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1 Introduction

One of the basic principles of economics is that agents make their decisions on a rational basis.

According to the theory of consumer choice, the demand of a utility maximizing consumer should

satisfy i) the adding up of budget shares, ii) the negativity of compensated own price elasticities,

iii) the symmetry of the Slutsky matrix, and iv) the homogeneity of degree zero with respect to

prices and income. These hypotheses can be conveniently tested within the framework of demand

systems.

Empirical demand systems began with the pioneer work of Stone (1953), and more 
exible

systems have since been developed. A commonly used model is the Almost Ideal Demand System

of Deaton and Muellbauer (1980) [hereafter AIDS]. The AIDS has been applied to cross-section

and time series data in a vast number of studies. However, from the original work of Deaton

and Muellbauer (1980) to the recent work by Att�eld (1991) and Ng (1995), the residuals of the

AIDS are often found to be highly serially correlated and sometimes non-stationary. This problem

was thought to be a consequence of mis-speci�ed dynamics, and the AIDS has on occasions been

estimated in �rst-di�erenced form.

This article suggests that the original AIDS is consistent with an economic environment in

which there is no economic growth. Loosely speaking, the problem is that the functions used to

approximate total expenditure depend on prices only and hence do not adequately capture the

direct movements in expenditure due to economic growth. As well, Stone's price index is found

to provide an inadequate approximation for the theoretical price index. In practice, the resolution

to these problems amounts to �nding proxies for trend growth such that the demand system is

cointegrated in the sense of Engle and Granger (1987).

2 The Almost Ideal Demand System

The AIDS begins with the assumption the that household (the consumer unit) preferences belong

to the PIGLOG class1 and that preferences satisfy intertemporal separability so that once the

consumption-saving decision is made, the remaining issue for the household is to allocate its total

spending among n goods given prices p1:::pn. Total expenditure for household h, is by de�nition,

Xh =
Pn

i=1 piq
h
i , and the \needs corrected" expenditure for this household is Xh=Kh, where Kh is

an index capturing the size, age, and other characteristics of the household. Now for a household

whose utility level is uh, we can approximate total expenditure Eh(p; uh) by 
exible functions a(p)

1PIGLOG stands for price independent generalized logarithmic.
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and b(p). Suppressing time subscripts, we have:

logEh(p; uh) = (1� uh)log[a(p)]+ uhlog[b(p)]; (1)

where p = (p1; : : : ; pn). As discussed in Deaton and Muellbauer (1980), a(p) can be thought of as

\poverty" or subsistence expenditure, while b(p) is \a�uence" or bliss expenditure. The demand

functions @logEh(p; uh)=@logpi = qhi are �rst order local approximations to any set of demand

functions derived from utility maximizing behavior. The budget share of good i is wh
i = piq

h
i =X

h

= @logEh=@logpi. Deaton and Muellbauer (1980) assumed:

log[a(p)] = a0 +
X
k

�klogpk +
1

2

X
k

X
j


�kjlogpklogpj;

log[b(p)] = log[a(p)]+ �0
Y
k

p
�k
k : (2)

A little algebra yields

wh
i = �i +

X
j


ijlogpj + �ilog[(X
h=Kh)=P ]; (3)

where 
ij = (
�ij + 
�ji)=2, and logP = �0 +
P

k �klogpk +
1
2

P
j

P
k 
kjlogpklogpj. The PIGLOG

assumption then allows for exact aggregation over households so that the share equations for the

market have the same form as those for a household. Let �X be average expenditure and de�ne K

from log( �X=K) =
P

hX
hlog(Xh=Kh)=

P
Xh. Then

�wi = �i +
X
j


ijlogpj + �ilog[ �X=(KP )]; (4)

where �wi is the average budget share for good i. Adding up then implies that
Pn

i=1 �i = 1,Pn
i=1 �i = 0 and

Pn
i=1 
ij = 0; homogeneity requires that

Pn
j=1 
ij = 0; Slustky symmetry holds

when 
ij = 
ji, for all i; j, and negativity can be checked from the eigenvalues of the Slutsky matrix.

These are propositions that the AIDS are set up to test. In practice, the share equation that is

being estimated is

�wi = �i +
n�1X
j


ijlog[pj=pn] + (
nX
j


ij)logpn + �ilog[ �X=(KP �)]: (5)

where logP � =
P

k wklogpk is Stone's index used to approximate logP .

