




, A = 2Pvw

v2 − w2 (A6.6)

and

h t( ) = 1
2πr

v − v − w( )e− A v−w( )t
2[ ]. (A6.7)

A6.3 Expected parking time on trips with t < ′t

This can be calculated as

k ′t , P( ) = k t, x( )
2x
v

′t

∫0

v ′t
2∫ g t x( ) f x( )dtdx ÷ H ′t( ) (A6.8)

where k t, x( ) is the average parking time on a journey to x  with travel time t .  The upper

limit on the first integral reflects that all trips with x > v ′t
2  have travel time greater than ′t ,

while the lower limit on the second integral reflects that the minimum travel time to x  is
2 x
v .

The computation of k t, x( ) is complicated by the fact that, corresponding to a

given t, x( ) , there may be two parking locations, one before the destination, the other

beyond the destination.  Let k− t, x( )  denote the parking time on a journey to x  with travel

time t  with parking before the destination, and k+ t, x( )  the corresponding parking time

with parking beyond the destination.
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For parking before the destination z < 0( ), parking time as a function of z  and x

is   k̃
− z, x( ) = x + z

v − 2
w z + l ; the first term on the RHS is the time the individual takes to

drive to the parking location when the parking spot is reserved for her; the second term is

her walking time; and the third, the time spent at the destination.  Also, from (A6.1),

t = 2 x + z( )
v − 2z

w .  Solving for z  as a function of x  and t  from this equation, and substituting

into k̃ − z, x( )  yields

  
k− t, x( ) = t

2v − w

2 v − w( )






− x

v − w
+ l

Account must be taken of two complications.  First, the individual has the option to walk;

but she will never exercise the option if a parking space is available before the

destination.  Second, since the maximum travel time with parking before the destination

occurs when parking is right at the origin ( z  = - x ), travel time cannot exceed 2 x
w .  Thus,

  

k− t, x( ) = t 2v−w
2 v−w( )( ) − x

v−w + l for t < 2 x
w

0 for t ≥ 2 x
w





(A6.9a)

For parking beyond the destination z > 0( ), parking time as a function of z  and x

is   k̃
+ z, x( ) = x + z

v + 2
w z + l .  Also, from (A6.1), t = 2 x + z( )

v + 2z
w .  Solving for z  as a function

of x  and t  from this equation, and substituting into k̃ + z, x( ) yields

  
k+ t, x( ) = t

2v + w

2 v + w( )






− x

v + w
+ l

Account must be taken of the individual's option to walk.  Thus,

  

k+ t, x( ) = t 2v+w
2 v+w( )( ) − x

v+w( ) + l for t < 2 x
w

0 for t ≥ 2 x
w





(A6.9b)

Now, k t, x( ) is a weighted average of k− t, x( )  and k+ t, x( ) , where the weights are

the probabilities that a car trip to x  with travel time t  entails parking before and beyond

the destination, respectively.

 The ratio of the probability of parking before the destination to that of parking beyond

the destination equals the ratio of 
dz

dt
 for z t −x,0[ ] to 

dz

dt
 for z t 0, z[ ] , which from (A6.1)

equals  
1

1
w − 1

v

 to 
1

1
w + 1

v

 or 1
v−w  to 1

v+w .  Thus, the probabilities are v+w
2v  and v−w

2v , and so



52

  

k t, x( ) = t 2v−w
2 v−w( )( ) v+w

2v( ) + 2v+w( )
2 v+w( )

v−w
2v( )[ ] − x 1

v−w( ) v+w
2v( ) + 1

v+w( ) v−w
2v( )[ ] + l for t < 2 x

w

0 for t ≥ 2 x
w







  
= t v2

v2 −w2[ ] − x
v

v2 +w2

v2 −w2[ ] + l for t < 2 x
w

0 for t ≥ 2 x
w





(A6.10)

Thus,

K ′t , P( ) = 1
H ′t( ) k t, x( )

2x
v

2x
w∫0

w ′t
2∫


g t x( ) f x( )dtdx

+ k t, x( )g t x( ) f x( )dtdx
2x
v

′t

∫w ′t
2

v ′t
2∫ 


. (A6.11)

The first double integral corresponds to those locations for which walking time is less

than ′t , the second to those locations for which walking time exceeds ′t .

These integrals can be simplified somewhat by making the transformation of

variables u = t − 2 x
υ .  Then

K ′t , P( ) = 1
H ′t( ) k̂ u, x( )

0

2 x 1
w − 1

v( )
∫0

w ′t
2∫


ĝ u x( ) f x( )dudx

+ k̂ u, x( )ĝ u x( ) f x( )dudx
0

′t − 2x
v∫w ′t

2

v ′t
2∫ 


,

where
  
k̂ u, x( ) = u

v2

v2 − w2 + x

v
+ l (A6.12)

ĝ u x( ) = P̃e− P̃u , P̃ = Pv2w

v2 − w2

f x( ) = 1
πr

and H ′t( ) is given by (A6.6).
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Notational Glossary

(in order of first use in paper)

r radius of annulus

Γ population density (per unit distance)

D density of parking spaces (per unit distance)

  l length of a visit

β dollar benefit from a visit

µ Poisson arrival rate of telephone calls

x distance from home

T1 x( ) time to walk to x  and back

w walking speed

P density of vacant parking spaces (per unit distance)

v car speed

d distance from destination that cruising for parking starts ("cruising

distance")

y distance cruising for parking

R x, P,d( ) expected driving time on a round-trip car journey to x

W P,d( ) expected walking time on a round-trip car journey

T2 x, P,d( ) expected travel time on a round-trip car journey to x

x maximum travel distance

x̃ maximum walking distance

L expected period between trips

θ intermediate variable

λ Lagrange multiplier on (6)

E shadow parking fee in time units

p parking fee per unit time

V private value or opportunity cost of time

∆ ≡ Lx

* (superscript) value at social optimum

p* parking fee consistent with social optimum
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z parking location relative to destination

t z, x( ) travel time as a function of z  and x

G t x( ) probability that travel time to x  is less than t  ( g t x( ) the 

corresponding pdf)

H t( ) probability that travel time on a trip is less than t  ( h t( )  the 

corresponding pdf)
f x( ) pdf of location of trip opportunities (= 1

πr )

A intermediate variable

K t, P( ) average parking time on trips with travel time less than t  given P

k t, x( ) average parking time on a journey to x  with travel time t

u intermediate variable

P̃ intermediate variable


