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Abstract

This paper proposes new estimators of the latent regression function in nonparametric censored and
truncated regression models. Our estimators are computationally convenient, consisting only of two
nonparametric regressions and a univariate integral. We establish consistency and asymptotic normality
for an implementation based on local linear kernel estimators. An extension permits estimation in the
presence of a general form of heteroscedasticity.

1 Introduction

Consider the censored regression model Yi � max[c�m�Xi � � ei ], where Xi is an observed d vector of
regressors Xki for k � 1� � � � � d, and ei is an unobserved error term that is independent of Xi (writing
the model as m � e instead of the more usual m � e simpliÞes later results). We will also later consider
errors having general forms of heteroscedasticity. In the case where E�ei � � 0� the function m equals
the regression function of the uncensored population. We assume that the censoring point c is a known
constant, which we can take to be zero without loss of generality, by subtracting c from Yi and from m�Xi �.
A common economic example of Þxed censoring is where Yi is observed purchases, which may either

be censored from above by rationing, or censored from below by zero if consumers can only buy but not
sell the product.
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Both the function m��� and the distribution F��� of the error e are unknown. The errors are not assumed
to be symmetric. This paper provides a simple consistent estimator of m�x�� k for some constant k� Under
an additional tail condition, we provide a consistent estimator of m�x� when m is the conditional mean
function of the uncensored population. Also, we show that F��� can be estimated given m�x��
The proposed estimator is extended to deal with the truncated regression model, where Yi is only ob-

served when it is not censored. We also describe extensions to deal with a general form of heteroskedasticity,
in which the distribution of e could depend in unknown ways on a subset of elements of x .
For any continuously distributed element xk of x� let mk�x� � �m�x���xk � We also provide direct

estimators of the derivatives mk�x� in both the censored and truncated regression models. These derivatives
are interpretable as the marginal effect of a change in x on the underlying uncensored population. They can
also be used to test or estimate parametric or semiparametric speciÞcations of m�x�� For example, mk�x� is
constant if m�x� is linear in xk , and mk�x� depends only on xk if m�x� is additive in a function of xk � Rate
root n converging estimates of a weighted average of mk�x� can be constructed, and used as estimates of
the coefÞcients in a partly linear speciÞcation of m�x�.
Parametric and semiparametric estimators of censored or truncated regression models include Amemiya

(1973), seminal Heckman (1976), Buckley and James (1979), Koul, Suslara, and Van Ryzin (1981), Powell
(1984), (1986a), (1986b), Duncan (1986), Fernandez (1986), Horowitz (1986,1988), Moon (1989), Powell,
Stock and Stoker (1989), Nawata (1990), Ritov (1990) Ichimura (1993), Honoré and Powell (1994), Lewbel
(1998a, 2000), Buchinsky and Hahn (1998). Unlike the present paper, most of these models either assume
m�x� � � �x or some other parametric form, or they provide estimates of average derivatives only up to
an unknown scale, or they assume that the error distribution is parametric. The fully nonparametric m�x�
model we consider is important because of the sensitivity of the parametric and semiparametric estimators
to misspeciÞcation of functional form.
A small number of estimators exist for nonparametric censored regression models, in most cases fo-

cusing on the case where c is a random censoring point independent of X (which is a model adopted in
many medical applications). Fan and Gijbels (1994) proposed a nonparametric censored regression esti-
mator based on a local version of Buckley and James (1979). While this estimator is consistent when the
censoring point is drawn from a continuous distribution, it is inconsistent in our situation of Þxed censor-
ing. This is because it relies on the existence of uncensored observations which are smaller than a given
censored observation. This can not happen when censored observations always take the same value (zero in
our case). It is not known if nonparametric Buckley James estimators can be constructed that are consistent
under Þxed censoring.
Other possible nonparametric censored regression estimators are based on quantile regressions. See,

