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Abstract

This paper develops a method for combining the power of a dynamic,
stochastic, general equilibrium model with the flexibility of a vector au-
toregressive time-series model to obtain a hybrid that can be taken directly
to the data. It estimates this hybrid model via maximum likelihood and
uses the results to address a number of issues concerning the ability of a
prototypical real business cycle model to explain movements in aggregate
output and employment in the postwar US economy, the stability of the
real business cycle model’s structural parameters, and the performance of
the hybrid model’s out-of-sample forecasts.

JEL: C51, C52, 132, E37.

1. Introduction

Two distinct approaches to macroeconomic analysis emerged during the early
1980s and continue to yield insights today. First, work following Sims (1980)
characterizes and attempts to explain the movements and co-movements of key
aggregate variables using vector autoregressive (VAR) time-series models. Second,
work following Kydland and Prescott (1982) characterizes and attempts to explain
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the movements and co-movements of many of the same variables using dynamic,
stochastic, general equilibrium (DSGE) models.

These two distinct approaches to macroeconomics both have their distinct
strengths and weaknesses. VAR models, for instance, are designed to be taken
directly to the data: they are easy to estimate and, once estimated, can be used
to perform statistical hypothesis tests as well as to generate out-of-sample fore-
casts. Moreover, since their specification requires little, if any, reference to detailed
economic theory, VAR models remain flexible enough to address a wide range of
questions regarding the nature and sources of business cycle fluctuations. Because
they rely so loosely on economic theory, however, VAR models often fail to uncover
parameters that are truly structural; thus, these models may exhibit instability
during periods when monetary and fiscal policies change. Indeed, Stock and Wat-
son (1996) find evidence of widespread instability in VAR models estimated with
postwar US data.

DSGE models, by contrast, are firmly grounded in economic theory. These
models draw tight links between the structural parameters describing private
agents’ tastes and technologies and the time-series behavior of endogenous vari-
ables such as aggregate output and employment; in principle, at least, these struc-
tural parameters should remain invariant to changes in policy regimes. Yet be-
cause they rely so heavily on economic theory, DSGE models are often regarded
as being too stylized to be taken directly to the data, making traditional econo-
metric methods for estimation, hypothesis testing, and forecasting inapplicable.
Moreover, since they take such a strong stand on so many details concerning the
structure of the economy, DSGE models often yield results that appear to be
fragile, at least at first glance. When Kydland and Prescott (1982) report, for
instance, that technology shocks can account for most of the observed output
variation in the postwar US data, one is still left to wonder whether this result
will survive modifications to their model, such as the introduction of other types
of shocks.

This paper develops a method for combining the power of dynamic, stochastic,
general equilibrium theory with the flexibility of vector autoregressive time-series
models, in hopes of obtaining a hybrid that shares the desirable features of both
approaches to macroeconomics. This method takes as its starting point a fully-
specified DSGE model, but also admits that while this model may be powerful
enough to account for and explain many key features of the US data, it remains
too stylized to possibly capture all of the dynamics that can be found in those
data. Hence, it augments the DSGE model so that its residuals—meaning the



movements in the data that the theory cannot explain—are described by a VAR,
making estimation, hypothesis testing, and forecasting feasible.

To illustrate how this method works, the remainder of the paper proceeds as
follows. The next section outlines a prototypical DSGE model: Hansen’s (1985)
real business cycle model with indivisible labor. Section 3 then augments this
model with VAR residuals to arrive at the hybrid specification described above.
Section 4 estimates the hybrid model via maximum likelihood and uses the esti-
mated model to address a number of key issues concerning the ability of the real
business cycle model to explain movements in aggregate output, consumption,
investment, and hours worked in the postwar US data, the stability of the real
business cycle model’s structural parameters, and the performance of the hybrid
model’s out-of-sample forecasts. Finally, section 5 concludes.

Before proceeding, however, mention should be made of some previous work
that also estimates the structural parameters of DSGE models using maximum
likelihood methods, including Christiano (1988), Altug (1989), Bencivenga (1992),
McGrattan (1994), Kim (1995), Hall (1996), DeJong, Ingram, and Whiteman
(1997a, 1997b), Ireland (1997), McGrattan, Rogerson, and Wright (1997), and
Chow and Kwan (1998). In fact, a number of these earlier studies draw on a
framework for combining models and data, originally developed by Sargent (1989),
that also lies at the heart of the approach taken here. Thus, the connections
between the current study and much of this previous work are noted below.

