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LONG MEMORY AND FORECASTING IN
EUROYEN DEPOSIT RATES

Abstract

We test for long memory in 3- and 6-month daily returns series on

Eurocurrency deposits denominated in Japanese yen (Euroyen). The

fractional differencing parameter is estimated using the spectral regression

method. The conflicting evidence obtained from the application of tests

against a unit root as well as tests against stationarity provides the motivation

for testing for fractional roots. Significant evidence of positive long-range

dependence is found in the Euroyen returns series. The estimated fractional

models result in dramatic out-of-sample forecasting improvements over

longer horizons compared to benchmark linear models, thus providing

strong evidence against the martingale model.
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1.  Introduction

The long memory, or long term dependence, property describes the

high-order correlation structure of a series. If a series exhibits long memory,

there is persistent temporal dependence even between distant observations.

Such series are characterized by distinct but nonperiodic cyclical patterns.

The presence of long memory dynamics causes nonlinear dependence in the

first moment of the distribution and hence a potentially predictable

component in the series dynamics. Fractionally integrated processes can give

rise to long memory (Mandelbrot (1977), Granger and Joyeux (1980), Hosking

(1981)). On the other hand, the short memory, or short term dependence,

property describes the low-order correlation structure of a series. For short

memory series, correlations among observations at long lags become

negligible. Standard autoregressive moving average processes cannot exhibit

long term (low frequency) dependence as they can only describe the short run

(high frequency) behavior of a time series. The presence of fractional structure

in asset prices raises issues regarding theoretical and econometric modeling

of asset prices, statistical testing of pricing models, and pricing efficiency and

rationality.

Because nonzero values of the fractional differencing parameter imply

strong dependence between distant observations, considerable attention has

been directed to the analysis of fractional dynamics in asset returns. Long

memory analysis has been conducted for stock prices (Greene and Fielitz

(1977), Aydogan and Booth (1988), Lo (1991), Cheung, Lai, and Lai (1993),

Cheung and Lai (1995), Barkoulas and Baum (1997)), spot and futures

currency rates (Booth, Kaen, and Koveos (1982a), Cheung (1993a), Cheung and

Lai (1993)), Bhar (1994), Fang, Lai, and Lai (1994), Barkoulas, Labys, and
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Onochie (1997a)), gold prices (Booth, Kaen, and Koveos (1982b)), Cheung and

Lai (1993)), international spot commodity prices (Barkoulas, Labys, and

Onochie (1997b)), and commodity and stock index futures (Helms, Kaen, and

Koveos (1984), Barkoulas, Labys, and Onochie (1997a)).

In this study we investigate the presence of fractional dynamics in the

returns series (yield changes) of Eurocurrency deposits denominated in

Japanese yen, referred to as Euroyen rates hereafter. We pay particular

emphasis on the implications of long memory for market efficiency.

According to the market efficiency hypothesis in its weak form, asset prices

incorporate all relevant information, rendering asset returns unpredictable.

The price of an asset determined in an efficient market should follow a

martingale process in which each price change is unaffected by its

predecessor and has no memory. If the Euroyen returns series exhibit long

memory, they display significant autocorrelation between distant

observations. Therefore, the series realizations are not independent over time

and past returns can help predict futures returns, thus violating the market

efficiency hypothesis. The testing methodology employed is the spectral

regression method. We find that fractional structure with long memory

dynamics is a pervasive feature of the Euroyen returns series. A forecasting

experiment clearly demonstrates that long memory forecasts are superior to

those of benchmark linear models over longer forecasting horizons.

The plan of the paper is as follows. Section 2 presents the spectral

regression method. Data and empirical estimates are discussed in Section 3,

while section 4 presents a forecasting experiment using long memory and

linear forecast generating models. We conclude in Section 5 with a summary

of our results.
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2.  The Spectral Regression Method

The model of an autoregressive fractionally integrated moving average

process of order p,d,q( ) , denoted by ARFIMA p,d,q( ) , with mean µ , may be

written using operator notation as

Φ(L) d(1−L) ty − µ( ) = Θ(L) tu ,       tu  ~ i.i.d.(0, u
2σ ) (1)

where L  is the backward-shift operator, Φ(L)  = 1 - 1φ L  - ... - pφ pL , Θ(L) = 1 +