e.g., Fan and Gijbels (1996, pp 200-203) for deÞnitions and references, Dabrowska (1995) for combining
quantiles, or Chaudhuri (1991) for local polynomial quantile regression, and Chen and Khan (2000). Let
��x� denote the proportion of observations that are censored at point X � x , and let 	q � 
q�e�X � x�
denote the q�th conditional quantile of e� which is constant with respect to x when e is independent of X�
Then 
q�Y �X � x� � m�x� � 	q when q � 1 � ��x�, and therefore a q�th quantile regression of Y on
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X can used to estimate m�x� (up to a constant 	q) but only if q � 1 � ��x�. The difÞculty with using
quantile methods is that, at each point x , only quantiles q that are less than ��x� can be used to estimate
m�x�� Notice that quantiles at different values of x (such as those where there is little censoring) provide
information about 	q but, unlike for parametric models, cannot be used or combined to help estimate m�x�.
Therefore, extreme quantiles may be required if some values of x result in heavy censoring.
Our estimator converges at the same rate as nonparametric quantiles, and will typically be more efÞcient

in applications where the errors are thin tailed, or where heavy censoring would require the use of extreme
quantiles. Our estimator also has standard errors that are easier to compute than quantile standard errors,
because the latter depend on estimates of the error density in the tails.
Unlike censored regression, we do not know of any existing estimator, other than the one we propose

here, for the nonparametric truncated regression model. However, it is likely that alternative estimators
for either censored or truncated models could be obtained by taking existing semiparametric estimators that
assume a known functional form form�x�, and replacing that functional form assumption with a polynomial
expansion. An advantage of our estimator over these actual and potential alternatives is its simplicity, and
its known limiting distribution. Also, we will show that our estimator can be extended to deal with some
very general forms of heteroskedasticity.
Our proposed estimators employ a novel technique of Þrst nonparametrically regressing Y on X , then

regressing a different function of Y on the Þts of this Þrst stage. It is likely that this new methodology will
be applicable to other contexts where identiÞcation can be based on differential expressions involving index
functions or latent variables.

2 The Censored Regression Function and its Derivatives

We will suppose that the following condition holds.
ASSUMPTION A1. Suppose that Y � � m�X� � e and we observe X and Y � I �Y � � 0�Y �� where

I is the indicator function that equals one if its argument is true and zero otherwise. The d � 1 random
vector X can contain both discrete and continuously distributed elements; let its support be�. The function
m is differentiable and has Þnite derivatives mk�x� � �m�x���xk with respect to the elements xk of x that
are continuously distributed, for all x � �. The error e is independent of x , with absolutely continuous
distribution function F�e� and Lebesgue density function f �e�. Let �e be the support of e�
We assume also that the observed data are independent, identically distributed observations �Yi � Xi � for

i � 1� � � � � n, although our main results, Theorems 1-4, under reasonable conditions hold as stated when
	Yi � Xi 
 is a stationary mixing process with 	ei 
 independent of 	Xi 
� as in Robinson (1982).
DeÞne the following functions:

F0�m� � F�m�

F��m� �

� m

��

F��1�e�de� 
 � 1� 2� � � �
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Theorem 1 Let Assumption A1 hold. For any nonnegative integer 
� if F� [m�x�] exists and lime��� e�F�e� �
0� then

E[Y � I �Y � 0��X � x] � 
!F� [m�x�]� (1)

PROOF. Since the conditional distribution of Y �X � x only depends on x through m�x�� we have
E[Y � I �Y � 0��X � x] � E[Y � I �Y � 0��m�X� � m�x�]� For 
 � 0

�E[Y � I �Y � 0��m�X� � m�x�]
�m�x�

�
�
� m�x�
��

[m�x�� e]� f �e�de
�m�x�

�

� m�x�

��


[m�x�� e]��1 f �e�de

� 
E[Y ��1 I �Y � 0��m�X� � m�x�]�

and lime��� E[Y � I �Y � 0��m�X� � e] � 0� so E[Y � I �Y � 0��m�X� � e] �
� e
��


E[Y ��1 I �Y �

0��m�X� � e]de� The result can now be proved by induction. For 
 � 0 we have E[I �Y � 0��X �

x] � Pr[e � m�x�] � F[m�x�] � F0[m�x�]� and assuming that the theorem holds for 
 � 1� we have
E[Y � I �Y � 0��m�X� � e] �

� e
��


E[Y ��1 I �Y � 0��m�X� � e]de �
� e
��


�
 � 1�!F��1�e�de �


!F��e��

Equation (1) has long been known for the special case of m�x� � � �x and 
 � 1. See, e.g., Rosett and
Nelson (1975), Heckman (1976), McDonald and MofÞtt (1980), and Horowitz (1986). Theorem 1 shows
that this expression holds for arbitrary m� F , and integers 
� and so can be exploited for nonparametric
estimation of m�x�.
DeÞne the following functions:

r�x� � E�Y �X � x�� rk�x� �
�r�x�
�xk

s�x� � E[I �Y � 0��X � x]� sk�x� �
�s�x�
�xk

q�r� � E[I �Y � 0��r�X� � r ]�

where xk is the k�th element of x . The function q is only deÞned on the support of r , but we continue it
beyond the support by setting it constant [and equal to the value at the corresponding end of the support]
elsewhere. Under A1, the function F1 is invertible on the set [infe��e e��� with range [0���� Let F�11
denote the inverse function of F1� which is well-deÞned on [0���� Let �0 be any nonnegative constant, and
let �r � supx�� r�x�� If �0 � r�x�, then integrals of the form ��0r�x� below are to be interpreted as ��r�x��0

.

Theorem 2 Let Assumption A1 hold and suppose that lime��� eF�e� � 0� Then for all x � �� r�x� �
F1[m�x�]� s�x� � F[m�x�], and q�r�x�� � F

�
F�11 [r�x�]

�
� Also, for all x � � having F[m�x�] 
� 0, we

have
m�x�� k � �0 �

�0
�
r�x�

1
q�r�

dr� (2)
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for some location constant k��0�� Furthermore, for each continuously distributed element Xk of X�

mk�x� �
rk�x�
s�x�

� (3)

PROOF. The equations for r� s� and q follow from Theorem 1. First, suppose that �0 � �r � Then using
the change of variables r � F1�m�� dr � F�m�dm, and the fact that q�r� � F

�
F�11 [F1�m�]

�
� F�m��

we obtain �0 � ��0r�x�[1�q�r�]dr � �0 �
� F�11 ��0�

F�11 �F[m�x�]�
[1�F�m�]F�m�dm � �0 �

� F�11 ��0�
m�x� 1dm � �0 �

F�11 ��0� � m�x�� so equation (2) holds with k � �0 � F
�1
1 ��0�� If �0 � �r � we write ��0r�x�[1�q�r�]dr �

��rr�x�[1�q�r�]dr � ��0�r [1�q�r�]dr � ��rr�x�[1�q�r�]dr � k1 � m�x� � [�r � F�11 ��r � � k1] for some
constant k1��0� depending on �0 and on the constant value of q on the range [�r � �0]� Finally, rk�x� �

�F1[m�x�]��xk � F[m�x�]mk�x� � s�x�mk�x��

A general concern in latent variable models is the extent to which identiÞcation is based on information
in the tails of the data. This applies particularly to estimation of the location or intercept. See, e.g., Andrews
and Schafgans (1998). In Theorem 2, the derivativesmk�x� are identiÞed locally, sincemk�x� � rk�x��s�x�,
and both rk�x� and s�x� are estimated just using data in the neighborhood of x . Similarly, m�x� itself is
identiÞed up to the arbitrary location constant k without tail data, since equation (2) only depends on a
range of X values that is large enough to obtain the function r�X� everywhere in the interval from r�x� to
�0.
Let�r�x� be a kernel or other nonparametric regression of Y on X� let�s�x� be a nonparametric regression

of I �Y � 0� on X , and let�q�r� be a nonparametric regression of I �Y � 0� on�r�X�� Many such nonpara-
metric estimators�r and�s have been shown to be uniformly consistent� Let �0 be some constant, and let�m�x� � �0 � ��0

�r�x�[1��q�r�]dr . Then, based on Theorem 2, �m�x� is a consistent estimator of m�x�� k��0�
for some constant k� and�rk�x���s�x� is a consistent estimator of mk�x ���We will later provide their limiting
normal distributions.
Theorem 2 does not require the error distribution to have a Þnite mean [because the upper tail of the

error distribution is unrestricted]. However, if the errors have mean zero, then the following theorem shows
identiÞcation (using tail data) of the location of m�x�.