3 Economic Growth

To see that there is an internal inconsistency in the AIDS when there is economic growth, we shall

�rst suppose that prices are constant and there is no population growth, but that the real income of

2



the economy grows at a constant rate g. We assume that economic growth has no distributive e�ects

and hence the real income of all households grow at the same rate. We also assume that households

have identical characteristics and hence Kh = 1 8h. Thus, the budget shares of the representative

household coincide with those of the average household and the subscript h is dropped from all

variables.

Since X = E(p; u) for a utility maximizing household, (1) becomes

logX = (1� u)log[a(p)]+ ulog[b(p)]: (6)

Since X is the level of income to be spent as determined by two stage budgeting and prices are

constant by assumption, X grows only if real income grows. This can be thought of as the increase in

real wage induced by technical progress. The time derivative of the left hand side is @logX=@t= g.

However the time derivative of the right hand side is zero on the assumption that prices are constant.

The two sides of the equation have the same time derivative only in a no growth economy with

g = 0.

Another way to look at the problem is to note that the indirect utility function is of the form

v = F

 �
X

a(p)

�1=b(p)!
; (7)

where F (�) is a monotone function. As speci�ed, a(p) and b(p) are both constant since prices

are constant by hypothesis. If the numerator grows but the denominator is constant, v will grow,

implying that utility will increase as the economy grows irrespective of the household's consumption

choice. Relaxing the assumption of constant prices to allow for stationary price movements or

allowing X to be a random walk with drift will not change the thrust of the argument that in the

presence of real economic growth, (6) is not a balanced equation in the sense that the left hand

side and the right hand side do not share the same time derivative.

It is customary to perform steady state analysis of growing economies by adjusting the discount

rate for growth and standardizing the choice variables by a trending variable. For example, when

the period utility is C1��=(1� �) and the discount factor is �, consumption is usually normalized

by an index of technical progress and utility is discounted by �(1 + g)(1��) so that the discounted

present value of utility is bounded. See, for example, King, Plosser and Rebelo (1988). The

problem discussed above requires a growth adjustment of the same nature. Two possibilities come

to mind. First, we can \growth adjust" total expenditure following the same reasoning that we

\needs adjust" the expenditure of a household via K. Denote this growth de
ator by A. This

leads to \e�ective household expenditure" X=(AK). Alternatively, households can be thought of

as adjusting their poverty and a�uence expenditures for growth. We can thus replace a(p) by a
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growth adjusted ea(p) so that by construction, the subsistence and a�uent level of expenditure are

scaled by a growth factor. Both adjustments have the implicit e�ect of not letting households be

fooled into feeling content just because the economy becomes richer.

To see that these two solutions yield identical share equations up to a scale factor, �rst note

that if we growth adjust total expenditure by A, the left hand side of (1) becomes E(p; u)=A. It is

then straightforward to show that (4) is replaced by

wi = �i +
X
j


ijlogpj + �ilog[X=(AP )]

= �i � �ilogA+
X
j


ijlogpj + �ilog(X=P ): (8)

Now suppose we let ea(p) = log eA + a(p), where log eA adjusts the subsistence and the a�uent

expenditures for growth. In other words, the AIDS approximation is given by log eX = uea(p) +
(1 � u)eb(p). We will then end up with an equation like (8) but with log eA instead of logA in the

share equation. Obviously, if X and A follow the same growth path (and hence the �rst method

is valid), eA must also follow the same growth path if X and eX were to have the same growth

path. It follows that log( eA) = � + log(A) for some � 2 R1. Hence the two adjustments lead to

share equations that di�er only by an unidenti�ed constant. Note also that log(A) is common to

all the share equations. Since
P

i �i = 0 is required to satisfy the adding-up constraint, no other

restrictions need be imposed on the demand system with the introduction of growth.

It can be seen from (8) that when (X=P ) / A with a constant factor of proportionality, the

budget shares will be constant in the absence of price movements. This can be thought of as the

stationary state of the economy. Out of the stationary state, the constant proportionality between

(X=P ) and A breaks down. When (X=P ) > A, the share of luxury goods with �i > 0 will rise

while those of necessary goods with �i < 0 will fall. Necessity and luxury are appropriately de�ned

relative to the state of the growing economy. One question that arises in analyses of demand systems

is that if the share of necessary (luxury) goods in households' budget falls (rises) as the economy

becomes richer, nothing prevents the shares to be bounded between zero and one. Normalizing

a(p) and b(p) by a growth factor have the e�ect of keeping the budget shares bounded within the

unit simplex.

