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Abstract
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dividuals travel along the corridor from home to work in the morning rush hour and
have the same work start time. Each individual decides when to depart from home
so as to minimize the sum of travel time costs, time early costs, and toll costs (when
applicable). This paper investigates the pattern of traffic flow over the morning rush
hour and the social optimum, and considers the implications for land use and road
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The Corridor Problem

1 Introduction

Consider a single road which connects a continuum of residential locations to the CBD

(central business district) and which is characterized by flow congestion. Population density

and road width are exogenous and vary along the road. All (identical) individuals travel

along the road from home to work in the CBD in the morning rush hour, and have a common

work start time. Late arrival is not permitted. Consequently, each individual decides when

to leave home so as to minimize the sum of travel time costs, time early costs, and toll costs

(where applicable).

This paper investigates the pattern of traffic flow along the corridor over the morning

rush hour in both the untolled equilibrium and the social optimum. It then considers the

implications of the results for equilibrium residential land use and the cost-benefit analysis

of road capacity.

This “corridor problem” is a central problem in the theoretical literature on traffic con-

gestion and land use, tieing together three previously unconnected branches of the literature.

The first is the 70’s literature on traffic congestion in the monocentric city model (Solow

and Vickrey (1971), Dixit ( ), Solow (1972,1973), Kanemoto (1976), and Arnott (1979)).

The last four papers considered the optimal allocation of land to a radial congestible road

(circumferential travel being costless) in the basic monocentric city model, in both the first

best where optimal congestion tolls are applied and in the second best where they are not.

The models were static, and assumed that an individual’s travel cost between distances x

and x + dx along the road away from the CBD depends on the “volume-capacity” ratio

there, with volume treated as the number of individuals living beyond x. All the aforemen-

tioned contributors to the literature recognized this as an uncomfortable, “reduced-form”

assumption — a static approximation of an intrinsically dynamic phenomenon. Providing
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an explicit dynamic treatment would have required both treating individuals’ trip-timing

decisions and tackling the mathematics of non-stationary traffic flow theory, which seemed

intractable.

Vickrey made two breakthroughs in his 1969 paper. He recognized that an individual

decides when to travel so as to minimize trip price, where trip price includes not only the

money and time costs of the trip, as well as tolls payable, but also the cost of arriving at

the destination inconveniently early or late — what has come to be known as “schedule

delay cost”. He also recognized that tractability could be achieved by modelling congestion

as queues behind bottlenecks. His model in that paper, the first tractable model of the

dynamics of rush-hour congestion, has come to be referred to as the “bottleneck model”.

The second branch of the literature to which the corridor problem is related is the elab-

oration of the bottleneck model. The bottleneck model is aspatial. Arnott, de Palma, and

Lindsey(1993) took a first step towards making the bottleneck model spatial by examining

two bottlenecks in series with two entry points and a single exit point. Arnott and Lindsey

(in rough notes) attempted to generalize the analysis to an arbitrary number of bottlenecks

in series, with entry between each pair of bottlenecks. Unfortunately, the solution entailed

cases, with the number of cases increasing rapidly in the number of bottlenecks.

The third branch of the literature to which the corridor problem is related are papers by

Yinger (1993) and Ross and Yinger ( ). Yinger (1993) explored the traffic pattern along

a corridor under the assumption that all individuals at a particular location depart for work

at the same time. Ross and Yinger ( ) demonstrated that neither this assumption nor

the assumption that at each location individuals depart at a constant rate over a rush hour

of fixed duration (which they refer to as the Solow assumption) is consistent with the “trip-

timing condition” that no individual can reduce her trip cost by changing departure time,

but they stopped short of deriving the temporal-spatial pattern of departures consistent

with the trip-timing condition.
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Finally the coridor problem extends Newell (1988),which examined the equilibrium and

optimum temporal-spatial patterns of trafic congestion on a point-input, point-output sec-

tion f road during the morning rush hour, with flow congestion.

Since the first branch of the literature provides a rich treatment of the interaction be-

tween land use and transport congestion, which is of considerable theoretical and practical

interest, this paper’s principal contribution is to investigate how good an approximation the

static treatment of congestion in the 70’s literature is to a proper treatment which incorpo-

rates the physics of traffic flow and accommodates the trip-timing condition, and whether

the qualitative results of the 70’s literature are robust to a proper treatment of congestion.

Unfortunately, the problem of analytical intractability remains. The paper does succeed

in providing a qualitative characterization of the equilibrium departure pattern, but going

beyond this resorts to numerical solution.

Section II gives a precise statement of the corridor problem with fixed land use, and

provides a qualitative characterization of the equilibrium and optimal departure patterns

for the general case. Section III describes an intuitive algorithm that generates approximate

numerical solutions to the corridor problem, and applies the algorithm to solve for trip costs

as a function of distance from the CBD for the untolled equilibrium and a pseudo-social

optimum, and compares the results to those that would be obtained with the static treatment

of congestion. It then performs a similar exercise with respect to the shadow rent on land

in road use [subsequent sections which are not yet completed will endogenize the land use

pattern, as was done in the seventies literature].