Theorem 3 Let Assumption A1 hold and suppose that lime��� eF�e� � 0 and that E�e� � 0. Let
�e � supe��e e� and suppose that �r � �e� Then for all �0 � �r and for all x � � having F[m�x�] 
� 0

m�x� � �0 �
�0
�
r�x�

1
q�r�

dr� (4)

PROOF. By the tail condition, q��r � � 1 and we have q�r� � 1 for all r � �r �Therefore, �0 �
��0r�x�[1�q�r�]dr � �r���rr�x�[1�q�r�]dr�By Theorem 2, �r���rr�x�[1�q�r�]dr � �r�F

�1
1 ��r ��m�x�� Then,

using an integration by parts, E�e� � 0 � ��e
�� e f �e�de � ���e

��[F�e�� I �e � 0�]de � �F1��e�� �e�

so F1��e� � �e� Finally, since F�m� � 1 for all m � �e� we have F1��r � � �r �
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The assumption that �e � �r is equivalent to requiring that the censoring probability for any e is
less than 100%, and it implies that �0 � F�11 ��0� � 0 for any �0 � �r � so that if such a �0 is chosen
in �m�x� � �0 � ��0

�r�x�[1��q�r�]dr� it will converge to m�x�� In practice, we may want to replace �0 by
some estimate of the upper bound like��0 ���r � maxi�1�����n�r�Xi � (which converges to �r under general
conditions) or let��0 be some large Þxed number that is known to lie above �r �We do not need to consistently
estimate �r � all that is required is a��0 that is greater than or equal to��r with probability tending to one.
If the probability of 100% censoring is small but not equal to zero, then �r � F�11 ��r� will be small, so

the asymptotic location of this �m�x� will still yield close to mean zero latent errors. This is illustrated later
in a Monte Carlo study
Since s�x� � q[r�x�], an alternative derivative estimator would be mk�x� � �rk�x���q[�r�x�], which

might have different small sample behavior. Note also that, given this expression for mk�x�� our integral
expression for m�x� could be derived from �[1�q�r�]dr �

�
rk�x��q[r�x�]dxk , using a change of variables

from xk to r for each k.

2.1 The Error Distribution

For any e�, E[I �Y � 0��m�X� � e�] � F�e��, where F is the distribution function of the errors e.
Therefore, given the estimated regression function �m�x�, the distribution function F can be estimated as
a nonparametric regression of I �Yi � 0� on �m�Xi �. Lemma 1 in Lewbel (1997) can then be used to
directly estimate the variance and other moments of e, and this estimate of F can differentiated to provide
an estimate of the density of e. An alternative (less smooth) estimate of F is the Kaplan-Meier estimate
based on the residuals�ei � Yi ��m�Xi �� Let�e�i� be the i th largest residual and let ��i� � 0 when observation
Y�i� is censored, and ��i� � 1 otherwise. Then let

�F�e� � 1� �
i :�e�i��e

�
n � i

n � i � 1

���i�

� (5)

3 Nonparametric Truncated Regression

This section shows how m�x� and its derivatives mk�x� can be estimated in a nonparametric truncated
regression model. The nonparametric truncated regression model is identical to the nonparametric censored
regression model, except that data are only observed when Y � 0.
DeÞne the following functions:

R�x� � E�Y �X � x� Y � 0�� Rk�x� �
�R�x�
�xk

T �x� � E�Y 2�2�X � x� Y � 0�� Tk�x� �
�T �x�
�xk
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U [R] � E[�Y 2�2��R�X� � R�Y � 0]� U ��R� �
�U�R�
�R	R�m� � F1�m��F�m��

where xk is the k�th element of x � The function U is only deÞned on the support of R, but we continue it
beyond the support by setting it constant [and equal to the value at the corresponding end of the support]
elsewhere. In assumption A1� below we assume that the function 	R is invertible on the set �infe��e e���

with range �0���� Let 	R�1 denote the inverse function of 	R� which is well-deÞned on �0����Let 	R�1
denote the inverse function of 	R, and let �R � supx R�x��
To save space, we will simply assume the case in which E�e� � 0 and �e � �R � �0� If these conditions

do not hold, then the estimator will still yield m�x�, but with an arbitrary location, exactly as was the case
with censored regression.