While we have used the AIDS to highlight the problem, the issue is inherent in demand systems

derived from 
exible functional forms of the expenditure function. The AIDS is a member of

PIGLOG demand system, of which the translog system is also a member. PIGLOG demand

systems are generated by indirect utility functions of the form V (p; u) = G(p)[logE � log[g(p)]]
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with the property that G(p) = G(�p) and g(p) = g(�p).2 The corresponding share equations are of

the form wi = pigi=g� piGi[logE� log[g]]=G, where gi and Gi are the partial derivatives of g and

G with respect to good i. Because total expenditure is unadjusted for growth, the fundamental

imbalance remains in PIGLOG based demand systems.

The above analysis is based on partial equilibrium arguments. In a general equilibrium con-

text, one would expect prices to rise in response to excess demand. This would only make total

expenditure grow faster and inadequacy of the approximation for X provided by AIDS will remain.

Nevertheless, the properties of the AIDS when prices have trends are interesting in their own right.

This is now the subject of analysis.

4 Non-Stationary Prices

To analyze the implications of non-stationary prices, we now take the other extreme and assume

that the real income does not grow but prices do. Now the approximated expenditure is (1 �

u)log[a(p)]+ ulog[b(p)]. The required time derivatives for a given u are:

@log[a(p)]=@t = M1 +M2

M1 �
X
i

�k@log[pk]=@t;

M2 �
X

k;j;k 6=j


kj(log[pk]@log[pj]=@t+ log[pj]@log[pk]=@t) +
X
i


iilog[pi]@log[pi]=@t;

@log[b(p)]=@t = M3 � @log[a(p)]=@t+ (
X
k

�k@log[pk]=@t)
Y
k

p
�k
k ;

using the de�nition 
ij = 0:5(
�ij + 
�ji).

4.1 Case 1: All Prices Grow at the Same Rate

If the prices all grow at the same constant rate, say �, @logX=@t = � since
P

i wi = 1. The

expenditure approximated by the AIDS will grow at the same rate if i) the adding up constraint

holds (since it implies M1 = � and the second term of M3 is zero) and ii) adding up, homogeneity,

and symmetry holds (since this ensures that M2 = 0). This result can also be seen from the time

derivative of the right hand side of (4). The variable log[P ] grows at rate �
P

k �k , which by adding-

up, resolves to �. It follows that X=P has no trend. By homogeneity,
P

j 
ij = 0. Hence, the shares

will be non-trending in spite of prices growing. This result is to be expected since a(p) and b(p)

are linear homogeneous of degree one and zero in p respectively, and hence when the conditions of

adding-up and homogeneity are satis�ed, households' budget shares are invariant to absolute price

2The AIDS takes log[g(p)] = log(P ) de�ned earlier, and with G(p) =
Q

p
�k
k . See Pollak and Wales (1992)
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movements that have no relative price implications. If, however, homogeneity fails, some shares

will drift up while others will drift down at rates proportional to �. In spite of this, the share

equations implied by the AIDS are data consistent in the sense that the left and the right hand

side of (4) grow at the same rate. This is to be contrasted with the case of real economic growth

of the previous section where the right but not the left hand side of the equation is trending, a

consequence of omitting growth considerations in the approximating function.

4.2 Case 2: Relative Price Changes

Consider the time pro�le of the shares when prices grow at (possibly non-common) rates �i. This

implies trends in relative prices, a phenomenon documented in Ng (1995) and Lewbel (1996a).

Even if we impose symmetry, homogeneity and adding up, there is no reason to expect
P

i wi�i

(the growth rate of actual expenditure) to equal (1� u)[M1 +M2] + uM3 (the growth rate of the

expenditure approximated by the AIDS). Thus, as seen from the share equation (4), the e�ects of

prices growing at di�erent rates on the share of good i are two fold: the direct e�ect of prices, as

given by
P

k �k�k , and an indirect e�ect via @log[X=P ]=@t. Note that the shares should exhibit

time trends because of substitution by households across goods to take advantage of changing

relative prices. This is consistent with optimizing behavior.