1ϑ L + ... + qϑ qL , and d(1−L)  is the fractional differencing operator defined by

d(1−L)  = 
Γ(k − d) kL

Γ(−d)Γ(k +1)
k=0

∞

∑ (2)

with Γ(.) denoting the gamma, or generalized factorial, function. The

parameter d  is allowed to assume any real value. The arbitrary restriction of

d  to integer values gives rise to the standard autoregressive integrated

moving average (ARIMA) model. The stochastic process ty  is both stationary

and invertible if all roots of Φ(L)  and Θ(L) lie outside the unit circle and

d < 0.5. The process is nonstationary for d ≥ 0.5, as it possesses infinite

variance, i.e. see Granger and Joyeux (1980). Assuming that −0.5 < d < 0.5  and

d ≠ 0, Hosking (1981) showed that the correlation function, ρ(⋅) , of an

ARFIMA process is proportional to 2d−1k  as k → ∞ . Consequently, the

autocorrelations of the ARFIMA process decay hyperbolically to zero as

k → ∞  which is contrary to the faster, geometric decay of a stationary ARMA

process. For 0 < d < 0.5 , ρ(k)
k=−n

n
∑  diverges as n → ∞ , and the ARFIMA process

is said to exhibit long memory. The process exhibits short memory for d = 0,
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and intermediate memory or antipersistence for −0.5 < d < 0.1 More

specifically, for 0 < d < 0.5 , the process exhibits long-range positive

dependence while for −0.5 < d < 0.5  the process exhibits long-range negative

dependence.

Geweke and Porter-Hudak (1983) suggested a semi-parametric

procedure to obtain an estimate of the fractional differencing parameter d

based on the slope of the spectral density function around the angular

frequency ξ = 0 . More specifically, let I(ξ )  be the periodogram of y  at

frequency ξ  defined by

I(ξ )  = 
1

2πT
itξe

t=1

T∑ (yt − y)
2

(3)

Then the spectral regression is defined by

ln I( λξ ){ } = 0β  + 1β ln 4sin2
ξλ
2


















 + λη ,       λ = 1,..., ν (4)

where λξ = 2πλ
T

λ = 0,...,T − 1( ) denotes the harmonic ordinates of the sample,

λη = ln
I λξ( )

f λξ( )











 is the normalized periodogram with f ⋅( ) defined as the

spectrum of the ARMA component in (1), T  is the number of observations,

and ν  = g( T ) << T  is the number of harmonic ordinates included in the

spectral regression.

Assuming that 
T→∞
lim g T( ) = ∞, 

T→∞
lim

g T( )
T




= 0 , and 
T→∞
lim

ln T( )2

g T( ) = 0,

the negative of the OLS estimate of the slope coefficient in (4) provides an

estimate of d . The properties of the regression method depend on the

1  Other authors refer to a process as a long memory process if d ≠ 0 .
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asymptotic distribution of the normalized periodogram λη , the derivation of

which is not straightforward (Robinson (1995), Hurvich and Beltrao (1993)).

Geweke and Porter-Hudak (1983) prove consistency and asymptotic

normality for d < 0 , while Robinson (1990) proves consistency for d ∈ 0,0.5( ) .

Hassler (1993) proves consistency and asymptotic normality in the case of

Gaussian ARMA innovations in (1). The spectral regression estimator is not

1/2T  consistent and will converge at a slower rate.

To ensure that stationarity and invertibility conditions are met, we

apply the spectral regression test to the returns series (yield changes) of the

Euroyen deposits. The estimated differencing parameter for the returns series

is denoted by d  and the hypothesis d = 0 can be tested against fractional order

alternatives.

3.  Data and Empirical Estimates

The data set consists of daily rates for Eurocurrency deposits

denominated in Japanese yen (Euroyen) for maturities of 3 and 6 months.

These rates represent bid rates at the close of trading in the London market

and were obtained from Data Resources, Inc. The total sample spans the

period from 01/02/85 to 02/08/94 for a total of 2300 observations. The period

from 01/02/85 to 07/29/92 (1912 observations) is used for in-sample

estimation with the remainder of the sample (388 observations) being reserved

for out-of-sample forecasting.