ASSUMPTION A1�� Let Assumption A1 hold, except that what is now observed is Y � Y � I �Y � �

0� and X� � X I �Y � � 0�. The function 	R�e� is invertible for all e � infe��e e, E�e� � 0, and
lime��� e2F�e� � 0. Assume that �e � �R �

Theorem 4 Let Assumption A1� hold. Then for all x � �� R�x� � 	R[m�x�]� and U [R�x�] � T �x� �

F2[m�x�]�F[m�x�]� Also, letting �0 be any constant such that �0 � �R� for all x � � such that F[m�x�] 
�
0�

m�x� � �0 �
�0
�
R�x�

U�R�� RU ��R�
U �R�� R2

dR� (6)

and for each continuously distributed element Xk of X�

mk�x� �
R�x�Tk�x�� T �x�Rk�x�

R�x�2 � T �x�
� (7)

PROOF. For positive k� E�Y k�k�X � x� � E�Y k�k�X � x� Y � 0�F[m�x�] � E�Y k�k�X �

x�Y � 0� �1� F[m�x�]� � The equations for R� U� and T then follow from Theorem 1. To derive the
expression for m�x�, apply the change of variables R � 	R�m�� so the claim is that m�x� equals �0 �
�
�R�1[�0]
�R�1[R�x�]



U [	R�m�]� 	R�m�U �[	R�m�]� � 
U [	R�m�]� 	R�m�2� [�	R�m���m]dm. To simplify this expres-

sion, observe that �	R�m���m � [1� 	R�m� f �m��F�m�]dm, U [	R�m�] � F2�m��F�m�� and U �[	R�m�] �
�d[F2�m��F�m�]dm� dm�d	R�m� �


	R�m��U [	R�m�] f �m��F�m�� �[1 � 	R�m� f �m��F�m�]� Substi-
tuting each of these expressions into the integral, the claimed expression for m�x�� simpliÞes to �0 �� �R�1��0�
m�x� 1dm � �0 � [	R�1��0� � m�x�]� It was shown in the proof of Theorem 3 that, given �e � �R ,
we have F1��0� � �0 for any �0 � �R � By deÞnition, F��0� � 1 for any �0 � �R� so 	R��0� � �0� and
therefore �0 � 	R�1��0�, which completes the derivation of the expression for m�x�� Finally, taking deriva-
tives of the derived expressions for R�x� and T �x� gives Rk�x� � �1� R�x� f [m�x�]�F[m�x�]�mk�x� and
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Tk�x� � �R�x�� T �x� f [m�x�]�F[m�x�]�mk�x�, which when substituted into the claimed expression for
mk�x� yields mk�x��

With truncated data, a nonparametric regression of Y on X will equal �R�x�, an estimator of R�x�� Simi-
larly, nonparametrically regressing Y 2�2 on X with truncated data will yield an estimator �T �x�, and we have
derivative estimators �Rk�x� and �Tk�x� for continuously distributed elements xk of x � Finally, nonparametri-
cally regressing Y 2�2 on �R�X� with truncated data will yield an estimator �U �R�, and �U ��R� � ��U�R���R�
Given the above theorem, these nonparametric regressions can be substituted into the above expression for
m�x� and mk�x� to yield semiparametric plug-in estimators for these functions.

3.1 The Error Distribution in Truncated Regression

It follows fromTheorem 3 that, for any e�, E[Y �m�X� � e�� Y � 0] � 	R�e��, and 1�	R�e�� � F�e���F1�e�� �
� lnF1�e����e�� so F1�e�� � exp

� e�
��
1�	R�m�dm� and F�e�� � �F1�e����e� �

[1�	R�e��] exp � e�
��

1�	R�m�dm� Therefore, given the estimated regression function �m�x�, the distribution
function F�e� for any e can be estimated as �F�e� � [1��	R�e�] exp � e

��
1��	R�m�dm, where the estimated

function �	R is a nonparametric regression of Yi on �m�Xi � using the truncated data, and the integral is evalu-
ated numerically.

4 Estimation

We propose estimators based on local linear regression because of their attractive properties with regard to
boundary bias and design adaptiveness [see Fan and Gijbels (1996) for discussion and references]. This
is important here because we may be integrating over boundary regions in (2) and (6). We just deÞne the
estimators of m and its partial derivatives in the censored regression case. The estimator in the truncated
case involves analogous substitutions; we refer the reader to Lewbel and Linton (1999) for further details.
Given generic observations 	Yi � Xi 
ni�1, we estimate the regression function g�x� � E�Yi �Xi � x� and

its derivatives using the multivariate weighted least squares criterion

n�
i�1
[Yi � b0 � b1 � �Xi � x�]2K��Xi � x��hn�� (8)

where K�u� is a nonnegative kernel function on Rd and hn is a bandwidth parameter. Minimizing (8) with
respect to the scalar b0 and the vector b1 � Rd gives an estimate ��b0�x���b1�x�� of �g�x�� �g�x���x�.
Let�r�x� be the nonparametric regression of Yi on Xi , constructed as in (8), and let �q�r� be the one-

dimensional nonparametric regression of I �Yi � 0� on the generated regressor�r�Xi � evaluated at�r�Xi � �
r�We then let