5 Econometric Implications and Simulations

Previous estimations of the AIDS have often found the residuals of the share equations to be highly

serially correlated. Lewbel (1996b) presents a generalized composite commodity theorem to allow

for aggregation without separability, and shows that the error term of the share equations should

be a function of the within-group relative prices when demands are not separable. He �nds that

there is still substantial serial correlation in the residuals even when the within-group relative

price movements are taken into account. In fact, his results indicate the residuals are su�ciently

persistent to suggest the presence of a unit root. We o�er two explanations for the strong persistence

in the residuals. First, as suggested earlier, (8) is the appropriate model consistent with economic

behavior when there is economic growth. It follows that regression models which omit the trends are

misspeci�ed. More precisely, the regression error will contain the omitted trend, A. To the extent

that A is persistent, the residuals will be serially correlated. Furthermore, A is not orthogonal to

the regressor because A and X share a common trend. The estimates of the demand system will

be biased and inconsistent.

Second, Stone's price index, log(P �), can be a poor approximation for log(P ) when prices are

non-stationary. It can be shown that the di�erence between the two is 0:5
P

j

P
k 
kjlogpklogpj +
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(
P

k �klogpk)log(X=P ).
3 This di�erence will have trends when real income grows and/or prices do

not grow at a common rate. Since the error term of the share equations contains the approximation

error (logP � � logP ), it will inherit the trends and residual autocorrelation follows. It should be

emphasized that the di�erence between P and P � is a function of X=P also. Hence, growth in X

due to real income will interact with growth in prices to determine the adequacy of approximation

by Stone's price index.

To illustrate the �rst problem, we conduct a small simulation experiment. In theory, the

AIDS should provide a good local approximation to any set of demand functions derived from

utility maximizing behavior. Thus, we can generate data from demand functions for which the

true expenditure elasticities can be easily calculated and then assess the ability of the AIDS in

estimating these elasticities. This is an interesting exercise in its own right as little is known about

the adequacy of using 
exible functional forms in approximating economic behavior in practice.

For the purpose of the simulations, we continue to assume that all households are identical

and hence the average budget shares and average household expenditure coincide with those of the

individuals. Preferences are assumed to be generated by the indirect addilog utility [see Varian

(1978)], with quantity demand given by

qi(p1; p2; X) =
aibiX

bip�bi�1Pk
j=1 ajbjX

bj�1p
�bj
j

: (9)

The error term of the (correctly speci�ed) share equations is therefore induced by approximating

demand behavior derived from an indirect addilog utility by the AIDS.

In the simulation experiment we assume that there are two goods. Thus, there are three random

variables whose stochastic properties need to be speci�ed. Data for the two prices are generated as

follows: p1 � N(1; :012) and p2 � N(1; :022). For total expenditure, we assume that �Xt = dt + st,

where the deterministic component is dt = d0+d1t and the stochastic component is st = �st�1+vt,

vt � iid(0; :052). The parameters are set for d0 = 5, a1 = 0:4 a2 = 0:6, b1 = 0:3 and b2 = 0:7.

Given (9), the expenditure elasticity of demand for good i evaluated at the mean can be calculated

and is denoted �i;X . We then estimate the share equations using (5) and compute the expenditure

elasticity of demand (denoted �̂iX) implied by the AIDS model. Without loss of generality we only

report results for good 1. We set the sample size to 200. The results for 1000 simulations are as

follows:

3This assumes that the AIDS approximates households' behavior exactly An additional term
P

k
uklog[pk ] will

appear if wi given by (4) di�ers from the true share by ui. See Buse (1995).
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Table 1: Simulation Results: Prices Stationary

d1 � D:W: �1X �̂1X �X w1 ��p �p�

0.0000 0.0000 2.0009 1.1010 1.2325 0.0499 0.7475 0.0090 0.0090

0.0000 0.3000 1.9604 1.1010 1.2323 0.0567 0.7476 0.0090 0.0090

0.0000 0.6000 1.7370 1.1009 1.2316 0.0812 0.7476 0.0090 0.0090

0.0000 0.9000 1.1890 1.1007 1.2306 0.1759 0.7482 0.0090 0.0090

0.0000 1.0000 1.4355 1.0957 1.2205 0.2685 0.7607 0.0090 0.0090

0.0100 0.0000 0.7245 1.0955 1.2205 0.5807 0.7608 0.0090 0.0090

0.0100 0.3000 0.7254 1.0955 1.2204 0.5779 0.7609 0.0090 0.0090

0.0100 0.6000 0.7448 1.0955 1.2203 0.5716 0.7609 0.0090 0.0090

0.0100 0.9000 0.8599 1.0953 1.2195 0.5313 0.7614 0.0090 0.0090

0.0100 1.0000 0.8587 1.0911 1.2104 0.6214 0.7718 0.0089 0.0089

Notes: D:W: is the Durbin Watson statistic; �1X and �̂1X are the actual and estimated expenditure elasticity of

demand for good 1; �X is the standard deviation of total expenditure, X, w1 is the mean budget share of good 1; ��p

is the standard deviation of the consumption de
ator, de�ned as X=(q1 + q2); and �p� is the standard deviation of

Stone's price index, P �.