We proceed as follows. For each deposit rate series, we initially

investigate their low frequency properties by subjecting the series to unit-root

tests which only allow for integer orders of integration, but differ in how they
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establish the null hypothesis. Then we estimate the fractional differencing

parameter for each series using the spectral regression method.

We test for integer integration orders by means of the Phillips-Perron

(PP: Phillips (1987), Phillips and Perron (1988) and KPSS: Kwiatkowski,

Phillips, Schmidt, and Shin (1992) unit-root tests. In the PP test the unit-root

null hypothesis is tested against the alternative of trend stationarity. In the

KPSS test, however, trend stationarity is the null hypothesis to be tested

against the alternative of a unit root. This test serves as a complement to the

PP tests. The combined use of the PP and the KPSS tests for a particular series

produces the following alternatives:

(i)  Rejection by the PP test and failure to reject by the KPSS test

provides evidence in favor of wide-sense stationarity; the series is I 0( ).

(ii)  Failure to reject by the PP test and rejection by the KPSS test

supports that the series is integrated of order one; the series is I 1( )2.

(iii)  Failure to reject by both PP and KPSS tests shows that the data are

not sufficiently informative with respect to the low-frequency properties of

the series; and

(iv)  Rejection by both PP and KPSS tests suggests that a series is not

well represented as either I 1( ) or I 0( ) and alternative parameterizations need

to be considered.

PLACE TABLE I ABOUT HERE

Table I reports the Ζ α̃( )  and the Ζ α̃t( ) PP test results for both the levels

and first differences (returns) of the Euroyen deposit rates. The unit-root null

hypothesis is not rejected for the data in levels form but it is decisively

2  In interpreting rejection of the I 0( )  null hypothesis by the KPSS tests, it must be borne in
mind that the KPSS tests are consistent against stationary long memory alternatives, that is,
they can also be used to distinguish between short memory and stationary long memory
processes (Lee and Schmidt (1996)). To distinguish reliably, a sample size in excess of 500 or
1000 observations is required, which is the case in this study.
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rejected for the first-differenced data in favor of a trend-stationary alternative.

This evidence therefore strongly suggests that Euroyen deposit rates at 3- and

6-month maturities are I 1( ) processes with the corresponding returns series

being I 0( ).

PLACE TABLE II ABOUT HERE

A different conclusion is reached when the KPSS test is applied to the

series. As Table II reports, the trend-stationarity null hypothesis is strongly

rejected for both 3- and 6-month Euroyen rates in both their levels and returns

forms. Therefore, the returns series cannot be characterized as I 0( ) processes,

conflicting with the inference based on the PP tests. The combined evidence

based on the PP and KPSS test results indicates that for the Euroyen returns

series neither an I 1( ) nor an I 0( ) process is a good representation of the data

generating process, which suggests that a fractionally differenced process

may be an appropriate representation for these series.

PLACE TABLE III ABOUT HERE

Table III presents the spectral regression estimates of the fractional

differencing parameter d  for the returns series. A choice has to be made with

respect to the number of low frequency periodogram ordinates used in the

spectral regression. Improper inclusion of medium- or high-frequency

periodogram ordinates will contaminate the estimate of d ; at the same time

too small a regression sample will lead to imprecise estimates. We report

fractional differencing estimates for ν = T 0.50 ,T 0.55,  and  T 0.60  to check the

sensitivity of our results to the choice of the sample size of the spectral

regression. To test the statistical significance of the d  estimates, two-sided

( d = 0 versus d ≠ 0) as well as one-sided ( d = 0 versus d > 0 ) tests are

performed.
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As Table III reports, there is strong, robust evidence that the 3- and 6-

month Euroyen returns series exhibit fractional dynamics with long memory

features.3 The fractional differencing parameters are similar in value across

the two maturities considered for each of the Euroyen returns series. These

series are not I 0( ) but they are clearly covariance stationary ( 0 < d < 0.5). The

implications of the long memory evidence in the Euroyen returns series can

be seen in both the time and frequency domains. In the time domain, long

memory is indicated by the fact that the returns series eventually exhibit

strong positive dependence between distant observations. A shock to the

series persists for a long time span even though it eventually dissipates. In the

frequency domain, long memory is indicated by the fact that the spectral

density becomes unbounded as the frequency approaches zero.