�m�x� � �0 �
�0
�

�r�x�

1�q�r�dr (9)
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for some Þxed positive �0� and to conserve space redeÞne m�x� � m�x� � �0 � F
�1
1 ��0�� The univariate

integral can be evaluated numerically, and �m�x� can be computed very quickly.
If �r � �e, then the same limiting distribution will be obtained if �0 is replaced by��r � maxi�1�����n�r�Xi �

or��Y � maxi�1�����n Yi because (as discussed after Theorem 3) in that case��r�F�11 ���r � � 0 for all��r � �e,
and the probability that��r � �e goes to one at a fast rate. Note that in this case m�x� will be located so as
to make E�e� � 0.
Let�rk�x� and�s�x� be nonparametric estimators of the functions rk�x� and s�x� as deÞned above. Specif-

ically, for�rk�x� and�s�x� we take Yi � Yi and Yi � 1�Yi � 0� in (8), respectively, while Xi are the given
covariates. We then let

�mk�x� �
�rk�x��s�x� (10)

for k � 1� � � � � d�
We now provide the pointwise distribution theory for �m�x�� the distribution theory for �mk�x� is trivial,

and can be found in Lewbel and Linton (1999). We make the following assumptions on the kernel K and
on the data distribution.
ASSUMPTION A2. The support � is compact. The functions � 2r � � 2s � fX � and s� where � 2r �x� �

var�Y �X � x� and � 2s �x� � var[1�Y � 0��X � x]� while fX is the Lebesgue density of X� are con-
tinuous on �� and infx�� fX �x� � 0 and infx�� s�x� � 0� The conditional distribution G�y�u� of Y given
X � u is continuous at the point u � x � E



�Y �t

�
� � for some t � 2� The regression functions r and s

are three times continuously differentiable on�.
ASSUMPTION A3. The kernelK is symmetric about zero, bounded, and has compact connected support

�K�u� � 0 for ��u�� � A0 some A0), and is differentiable in all its arguments. Let ��K��2 �
� K2�u�du� The

bandwidths satisfy hn � 0 and lim supn�� nhd	4n � ��

Theorem 5 Suppose that Assumptions A1-A3 hold� Then, there exists a bounded continuous function bm���
such that for any x in the interior of �,

�
nhdn

��m�x�� m�x�� h2nbm�x�� �� N
�
0�

� 2r �x�
fX �x�s2�x�

�K�2
�
�

The asymptotic variance of �m�x� increases with the amount of censoring [1 � s�x�] and the vari-
ance � 2r �x� of Y� The corresponding 	-quantile estimator has asymptotic variance proportional to 	�1 �
	�� f �F�1�	��2� where f is the density of the error e. The relative efÞciency of these two estimators de-
pends as usual on the tail thickness of the error distribution. The asymptotic variance of our estimator can
be consistently estimated from the estimates of � 2r �x�� s�x�� and r�x� [note that the bias term is of smaller
order than the standard deviation provided nhd	4n � 0]. In contrast, to estimate the asymptotic variance of
the quantile estimator requires estimates of the error density.
The truncated regression estimator, and the estimators of the derivatives mk�x� are also asymptotically

normal. Their distributions are provided in Lewbel and Linton (1999). That working paper also shows that
averages of the derivative estimators �mk�x� can converge at rate root n� An application of these average
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derivative estimates is that they can be used to estimate censored or truncated regression models in which
m�x� is speciÞed as partly linear.