When d1 = 0, X is covariance stationary when � < 1 and has a stochastic trend when � = 1.

The standard deviation of X re
ects the e�ects of the trends on the variations in the series. When

d1 = 0:01, X is stationary around a deterministic time trend when � < 1 and becomes a unit root

process with a drift of 0.01 when � = 1. As we can see from the results, the expenditure elasticities

of demand for good 1 are estimated quite precisely; the actual expenditure elasticities are between

1.09 and 1.10 and are estimated to be between 1.21 and 1.23. However, the Durbin Watson statistic

drifts away from 2 as the deterministic and stochastic trends in X dominate. It is not uncommon to

�nd estimations of demand systems using time series data to report Durbin Watson statistics below

one. Our analysis suggests the omission of growth in the approximating functions as a possible

cause. The second to last column is the standard deviation of the consumption de
ator, de�ned

as X=(q1 + q2). The properties of this price index is extremely close to those of P � (i.e. Stone's

price index). Both series vary around one percent of the mean as expected since prices are assumed

i:i:d:.

We now repeat the simulation exercise above, assuming the same stochastic process for X , but

replacing the data generating process of prices by two independent random walks. Speci�cally,

�p1t � N(:01; :0022), �p2t � N(:005; :0052), with initial conditions p11 = p21 = 1. Since p1 drifts

at a faster rate than p2, there are trends in relative prices by construction.
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Table 2: Simulation Results: Prices Non-Stationary with Non-Common Trends

d1 � D:W: �1X �̂1X �X w1 ��p �p�

0.0000 0.0000 0.1221 1.1309 1.2676 0.0499 0.6774 0.4402 0.1447

0.0000 0.3000 0.1432 1.1309 1.2478 0.0567 0.6775 0.4397 0.1445

0.0000 0.6000 0.1630 1.1308 1.2340 0.0812 0.6776 0.4409 0.1448

0.0000 0.9000 0.1541 1.1306 1.2324 0.1759 0.6781 0.4397 0.1445

0.0000 1.0000 0.1100 1.1246 1.2877 0.2685 0.6928 0.4454 0.1459

0.0100 0.0000 0.8352 1.1245 1.1957 0.5807 0.6934 0.4496 0.1470

0.0100 0.3000 0.6338 1.1244 1.1994 0.5779 0.6934 0.4506 0.1472

0.0100 0.6000 0.3751 1.1244 1.2127 0.5716 0.6934 0.4494 0.1470

0.0100 0.9000 0.2033 1.1243 1.2273 0.5313 0.6938 0.4492 0.1469

0.0100 1.0000 0.1102 1.1193 1.2567 0.6214 0.7062 0.4537 0.1480

In these simulations, the mean for p1 and p2 are calibrated to be about the same as in Table 1 by

reducing the size of the innovations to the random walk component. Note that now the variations

in the consumption de
ator is much higher than that for P �. This is a consequence of the fact

that Stone's index takes geometric averaging of the prices, and when prices are non-stationary,

the resulting series grows slower than a price index based on arithmetic averaging (such as the

consumption de
ator). Note that the Durbin Watson statistic deteriorates relative to the results

for stationary price in Table 1. Even when total expenditure is stationary, signi�cant residual

autocorrelation is found in the data. In many of these cases a formal test of cointegration cannot

reject the null hypothesis of no cointegration. The degree of serial correlation evidently depends

on the joint time series properties of X=P as explained earlier.

In this second set of simulations, prices and nominal expenditure do not evolve together, so

that real expenditure is either rising or falling. We now consider the case when X , p1 and p2 all

drift at the rate 0.01. In particular, �p1 � N(:01; :0022), p2 = p1 +N(0; :0012), so that p1 and p2

share the same deterministic and stochastic trend.