We now address the issue of robustness of the fractional structure in the

3- and 6-month Euroyen returns series to nonstationarities in the mean and

short term dependencies. Through extensive Monte Carlo simulations,

Cheung (1993b) showed that the spectral regression test is robust to moderate

ARMA components, ARCH effects, and shifts in the variance. However,

possible biases of the spectral regression test against the no long memory null

hypothesis were discovered. In particular, the spectral regression test was

found to be biased toward finding long memory d > 0( )  in the presence of

infrequent shifts in the mean of the process and large AR parameters (0.7 and

higher). A similar point has also been observed by Agiakloglou, Newbold,

3  Estimation of the long memory parameter via smoothed periodogram as well as trimmed
periodogram versions of the spectral regression method resulted in fractional exponent
estimates broadly consistent with those reported here (these results are available upon
request). Our long memory estimates are not altered materially when Robinson's (1992)
semiparametric method is used. For ν = T 0.50 ,T 0.55,  and  T 0.60 , respectively, these estimates

(standard errors) are 0.180 (0.076), 0.200 (0.063), and 0.110 (0.052) for the 3-month Euroyen
returns series, and 0.180 (0.076), 0.180 (0.063), and 0.140 (0.052) for the 6-month Euroyen
returns series.
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and Wohar (1993). We now investigate the presence of these bias-inducing

features of the data in our sample series.

Graphs of the Euroyen returns series do not indicate that the data

generating process for the series in question underwent a shift in the mean.

Therefore the evidence of long memory for these series should not be a

spurious artifact of changes in the mean of the series. To examine the

possibility of spurious inference in favor of long term persistence due to

strong dependencies in the data, an autoregressive (AR) model is fit to each of

the series in question. An AR(1) model is found to adequately describe

dependence in the conditional mean of both series. The coefficient values are

-0.056 and -0.080 for the 3- and 6-month Euroyen returns series, respectively.

These AR parameters are very small in value suggesting the absence of strong

short term dependencies. Neither shift in mean nor strong dependence are

therefore responsible for finding long memory in the Euroyen returns series.

4.  Evaluation of Forecasting Performance

The discovery of fractional orders of integration suggests possibilities

for constructing nonlinear econometric models for improved price

forecasting performance, especially over longer forecasting horizons. The

nonlinear model construction suggested is that of an ARFIMA process, which

represents a flexible and parsimonious way to model both the short and long

term dynamical properties of the series. Granger and Joyeux (1980) have

discussed the forecasting potential of such nonlinear models and Geweke and

Porter-Hudak (1983) have confirmed this by showing that ARFIMA models

provide more reliable out-of-sample forecasts than do traditional procedures.
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The possibility of speculative profits due to superior long memory forecasts

would cast serious doubt on the basic tenet of market efficiency, which states

unpredictability of futures returns. In this section we compare the out-of-

sample forecasting performance of an ARFIMA model to that of benchmark

linear models.

Concerning the construction of the long memory models and forecasts,

we proceed as follows. Given the d  estimates, we model the short run series

dynamics by fitting an AR model to the fractionally differenced series. An AR

representation of low order is found to be an adequate description of short

term dependence in the data.4  The AR orders are selected on the basis of Q

statistics for serial dependence; the most parsimonious representation is

chosen so as to ensure serial independence for at least 24 lags (approximately

a one-month period) in the corresponding residual series (the AR order

chosen in each case is given in Tables IV and V). Then we forecast the Euroyen

deposit rates by casting the fitted fractional-AR model in infinite

autoregressive form, truncating the infinite autoregression at the beginning of

the sample, and applying Wold's chain rule.