5 Monte Carlo Simulation

A Monte Carlo study is employed to check the Þnite sample behavior of our estimator. The design for the
study is Y � max [m�X�� e� 0], m�x� � x3, with scalar X ∼ Uniform[�1� 1] and e ∼ N �0� 0�25�� Given
this design, the amount of censoring as a function of x is given by 1��



2x3

�
� where���� is the standard

normal c.d.f., so the percent of censoring ranges from 100% at x � �1� to 50% at x � 0, to 0% at x � 1�
The sample size is n � 200, and the number of Monte Carlo simulations is 1000.
We consider the following censored regression estimator

�m �x� ���r � � ��r

�r�x�

1�q �r�dr�
where��r � maxi�1�����n�r�Xi �� The component functions such as�r �x� and�q �r� are estimated as nonpara-
metric kernel regressions, using normal kernels. The integral in �m �x� is evaluated numerically using the
trapezoid method. Bandwidths are selected by grid search to minimize simulation based estimates of the
integrated squared error, ISE�

�
[�m �x�� m �x�]2 fX �x�dx � Average absolute error and average squared

error were also evaluated and yielded virtually the same bandwidths, which were h � 0�2 for�r �x� and
h � 0�05 for�q �r�.
Details of this procedure, and GAUSS code for all of the Monte Carlo simulations reported here, are

available from the authors on request.
For comparison, the function m�x� is also estimated using quantile regression, as follows. The condi-

tional empirical distribution function is Þrst estimated as

�F�y�x� �
�n
i�1 �

�
x�Xi
h1

�
�
�
y�Yi
h2

�
�n
i�1 �

�
x�Xi
h1

� �

where � ��� is the standard normal density function. Then �F�y�x� is numerically inverted and the q-quantile
estimate is �mq �x� � �F�1

q �y�x�� 	q�

where 	q is the q-th quantile of the error term. The true 	q is used here, to make the location of the quantile
estimates comparable to the E�e� � 0 location of our estimator. The optimal bandwidth for the quantile
regression estimator �mq �x� is obtained using the same procedure as for �m �x�.
Figure 1 shows the results for the censored regression estimator �m �x� � and Figure 2 shows the median

regression estimator �mq �x� for q � 0�5. On these Þgures the solid line is the true m �x� � while dotted
lines show the mean, median, 5% and 95% quantiles of the estimates of m �x� � across the 1000 monte carlo

10



simulations. The difference between the solid line and the mean or median dotted lines provides a measure
of bias of the estimator, while the 5% and 95% lines provide a measure of spread of the estimates, and may
be interpreted as simulation based estimates of conÞdence bands.
An interesting feature of this design is that it formally violates our assumption regarding location esti-

mation, since �r � supx r�x� � 1 while � � sup e � �. Therefore, in this design the �bias� in location
(relative to locating m�x� so as to make the errors have mean zero) is 1 � F�11 �1�, where the function
F1�e�� equals the integral from �� to e� of the distribution function of a normal having mean zero, vari-
ance one fourth. However, since Pr�e � 1� is tiny, the magnitude of the location bias seen in Figure 1 is
correspondingly small.
Comparing Þgures 1 and 2 shows that for positive x� where the amount of censoring is less than 50%,

both our estimator �m �x� and the nonparametric median regression �m�5 �x� perform about equally well.
However, for negative x , our estimator continues to perform well, with conÞdence bands only mildly en-
larged by the greater degree of censoring in that region. Median regression is of course inconsistent in that
region; consistent quantile estimation in the negative x region requires more extreme quantiles. Experi-
ments (not reported) using lower quantiles, e.g., q � 0�25� increase the range of x values for which �mq �x�
is consistent, but also correspondingly widen the estimator�s conÞdence bands. Use of different quantiles
also changes the location of quantile estimates (through 	q). EfÞciency of the quantile estimators might
be increased by combining estimates from multiple quantiles. Our estimator does not require arbitrary se-
lection of one or more quantiles, remains consistent everywhere inside of the support of x , and can have
location determined by E�e� � 0.
Limited experiments (not reported) with different bandwidths were also performed. Doubling the band-

widths ßattens �m �x� � causing increased bias, primarily in the tails of the data. Halving the bandwidths has
little effect on the average or median values of �m �x� across the simulations, but increases the variance of
the estimates and hence widens the conÞdence bands.
Similar results to those reported are obtained when comparing our derivative estimator �mk �x� to non-

parametric quantile derivatives. See Lewbel and Linton (1999) for details.