2. A Prototypical DSGE Model

In Hansen’s (1985) real business cycle model with indivisible labor, a representa-
tive consumer has preferences defined over consumption C; and hours worked H,
during each period t = 0,1,2, ..., as described by the expected utility function

BY. #0n(C) - v, 0

where the discount factor satisfies 1 > > 0 and where v > 0. The linearity of
utility in hours worked can be motivated, following Hansen (1985) and Rogerson
(1988), by assuming that the economy consists of many individual consumers,
each of whom either works full time or remains unemployed.

The representative consumer produces output Y; with capital K; and labor H,
according to the constant-returns-to-scale technology described by

Vo= AK (' H) (2)
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where 7 > 1 denotes the gross rate of labor-augmenting technological progress and
where 1 > 6 > 0. The technology shock A; follows the first-order autoregressive
process

In(Ap1) = (1= p) In(A) + pIn(Ar) + o1, (3)

where A > 0 and 1 > p > —1. The serially uncorrelated innovation ey is
normally distributed with mean zero and standard deviation o.

During each period ¢ = 0,1,2, ..., the representative consumer divides output
Y; between consumption C; and investment [, subject to the resource constraint

Y, =C, + I, (4)

By investing I; units of output during period ¢, the consumer increases the capital
stock K1 available during period ¢ 4+ 1 according to

Ky =(1-6)K + 1, (5)

where the depreciation rate satisfies 1 > 6 > 0.

Equilibrium allocations for this economy can be characterized by solving the
representative consumer’s problem: choose sequences {Y;, Cy, Iy, Hy, Ki1}52, to
maximize the utility function (1) subject to the constraints (2)-(5) for all ¢ =
0,1,2,.... This problem lacks a closed-form solution, but approximate solutions
may be constructed numerically as follows.

Define y: = Yi/n', ¢0 = C¢/nt, iv = L/n", hy = Hy, ke = K¢/n', and a; = A,
The first-order conditions for the consumer’s problem imply that in the absence
of technology shocks, when ¢, = 0 for all t = 0,1,2, ..., the economy converges
to a steady state in which each of these detrended variables is constant, with
Yy =1y, co=c, iy =1, hy ="h, kg =k, and ay = a for all t = 0,1,2,.... The first-
order conditions can be log-linearized about this steady state, and the methods
of Blanchard and Kahn (1980) can be applied to this log-linear system to obtain
a solution of the form

Sit1 = As; + B (6)

and
f, = Cs, (7)
forallt = 0,1, 2, ..., where the vectors s; and f; keep track of percentage deviations

of each detrended variable from its steady-state level, with

se=| In(ke/k) In(ar/a) |
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and
/
f,= | In(y/y) In(c/c) In(i/i) In(h/h) | .
In (6) and (7), the elements of the matrices A, B, and C depend on the real
business cycle model’s eight structural parameters 3, v, 0, 1, §, A, p, and o.

3. The Hybrid Model

In principle, one could use data on aggregate output, consumption, investment,
and hours worked, along with the solution described by (6) and (7), to estimate
each of the real business cycle model’s structural parameters. Many researchers,
however, including Kydland and Prescott (1982), argue that models of this type
are simply too stylized to explain many features of the data, making traditional
econometric methods inapplicable.

Indeed, one dimension along which the real business cycle model is quite styl-
ized lies in the assumption that just one shock—the aggregate technology shock—
drives all business cycle fluctuations. As emphasized by Ingram, Kocherlakota,
and Savin (1994), this one-shock assumption makes the real business cycle model
singular: the model predicts that certain linear combinations of the endogenous
variables will be deterministic. If, in the data, these exact linear relationships do
not hold, any attempt to estimate (6) and (7) via maximum likelihood will fail.