The long memory forecasts are compared to those obtained by

estimating two standard linear models: an autoregressive model (AR) and a

random-walk-with-drift model (RW). The AR model for both Euroyen returns

series is of order one as described earlier. The last 388 observations from each

series are reserved for forecasting purposes. Therefore, the sample period

01/02/85 to 07/29/92 is the training set and the sample period 07/30/92 to

02/08/94 is the test set. The out-of-sample forecasting horizons considered are

4  An extension of our approach could also consider moving average (MA) orders in
modeling the short run dynamical behavior of the series. However, given the success we had
with low-order AR representations, adding a MA component would add complexity to the
forecasting experiment while the forecasting improvements are doubtful especially over
longer horizons. An AR model with sufficient lag structure can very well approximate the
MA components of the series.
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1-, 5-, 10-, 24-, 72-, 144-, 216-, and 288-steps ahead corresponding

approximately to 1-day, 1-week, 2-week, 1-month, 3-month, 6-month, and 1-

year forecasting horizons. These forecasts are truly ex ante, or dynamic, as

they are generated recursively conditioning only on information available at

the time the forecast is being made. The criteria for forecasting performance

are the root mean square error (RMSE) and mean absolute deviation (MAD).

PLACE FIGURES 1-2 ABOUT HERE

In generating the out-of-sample forecasts, the model parameters are not

reestimated each time; instead the in-sample estimates are being used. A

question arises as to whether the fractional differencing parameter remains

stable over the out-of-sample period. To address this issue, we reestimate the

fractional differencing parameter over the initial sample of 1912 observations

and then on samples generated by adding 25 observations until the total

sample is exhausted. Figures 1 and 2 graph the d  estimates for the various

subsamples. These estimates do not fluctuate noticeably suggesting stability.

For each series, there is evidence that the d  estimates obtained from the

various sizes of the spectral regression converge as the sample size increases.

Therefore, basing the long memory forecasts on the fractional differencing

parameters estimated from the initial sample is not expected to negatively

affect the out-of-sample forecasting performance.

PLACE TABLE IV ABOUT HERE

Table IV presents the out-of-sample forecasting performance of the

competing models for the 3-month Euroyen returns series. Comparing the

forecasting performance between the linear models first, the AR and RW

forecasts are very similar with the AR fits having a slight edge. Also, the

predictive performance of the long memory forecasts is very similar to those

generated by the linear models for short horizons (less than 1 month, or 24
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days). However, for longer horizons the long memory forecasts result in

substantial improvements in forecasting accuracy compared to those of the

AR and RW forecasts. These significant improvements apply to both RMSE

and MAD criteria and hold true across the various estimates of d . As an

example, for the 288-step ahead (roughly one year) forecasting horizon, the

long memory model with d = 0.289  results in reductions of 66.06% and 70.42%

over the RW model in terms of RMSE and MAD, respectively. The longer the

forecasting horizon, the greater the improvements in forecasting accuracy

attained by the long memory  models.

PLACE TABLE V ABOUT HERE

A similar picture is obtained for the 6-month Euroyen series as

reported in Table V. The AR and RW fits have a similar forecasting

performance with the long memory fits dominating their linear counterparts

on the basis of both RMSE and MAD forecasting criteria for horizons longer

than 10 steps (two weeks) ahead. The percentage reductions in the forecasting

criteria attained by the long memory fits are dramatic and increase

monotonically with the length of the forecasting horizon. For example, the

long memory model with d = 0.219  reduces the RMSE and MAD achieved by

the RW model by 62.20% and 65.10% respectively.

The forecasting performance of the long memory model is consistent

with theory. As the effect of the short memory (AR) parameters dominates

over short horizons, the forecasting performance of the long memory and

linear models is similar in the short run. In the long run, however, the

dynamic effects of the short memory parameters are dominated by the

fractional differencing parameter d , which captures the high-order

correlation structure of the series, thus resulting in superior long memory

forecasts. This evidence accentuates the usefulness of long memory models as
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forecast generating mechanisms for the Euroyen returns series, and casts

doubt on the hypothesis of market efficiency for longer horizons.

5.  Conclusions

Using the spectral regression method, we found significant evidence of

long memory in the 3- and 6-month returns series (yield changes) on

Eurocurrency deposits denominated in Japanese yen. These series appear to

be characterized by irregular cyclic fluctuations with long term persistence.

They eventually exhibit positive dependence between distant observations.