6 Extensions and Conclusions

We have provided estimators for the nonparametric censored and truncated regression models with Þxed
censoring. Our estimators are computationally convenient, consisting only of two nonparametric regres-
sions and a univariate integral. SpeciÞcally, we employ a novel method of Þrst nonparametrically regressing
Y on X , next regressing a different function of y on the Þts of this Þrst stage, and Þnally integrating the
result. This new methodology exploits derivative relationships between conditional expectations of y and
of functions of y, and so might be extended to other contexts in which differential expressions involving
index functions or latent variables can be obtained.
Our estimator could be used if (instead of a Þxed censoring point) the censoring point is a random
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variable Ci that is known for all observations, by redeÞning Yi and m�Xi � as Yi � Ci and m�Xi �� Ci , and
then redeÞning Xi to include Ci � Our estimator would then permit the variable Ci to affect Yi like any other
regressor in Xi , in addition to determining the point of censoring.
We provided limiting distributions assuming all the elements of x are continuous, but the estimator can

very easily handle inclusion of discrete regressors as well. The Þrst stage nonparametric regression�r�x�
would simply include both types of regressors , either by doing a separate local linear regression for each
discrete cell, or by smoothing over cells as in, e.g., Racine and Li (2000). The rest of the estimation would
then proceed exactly as before.
Our estimators can be extended to allow for very general forms of heteroskedasticity. Let z be any

subset of the elements of x � Instead of homoskedasticity, assume now that the error distribution depends in
arbitrary, unknown ways on the subset of regressors z. For example, in a demand model the latent errors
are usually interpreted as unobserved preference attributes, and so are typically assumed to not depend on
prices. In that application z might equal all of the elements of x except prices.
Assume that F�e�x� � F�e�z�� E�e�z� � 0� and supp�e�z� � supp�e� � supp[m�x��z]. Let F1�m�z� �� m

��
F�e�z�de. Assume the function F1 is invertible on its Þrst element, and deÞne the function F�11 by

F�11 [F1�m�z�� z] � m. As before, let r�x� � E�y�x�, and now deÞne q[r�x�� z] � E[I �Y � 0��r�x�� z]�
Then by Theorem 1, but now conditioning on z�

r�x� � F1[m�x��z] � q[r�x�� z] � F
�
F�11 [r�x�� z]�z

�
�

Similarly, following the steps of Theorem 2 while conditioning on z shows that, for all x � � having
F[m�x��z] 
� 0,

m�x�� k � �0 �
�0
�
r�x�

1
q[r� z]

dr (11)

for suitable �0 and k��0�� The estimator based on this equation is identical to the homoskedastic estimator,
except that �q will be a nonparametric regression on�r and on z. An analogous derivation can be applied
to the truncated regression estimator. We do not know of any other estimators for censored or truncated
regression that permit this general form of heteroskedasticity, even in a semiparametric context wherem�x�
is Þnitely parameterized.

A Appendix

SKETCH PROOF OF THEOREM 5. Write �q�s� � �q�s��r1� � � � ��rn�� where�r j � �r�X j �� Rearranging terms,
and making a mean value expansion we obtain

�m�x�� m�x� � 1
q�r�x��

��r�x�� r�x��� �0
�
r�x�

��q�s�� q�s��
q2�s�

ds �
�q ��r�x��
2�q2�r�x�� ��r�x�� r�x��2

�
�0
�

�r�x�

��q�s�� q�s��2�q�s�q2�s� ds �
�q�r�x��� q�r�x���q�r�x��q�r�x�� ��r�x�� r�x�� �
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where r�x� and r�x� are intermediate values between r�x� and�r�x�. Let �n � max	1�
�
nhdn� h2n
� Under

our conditions, for some � � 0 : infr�x��	�s��0		 q�s� � 0� supr�x��	�s��0		 ��q ��s�� � Op�1�� and
�supr�x��	�s��0		 ��q�s�� q�s���2 � op��n� [see Masry (1996a,b)]� Therefore, we have

�m�x�� m�x� � �r�x�� r�x�
s�x�

�
�0
�
r�x�

��q�s�� q�s��
q2�s�

ds � op��n��

More detailed arguments, given in Lewbel and Linton (1999), show that

�0
�
r�x�

��q�s�� q�s��
q2�s�

ds � h2nb�x�� op��n�

for some bounded continuous function b�x�� Finally, we apply Theorems in Masry (1996a,b) to�r�x��r�x�
to obtain the result.
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