To facilitate estimation, therefore, consider augmenting each equation in (7)
with a serially correlated residual, or error term, so that the empirical model
consists of (6),

f, = Cs; + uy, (8)

and
u = Du + &,y (9)
for all t = 0,1,2,..., where the vector &, of zero-mean, serially uncorrelated

innovations is normally distributed with covariance matrix K€, £€;,; = V and is
uncorrelated with the innovation 411 to technology.

This approach—adding error terms to the observation equation (7)—is also
used by Altug (1989), McGrattan (1994), Hall (1996), and McGrattan, Rogerson,
and Wright (1997) to estimate what would otherwise be singular real business
cycle models. Fach of these earlier studies follows Sargent (1989) by interpreting
u; as a vector of measurement errors in each variable and by assuming that the
matrices D and V are diagonal, so that the measurement errors are uncorrelated
across variables. Here, however, no such restrictions are imposed: the residuals



in u, are allowed to follow a general, first-order vector autoregression. Thus, the
residuals may still capture measurement errors, but they can also be interpreted
more liberally as capturing all of the movements and co-movements in the data
that the real business cycle model, because of its elegance and simplicity, cannot
explain. In this way, the hybrid model consisting of (6), (8), and (9) combines
the power of the DSGE model with the flexibility of a VAR.

4. Results from the Hybrid Model

4.1. Estimation

The empirical model consisting of (6), (8), and (9) is in state-space form; it
can be estimated via maximum likelihood, using methods described by Hamilton
(1994, Ch.13), once analogs to the model’s Yy, Cy, Iy, and H; are found in the US
data. Thus, in the data, consumption C} is defined as real personal consumption
expenditures in chained 1992 dollars, investment I; is defined as real gross private
domestic investment, also in chained 1992 dollars, and output Y; is defined by the
sum Cy + I;. Hours worked H; is defined as hours of wage and salary workers on
private, nonfarm payrolls. Each series is converted to per-capita terms by dividing
by the civilian, noninstitutional population, age 16 and over.

All data, except for population, are seasonally adjusted. Since the real busi-
ness cycle model implies that output, consumption, and investment grow at the
common rate n in steady state, the data are automatically detrended as part of
the estimation procedure; they are not filtered in any other way. Data for con-
sumption, investment, output, and population are taken from the Federal Reserve
Bank of St. Louis” FRED database; data for hours worked come from the Bureau
of Labor Statistics” Establishment Survey. The series are quarterly and run from
1960:1 through 1997:3.

The resource constraint (4) holds by construction in the data. Thus, only the
series for Y, C;, and H; are used in estimating the model; the series for I; is
redundant. For the purposes of estimation, therefore, f;, u;, and &, reduce to
3 x 1 vectors, with

£ = n(y/y) m(efe) mlh/m) |

/
u; = [uyt Uet Uht} )

and

£t+1 = [ 5yt+1 5at+1 5ht+1 }/
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forallt =0,1,2, ..., and the matrices D and V can be written as

dyy dyc dyh
D= dcy dcc dch
dhy dhc dhh

and

UL Uye Uyp

V = vy UCQ Veh

Vyn Ven Uy,
In estimating the hybrid model, the real business cycle model’s structural para-
meters are constrained to satisfy the theoretical restrictions listed in section 2,
above. In addition, the eigenvalues of the matrix D are constrained to lie inside
the unit circle, so that the residuals in u; are stationary. Finally, the covariance
matrix V is constrained to be positive definite.

Preliminary attempts to apply maximum likelihood to (6), (8), and (9) led
to an unreasonably low estimate of § = 0.7679 for the discount factor and an
unreasonably high estimate of 6 = 0.2165 for the depreciation rate in this quarterly
model; here, as in Altug (1989), more sensible results obtain when values of # and 6
are fixed prior to estimation. Thus, table 1 reports maximum likelihood estimates
of the six remaining structural parameters v, 0, n, A, p, and o, along with the 15
distinct elements of the matrices D and V, with 3 fixed at 0.99 and ¢ fixed at
0.025, the values originally suggested by Hansen (1985). The standard errors, also
reported in table 1, correspond to the square roots of the diagonal elements of the
inverted matrix of second derivatives of the maximized log-likelihood function.