Table 3: Simulation Results: Prices Non-Stationary with Common Trends

d1 � D:W: �1X �̂1X �X w1 ��p �p�

0.0100 0.0000 1.0714 1.1172 1.2093 0.5807 0.7101 0.5789 0.1742

0.0100 0.3000 0.7673 1.1172 1.2127 0.5779 0.7101 0.5790 0.1742

0.0100 0.6000 0.4263 1.1171 1.2212 0.5716 0.7102 0.5789 0.1742

0.0100 0.9000 0.1980 1.1169 1.2306 0.5313 0.7107 0.5790 0.1742

0.0100 1.0000 0.0644 1.1122 1.2456 0.6214 0.7225 0.5785 0.1741

By construction, prices and expenditure share the same deterministic trend but evolve around

di�erent stochastic trends. Residual autocorrelation continues to result from the use of Stone's

price index. As seen by comparing the last two columns, Stone's price index remains signi�cantly

less variable than the consumption de
ator. Although Deaton and Muellbauer suggest Stone's
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price index is adequate if prices are collinear, this appears not to be the case. As explained earlier,

log(P �) � log(P ) is also a function of X=P . Hence, if X and P are not collinear, use of Stone's

price index will induce a trend.

6 Cointegration as a Guide for Specifying the AIDS

Including a trend in the share equations or �rst di�erencing the data have been used in the literature

to account for the presence of serial correlation. The validity of these procedures will depend on

the properties of the data generating process. For example, if the data are trend stationary, �rst

di�erencing is not appropriate because the data will be over-di�erenced. A more structural solution

to the problem is to model the growth de
ator, A, directly. Although this variable is unobserved, the

choice of A can be guided by the condition that the residuals from estimating the share equations

should have neither deterministic nor stochastic trends. It should be emphasized that it is not

su�cient for the estimated residuals to have no unit roots (stochastic trends). Deterministic trends

must also be absent, for otherwise an inconsistency will remain between the growth in log(X)

and the approximating expenditure function. More precisely, the demand system should satisfy

deterministic cointegration as de�ned in Campbell and Perron (1991).

Using post-war data for the U.S., Ng (1995) found that merely including polynomial time trends

will not render the demand system cointegrated. This suggests that there is a stochastic trend in

A. Proxies for A worth considering include the permanent component of an aggregate variable

like disposable income. This can be constructed by applying the Hodrick-Prescott �lter or the

Beveridge-Nelson decomposition to disposable income, subject to the condition that A will indeed

render the estimated residuals of the demand system stationary. Naturally, if X=P has segmented

trends, A must also embody the breaks in the trend function.

We have abstracted from population growth in the analysis. This is because in practice,X is usu-

ally taken as per-capita expenditure, and hence expenditure is adjusted for by population growth.

Indeed, the need for a growth de
ator such as A is precisely to arrive at a concept of per-capita

expenditure in e�ective terms. Other aspects of demographic changes might nevertheless have im-

plications for the treatment of the A. For example, if we relax the assumption to allow Kh and Ah

to vary across households, A will be de�ned from log[ �X=A] =
P

hXhlog[Xh=(A
hKh)]=

P
Xh. Thus,

A now embodies cross-section variations in household characteristics as well as a pure growth com-

ponent. If the growth component dominates the cross-section variations (in terms of the degree of

integration), then the cointegration criterion should remain useful in identifying growth component

of the Almost Ideal Demand System. If economic and demographic changes both induce trends,

we need to �nd trending demographic variables (such as the working age population and female
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participation rate) which, along with the growth trend, yield a cointegrated system. In such cases,

at least two trending components will be necessary to render the demand system cointegrated.

7 Conclusion

This article argues that the original AIDS is ill-suited for analyzing non-stationary data. In par-

ticular, the approximating functions are not speci�ed to allow for growth in real income. The

consequence is an omitted trend component in empirical demand systems. This model misspeci�-

cation is consistent with the frequent �nding of residual autocorrelation when the demand system

is estimated in level form. The approximation provided by Stone's price index is also shown to

be inadequate when prices grow at di�erent rates. The consequence is also re
ected in the error

term which is shown to be serially correlated. Simulations are used to illustrate these arguments.

The thrust of this analysis is that time series estimations of demand systems must deal with

non-stationarity in the data. We suggest using cointegration between budget shares, prices, and

expenditure as a guide to empirical modelling of demand systems when the data are non-stationary.
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