The out-of-sample long memory forecasts resulted in dramatic improvements

in forecasting accuracy over longer horizons as compared to those obtained

from benchmark linear models. This is evidence against the martingale

model, which states that, conditioning on historical returns, futures returns

are unpredictable. The weak form of market efficiency hypothesis is therefore

violated for the Euroyen returns series. Future research should investigate the

sources of long memory in the Euroyen returns series. The analysis should

also be extended to rates on Eurocurrency deposits denominated in other

major currencies. We are currently investigating these issues.
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Table I:  Phillips-Perron (PP) Unit Root Test Results for the Euroyen Rates

Ζ α̃( ) Ζ α̃t( )
Series l = 12 l = 24 l = 12 l = 24

Levels

3-Month -1.152 -1.633 -0.503 -0.656

6-Month -0.907 -1.398 -0.406 -0.572

First Differences

3-Month -2138.3*** -2337.0*** -46.13 *** -46.31 ***

6-Month -2178.8*** -2393.5*** -47.20 *** -47.30 ***

Notes: The sample period for the Euroyen deposit rate series is 01/02/85 to 07/29/92 for a
total of 1912 observations. The Phillips-Perron test statistics are Ζ α̃( )  and Ζ α̃t( ) , which are
obtained from regressing the time series on an intercept, time trend, and its lagged value. See
Perron (1987) and Phillips and Perron (1988) for details on the tests. l  stands for the order of
serial correlation allowed in constructing the test statistics. We used the lag window
suggested by Newey and West (1987) to ensure positive semidefiniteness. The critical values
for the Ζ α̃( )  ( Ζ α̃t( ) ) tests are -29.5 (-3.96), -21.8 (-3.41), and -18.3 (-3.12) at the 1%, 5%, and 10%
significance levels, respectively (Fuller (1976)). The superscript *** indicates statistical
significance at the 1% significance level.
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Table II:  Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test Results
 for the Euroyen Rates

τη

Eurocurrency Deposit Rate l = 12 l = 24

Levels

3-Month 1.781 *** 0.935 ***

6-Month 1.719 *** 0.902 ***

First Differences

3-Month 0.351 *** 0.298 ***

6-Month 0.377 *** 0.316 ***

Notes: The sample period for the Euroyen deposit rate series is 01/02/85 to 07/29/92 for a

total of 1912 observations. τη =

−2T t
2S

t=1

T
∑

2s l( )
 is the test statistic for the null hypothesis of trend

stationarity, where tS = ie
i=1

t
∑ , t = 1,2,...,T  (partial sum process of the residuals) with 1

T
te{ }  being

the residuals from the regression of the series on an intercept and a linear time trend, and
2s l( )  is a consistent estimate of the "long-run variance". The estimator used here is of the form

2s l( ) = −1T t
2e

t=1

T
∑ + 2 −1T w s, l( )

s=1

l
∑ te

t=s+1

T
∑ t−se

where w s, l( )  is an optimal lag window and l  is the order of serial correlation allowed. We
used the lag window suggested by Newey and West (1987) to ensure positive semidefiniteness
of 2s l( ) . The test is an upper-tail test and the critical values are 0.216, 0.146, and 0.119 at the
1%, 5%, and 10% significance levels, respectively (Kwiatkowski, Phillips, Schmidt, and Shin
(1992)). The superscript *** indicates statistical significance at the 1% significance level.
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Table III:  Estimates of the Fractional-Differencing Parameter d
 for Euroyen Returns Series

Maturity d 0.50( ) d 0.55( ) d 0.60( )
3-Month 0.213

(2.189)**,‡‡
0.289

(3.468)***,‡‡‡
0.206

(2.911)***,‡‡‡

6-Month 0.160
(1.973)**,‡‡

0.268
(3.364)***,‡‡‡

0.219
(3.375)***,‡‡‡

Notes: The Japanese-yen denominated Eurocurrency deposit rate series are first differences of

the original series for the period 01/02/85 to 07/29/92 for a total of 1912 observations.