The estimates of the real business cycle model’s parameters are sensible and
precise. The estimate v = 0.0045 matches steady-state hours worked in the model
with average hours worked in the data; the estimate A = 6.0952 does the same
for detrended output. The estimate 8§ = 0.2342 implies that capital’s share in
production is just slightly less than 25 percent. The estimate n = 1.0039 makes
the annualized, steady-state growth rate of real, per-capita output in the model
equal to 1.57 percent. Finally, the estimate of ¢ = 0.0050 is of the same order of
magnitude used throughout the literature, while the estimate p = 0.9983 implies
that technology shocks are extremely persistent.

The other estimates in table 1 reveal, however, that there are important fea-
tures of the data that the real business cycle model cannot explain. The estimates
imply, for instance, that the matrix D has one real eigenvalue of modulus 0.9711
and two complex eigenvalues of modulus 0.8764; evidently, the residuals in u, are
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nearly as persistent as the technology shock. Furthermore, the innovations in &, 4
have standard deviations of 0.0060, 0.0057, and 0.0006; two of these three figures

exceed the estimated standard deviation of the innovation €41 to technology.

4.2. Explanatory Power of the Real Business Cycle Model

What fraction of the observed output variation in the postwar US economy is
explained by the real business cycle model? This question, first considered by
Kydland and Prescott (1982); can also be addressed here by using (6), (8), and
(9), together with the maximum likelihood estimates presented in table 1, to
decompose the k-step-ahead forecast error variances in output, consumption, in-
vestment, and hours worked into two orthogonal components: one attributable to
the real business cycle model’s technology shock and the other attributable to the
three residuals in u,. Table 2 displays the results of these forecast error variance
decompositions.

In table 2, the last line of panel A, with k = oo, indicates that the technology
shock accounts for nearly 85 percent of the unconditional variance of detrended
output. Kydland and Prescott also find that the real business cycle model ac-
counts for most of the observed variation in output, but here, this result obtains
despite the fact that the hybrid model also allows shocks to the elements of u,
to help explain the behavior of output. Presumably, the residuals in u; pick up
the combined effects of shocks not modelled in the real business cycle framework:
shocks to monetary policy, fiscal policy, and so forth. Here, therefore, Kydland
and Prescott’s finding is shown to be robust to the inclusion of these other shocks.

The robustness of Kydland and Prescott’s finding can also be assessed, in the
context of the hybrid model estimated here, by attaching standard errors to each
of the statistics reported in table 2. Thus, standard errors also appear in the table,
where they are computed by expressing each statistic as a function g of the vector
O of estimated parameters and by calculating [0g(©)/00])H[0g(®)/00O], where
H is the covariance matrix of the estimated parameters in ® and the derivatives
09(©)/00O are evaluated numerically, as suggested by Runkle (1987).

The standard errors shown in table 2 indicate that the statistical uncertainty
surrounding the real business cycle model’s ability to explain a substantial fraction
of the observed output variation in the US data is large, though perhaps not
as large as first suggested by Eichenbaum (1991), who estimates the model’s
parameters using a generalized method of moments procedure instead of the more
efficient maximum likelihood technique used here. Even if the true fraction of



output variation explained by the real business cycle model is two standard errors
less than the point estimate of 85 percent, that fraction remains greater than 45
percent.

Other results displayed in table 2 show that the technology shock accounts
for more than 90 percent of the unconditional variance of detrended consumption
and more than 50 percent of the unconditional variance of detrended investment,
but almost none of unconditional variance of hours worked. Thus, as noted by
Cooley and Prescott (1995) among others, the real business cycle model does a
much better job in explaining the behavior of output and its components than it
does in explaining the behavior of hours worked.

As noted above, the technology shock accounts for almost 85 percent of the
unconditional variance in aggregate output, and as shown in table 2, it also ac-
counts for more than 60 percent of the one-quarter-ahead forecast error variance
in output. On the other hand, the technology shock accounts for less than half
of the k-step-ahead forecast error variances for values of k ranging from 4 to
40, implying that the real business cycle model has difficulty explaining output
fluctuations over horizons between one and ten years. This result is, of course,
consistent with previous findings reported by Watson (1993) and Rotemberg and
Woodford (1996); Watson, in particular, finds that while the real business cy-
cle model explains very high and very low frequency movements in output, it is
less successful at explaining those movements that take place at business cycle
frequencies.

Finally, table 2 reports a surprising result. Although, as noted above, tech-
nology shocks account for almost none of the unconditional variance of hours
worked, they explain almost all of the one-quarter-ahead forecast error variance
in the hours series. This result is encouraging, since it suggests that the real
business cycle model may still have some success at forecasting quarter-to-quarter
movements in aggregate hours worked, even if it fares less well at explaining
movements over longer horizons.

4.3. Tests for Parameter Stability

One great strength of the real business cycle model is that it is structural: it links
the behavior of aggregate output and employment to parameters describing pri-
vate agents’ tastes and technologies—parameters that should remain invariant to
changes in monetary and fiscal policy regimes. Here, the hybrid model consisting
of (6), (8), and (9) can be used to perform statistical tests of the hypothesis that



the structural parameters have, in fact, remained stable over time.

To test for parameter stability, the hybrid model is estimated over two disjoint
subsamples: the first running from 1960:1 through 1979:4 and the second running
from 1980:1 through 1997:3. The 1980 breakpoint serves to divide the full sample
into subsamples of roughly equal length and, more important, corresponds to a
date around which major changes in US monetary and fiscal policies are widely
thought to have occurred.

Table 3 reports estimates of the hybrid model’s parameters for the two subsam-
ples, along with their standard errors. Focusing on the six estimated parameters
from the real business cycle model, only small differences in the estimates of +,
0, and A appear across subsamples. The estimate of 7 = 1.0046 for the pre-1980
subsample exceeds the estimate of = 1.0033 for the post-1980 subsample, reflect-
ing the productivity slowdown. Meanwhile, for both subsamples, the estimates
of p and ¢ lie below their full-sample counterparts. This result—that aggregate
shocks appear smaller and less persistent when a break in the trend rate of growth
is allowed for—can also be found in work by Perron (1989) and Rappoport and
Reichlin (1989).

Andrews and Fair (1988) describe procedures for testing for parameter sta-
bility across the two subsamples. Let the vector @31 consist of any ¢ parameters
estimated from the first subsample, let @g consist of the same ¢ parameters es-
timated from the second subsample, and let H}z and Hg denote the covariance
matrices of the estimates in @31 and @g. Andrews and Fair show that the Wald
statistic

W= (0} - ©2)/(H! + H2) (0] - &)

is asymptotically distributed as a chi-square random variable with ¢ degrees of
freedom under the null hypothesis of parameter stability: @31 = @g.

Table 4 reports Wald statistics for the stability of all 21 estimated parameters,
the stability of the six structural parameters v, 6, n, A, p, and o identified by the
real business cycle model, and the stability of the 15 parameters in the matrices D
and V. The tests reject the null of stability for all 21 parameters as well as for the
15 distinct elements of D and V. On the other hand, the test fails to reject the
null of stability for the six structural parameters, indicating that these parameters
have remained stable over time, despite important changes in monetary and fiscal
policies.
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4.4. Forecast Accuracy

Table 5 reports on the accuracy of the hybrid model’s out-of-sample forecasts. As
noted above, the model has 21 estimated parameters: the six structural parame-
ters from the real business cycle model and the 15 parameters from D and V that
describe the behavior of the residuals. An unconstrained, first-order VAR for the
logs of output, consumption, and hours worked with a constant and a linear trend
for each variable also has 21 estimated parameters. Thus, the table compares
the root mean squared forecast errors from the hybrid model with those from the
unconstrained VAR.

To create these statistics, both models are estimated with data from 1960:1
through 1984:4 and used to generate out-of-sample forecasts one through four
quarters ahead. Next, the sample is extended to 1985:1, and additional forecasts
are generated using the updated estimates. Continuing in this way yields se-
ries of one-quarter-ahead forecasts running from 1985:1 through 1997:3, series of
two-quarters-ahead forecasts running from 1985:2 through 1997:3, series of three-
quarters-ahead forecasts running from 1985:3 through 1997:3, and series of four-
quarters-ahead forecasts running from 1985:4 through 1997:3, all of which can be
compared to the actual data that were realized over those periods.