d 0.50( ) , d 0.55( ), and d 0.60( )  give the d  estimates corresponding to the spectral regression of

sample size ν = 0.50T , ν = 0.55T , and ν = 0.60T . t − statistics are given in parentheses. The

superscripts ***, **, * indicate statistical significance for the null hypothesis d = 0  against the

alternative d ≠ 0  at the 1, 5, and 10 per cent levels, respectively. The superscripts ‡‡‡, ‡‡, ‡

indicate statistical significance for the null hypothesis d = 0  against the one-sided alternative

d > 0  at the 1, 5, and 10 per cent levels, respectively.
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Table IV:  Out-of-sample Forecasting Performance of Alternative Modeling Strategies: 3-Month
Euroyen Rate

k-Step Ahead Prediction
(Number of Point Forecasts)

Forecasting Model 1
(388)

5
(384)

10
(379)

24
(365)

72
(317)

144
(245)

216
(173)

288
(101)

Long Memory

d = 0.213, AR(4) 0.0625
0.0406

0.1049
0.0721

0.1230
0.0912

0.1943
0.1492

0.3296
0.2756

0.3491
0.2664

0.4047
0.3319

0.4794
0.4462

d = 0.289 , AR(6) 0.0619
0.0404

0.1034
0.0718

0.1241
0.0927

0.2008
0.1543

0.3457
0.2879

0.3666
0.2845

0.4308
0.3320

0.4265
0.3688

d = 0.206 , AR(4) 0.0625
0.0406

0.1046
0.0720

0.1227
0.0910

0.1935
0.1489

0.3267
0.2736

0.3413
0.2599

0.3949
0.3230

0.4597
0.4272

AR(1) 0.0619
0.0392

0.1017
0.0678

0.1214
0.0863

0.1951
0.1428

0.4061
0.3269

0.6282
0.5884

0.8711
0.8289

1.2560
1.2464

RW 0.0632
0.0396

0.1024
0.0682

0.1220
0.0868

0.1954
0.1433

0.4063
0.3273

0.6287
0.5887

0.8716
0.8293

1.2569
1.2471

Notes: The first entry of each cell is the root mean squared error (RMSE), while the second is the mean
absolute deviation (MAD). AR(k) stands for an autoregression model of order k. RW stands for random walk
(with drift). The long memory model consists of the fractional differencing parameter d  and the order of the
AR polynomial. Those RMSEs and MADs obtained from the long memory models which are lower than the
ones obtained from the RW model are underlined.
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Table V:  Out-of-sample Forecasting Performance of Alternative Modeling Strategies: 6-Month
Euroyen Rate

k-Step Ahead Prediction
(Number of Point Forecasts)

Forecasting Model 1
(388)

5
(384)

10
(379)

24
(365)

72
(317)

144
(245)

216
(173)

288
(101)

Long Memory

d = 0.160 , AR(2) 0.0537
0.0365

0.0900
0.0650

0.1171
0.0873

0.1881
0.1487

0.3493
0.2895

0.4388
0.3112

0.4695
0.4131

0.5754
0.5167

d = 0.268 , AR(4) 0.0537
0.0367

0.0918
0.0665

0.1207
0.0905

0.1989
0.1546

0.3655
0.2965

0.4561
0.3643

0.4955
0.3783

0.4883
0.4258

d = 0.219 , AR(3) 0.0537
0.0367

0.0910
0.0658

0.1190
0.0890

0.1936
0.1516

0.3539
0.2903

0.4340
0.3337

0.4570
0.3735

0.4674
0.4252

AR(1) 0.0532
0.0355

0.0879
0.0626

0.1174
0.0889

0.1952
0.1560

0.4276
0.3420

0.6603
0.5774

0.8704
0.8058

1.2458
1.2277

RW 0.0546
0.0358

0.0885
0.0632

0.1178
0.0892

0.1950
0.1560

0.4258
0.3408

0.6564
0.5726

0.8640
0.7988

1.2368
1.2185

See notes in Table IV for explanation.
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Figure 1:  Fractional differencing Estimates (d) Over Subsamples
 for the 3-Month Euroyen Returns Series

d(0.50)
d(0.55)
d(0.60)

Number of Observations
1912                   2012                      2137                           2262        2300
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Figure 2:  Fractional differencing Estimates (d) Over Subsamples
 for the 6-Month Euroyen Returns Series

d(0.50)
d(0.55)
d(0.60)

Number of Observations
1912                   2012                      2137                        2262        2300