The results indicate that in nearly every case, forecasts from the hybrid model
outperform those from the unconstrained VAR. To determine whether any of
these differences are statistically significant, table 5 also reports a statistic that is
used by Diebold and Mariano (1995) to test the null hypothesis of equal forecast
accuracy across two models. Let {€!'}T | denote a series of k-step-ahead forecast
errors from the hybrid model, let {e?}1, denote the corresponding forecast errors
from the unconstrained VAR, and construct a sequence {d;} ; of loss differentials
using d; = (e¥)2 — (e})? for all t = 1,2,...,T. Diebold and Mariano show that the
test statistic

S:d/Ud

is asymptotically distributed as a standard normal random variable, where d is the
sample mean of {d;}1 , and where o4, the standard error of d, can be estimated
using formulas given in their paper, under the null hypothesis of equal forecast
accuracy: d = 0.

In table 5, positive values of S indicate cases where the hybrid model’s forecasts
outperform the VAR’s, while negative values of S indicate cases where the opposite
is true. In fact, tests of the null hypothesis S = 0 against the alternative S > 0
often reject the null of equal accuracy of the models’ forecasts. In no case can the
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null S = 0 be rejected in favor of the alternative S < 0. Overall, therefore, the
hybrid model delivers forecasts that are superior to those from the unconstrained

VAR.

5. Conclusion

This paper adds to a prototypical dynamic, stochastic, general equilibrium model—
Mansen’s (1985) real business cycle model with indivisible labor—a vector of resid-

uals that follows a first-order autoregressive process. The result is a hybrid model

that exploits the power of detailed economic theory but remains flexible enough

to be taken to the data: the model can be estimated via maximum likelihood and,

once estimated, can be used to perform statistical hypothesis tests as well as to

generate out-of-sample forecasts.

Some of the results presented above echo the well-known successes and short-
comings of the real business cycle model as documented by Watson (1993), Cooley
and Prescott (1995), and Rotemberg and Woodford (1996), among others. The
results show, for example, that technology shocks do a better job in explaining the
behavior of output and its components than they do in explaining the behavior
of aggregate hours worked. In addition, technology shocks account for much of
the variability in output that occurs over very short and very long horizons, but
are less successful in accounting for output variation at business cycle frequen-
cies. And finally, estimates of the model reveal that the statistical uncertainty
surrounding Kydland and Prescott’s (1982) finding that the real business cycle
model explains a substantial fraction of the output variation in the US data is
large, though not as large as first suggested by Fichenbaum (1991).

Other results, however, illuminate aspects of the real business cycle model that
are less widely appreciated. A statistical test performed above fails to reject the
hypothesis that the real business cycle model’s parameters have remained stable
over time, despite important changes in monetary and fiscal policies. This result
confirms one of the model’s greatest strengths: it identifies parameters that are
truly structural. Furthermore, the hybrid model developed here—which takes the
real business cycle model as its starting point—delivers out-of-sample forecasts
that outperform those from an unconstrained VAR.

As the surveys in Cooley’s (1995) volume make clear, work on dynamic, sto-
chastic, general equilibrium theory has now moved well beyond its real business
cycle origins to consider the effects of monetary and fiscal policy shocks, house-
hold production, imperfectly competitive market structures, and numerous other
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extensions. The method developed here can be applied more generally to take
these extended models to the data and to assess their explanatory power, both
within-sample and out-of-sample. Doing so remains a task for future research.
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Table 1. Full Sample Estimates and Standard Errors

Parameter Estimate Standard Error

y 0.0045 0.0001

0 0.2342 0.0046

n 1.0039 0.0005

A 6.0952 0.5927

p 0.9983 0.0024

o 0.0050 0.0003
dyy 1.1961 0.1042
dye 0.5693 0.1434
dyn —0.5656 0.1288
dey 0.0983 0.0620
e 1.1497 0.0656
den —0.1977 0.0757
dpy 0.4177 0.1035
da. 0.4773 0.1395
dun 0.3297 0.0964
Uy 0.0060 0.0009
Ve 0.0057 0.0006
Up, 0.0006 0.0016
Vye 0.00001813 0.00000613
Vyh, 0.00000160 0.00000288
Ueh, 0.00000323 0.00000308
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Table 2. Forecast Error Variance Decompositions

Quarters Ahead
1
4
8
12
20

40

o e]

Quarters Ahead
1
4
8
12
20

40
00

A. Output

Percentage of Variance Due to Technology

63.7468
36.2954
27.8473
28.3861
34.3150
45.4542
84.9800

B. Consumption

Percentage of Variance Due to Technology

34.1186
28.2569
27.4942
30.3149
38.4756
52.9727
90.3517
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Standard Error

7.4107
6.1128
6.6408
7.7473
9.5320
12,2212
19.8384

Standard Error

5.8732
5.7496
7.1697
8.7008
11.0472
14.4447
14.2374



C. Investment

Quarters Ahead Percent of Variance Due to Technology Standard Error

1 42,7775 6.4653
4 29.4801 5.0084
8 22.1535 5.0172
12 21.8195 5.6030
20 23.9082 6.2863
40 27.0359 7.0614
00 51.3788 30.2073

D. Hours Worked

Quarters Ahead Percent of Variance Due to Technology Standard Error

1 97.8137 11.7038
4 17.1219 4.0571
8 5.6879 1.4949
12 3.7631 1.1457
20 2.9524 1.0593
40 2.4723 1.1227
00 2.28R82 1.3138
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Table 3. Subsample Estimates and Standard Errors

Subsample 1 Subsample 2
Parameter Estimate Std Error Estimate Std Error
y 0.0046 0.0001 0.0043 0.0002
0 0.2307 0.0048 0.2369 0.0048
n 1.0046 0.0005 1.0033 0.0004
A 6.3576 0.2582 6.4266 0.3356
p 0.9927 0.0100 0.9718 0.0412
o 0.0040 0.0012 0.0033 0.0012
dyy 1.1590 0.1615 0.8793 0.2499
dy. 0.3328 0.1831 0.6900 0.2246
dyp, —0.4850 0.1322 —0.3867 0.1772
dey 0.1265 0.0826 —0.0090 0.0987
dee 1.0413 0.0860 1.1849 0.1075
den, —0.2224 0.0711 —0.1349 0.0882
dpy 0.3732 0.1544 0.2228 0.1534
dpe 0.2130 0.1690 0.3993 0.1185
dun 0.4863 0.1315 0.5499 0.1470
Uy 0.0073 0.0022 0.0070 0.0007
Ve 0.0062 0.0009 0.0061 0.0010
vy, 0.0035 0.0027 0.0023 0.0005
Uye 0.00002664 0.00001400 0.00002858 0.00000990
Uyp, 0.00000881 0.00001954 0.00001590 0.00000153
Veh 0.00000461 0.00000934 0.00001093 0.00000478
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Table 4. Tests for Parameter Stability
Stability of all 21 Estimated Parameters: W = 40.2731***
Stability of the 6 Structural Parameters: W =9.0709

Stability of the Remaining 15 Parameters: W = 27.6233**

Note: ** and *** denote significance at the 5% and 1% levels.
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Table 5. Forecast Accuracy, 1985:1-1997:3

A. Output
Quarters Ahead 1 2
RMSE - Hybrid Model (%) 0.6373 1.1883
RMSE - VAR (%) 0.8488 1.4912
S 3.5418* 2.2876*

B. Consumption

Quarters Ahead 1 2
RMSE - Hybrid Model (%) 0.5743 0.8559
RMSE - VAR (%) 0.5895 0.8749
S 0.5257 0.3124

C. Investment

Quarters Ahead 1 2
RMSE - Hybrid Model (%) 2.7228 4.4673
RMSE - VAR (%) 3.6074 5.9378
S 3.3774** 2.2188*

D. Hours Worked

Quarters Ahead 1 2
RMSE - Hybrid Model (%) 0.4192 0.9138
RMSE - VAR (%) 0.7323 1.4194
S 4.5319*** 2.7056**

3

1.7046
1.9987
1.5419

3

1.1190
1.113%8
—0.0443

3

5.9743
7.693%8
1.7465"

3

1.4840
2.0750
2.1005**

4

2.1873
2.3778
0.7620

4

1.4495
1.3571
—0.502%8

4

7.1188
9.0156
1.5859

4

2.1113
2.6915
1.7485"

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels.
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