4



2 The Corridor Problem with Fixed Land Use: Flow

Congestion

2.1 Description of model

A notational problem is immediately encountered on how to index locations. In the mono-

centric city model, locations were naturally indexed according to distance from the CBD.

However, the bottleneck and related models which incorporate trip timing have focused on

the morning commute 1, in which travel is from residential locations to the CBD, and it

is natural to describe cars as going “forward” (in the direction of an increasing locational

index) rather than backwards. The choice has been made to index locations in terms of

distance from the outer boundary of residential settlement. This presents no difficulty in

the next three sections where the land use pattern is fixed, but will subsequently, in those

sections where land use is endogenous.

Documents/Nika/Arnott/figures/Slide3.wmf

Consider a traffic corridor which connects a continuum of residential locations, “the

suburbs”, to the CBD, which lies at the eastern end of the corridor. Location is indexed by

x, distance from the outer boundary of residential settlement to the CBD, which is located

at x̄ ; w (x) denotes the exogenous width of the road at x ; and N (x) dx the exogenous

number of individuals living between x and x + dx.

Each morning all individuals drive from their homes to work in the CBD, which starts at

the common time t∗. Late arrivals are not permitted, and the common travel cost function

is2

C = α(traveltime) + β (timeearly) ,

where α is the value or cost of travel time, and β the value or cost of time early at work.

1In the evening commute, it is not clear whether schedule delay costs should be defined with respect to
a desired departure time from work or a desired arrival time at home. See de Palma and Lindsey [ ] for
the state of the art with respect to the evening-commute bottleneck model.

2The analysis can be extended straightforwardly to treat more general travel cost functions. This one is
employed because it greatly simplifies the analyisis and facilitates exposition.
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Let t denote time, and T (x, t) the travel time of an individual who departs from x at time

t. Then

C (x, t) = αT (x, t) + β (t∗ − (t + T (x, t))) , 1 (1)

where t + T (x, t) is the individual’s arrival time at work and hence t∗ − (t + T (x, t)) time

early.

The final feature of the economy to be described is the technology of traffic congestion.

Classical flow congestion is assumed, which combines the equation of continuity with an

assumed technological relationship3 between density and velocity and appropriate boundary

conditions. The equation of continuity is simply a statement of conservation of mass, that

the change in the number of cars on a section of road of infinitesimal length equal the inflow

minus the outflow. Letting D (x, t) be the density of cars (per unit area) at location x at

time t, and v(x, t) the corresponding velocity, the equation of continuity is

Dtw = −vxwD − vw
′
D − vwDx + n, 2 (2)

where subscripts denote partial derivatives, w
′ ≡ d(w(x))

dx
, and n (x, t) is the entry rate onto

the road at location x at time t. The relationship between velocity and density can be

written as

v (x, t) = V (D (x, t)) , 3 (3)

with V
′ ≡ dV (D)

dD
< 0. Substituting (3) into (2) yields

Dtw = −V
′
DxwD − V w

′
D − V wDx + n, 4 (4)

which is a partial differential equation for D (x, t) . The appropriate boundary conditions

are simply that the road be empty prior to the start of the rush hour.

3From the Fundamental Identity of traffic flow theory that flow≡ density x velocity, this technological
relationship can be expressed as a relationship between any pair of flow, density, and velocity. The density
in the fundamental identity is per unit length and so corresponds to Dw.

6



2.2 Characterization of the no-toll equilibrium

There are two equilibrium conditions. The first is that everyone commute, the second the

trip-timing condition that no individual can reduce her trip cost by departing at a different

time.

Let D(x, t) denote the set of (x, t) for which departures occur in equilibrium. The

everyone-commutes condition is that

∫
(x′ ,t)∈D(x′ ,t)

n
(
x

′
, t
)
dt = N

(
x

′)
forallx

′ ∈ (0, x̄) 5 (5)

at each location, the integral of the departure rate over the set of departure times for that

location equals the population at that location. Let p (x) be the equilibrium trip price at

location. The trip-timing condition is then

C (x, t) {.= p (x) for (x, t) ∈ D(x, t)≥ p (x) for (x, t) /∈ D(x, t),6 (6)

which states that at no location can the trip price be reduced by travelling outside the

departure set at that location.

A no-toll equilibrium is then a departure pattern n (x, t) ≥ 0 and a trip price function

p (x) such that:

i) (5) is satisfied

ii)
n (x, t) (C (x, t)− p (x)) = 0

C (x, t) ≥ p (x)

}
for all (x, t)

and C (x, t) is given by (1) , with T (x, t) obtained from (4) with the boundary conditions

that there be no traffic on the road either before the start of the rush or after t∗. Condition

ii) is written in variational inequality form4.

4Rather than impose the condition that there be no traffic on the road after t∗, one can define equilibrium
as the limiting equilibrium as γ ↑ ∞, with the cost function

C (x, t) = αT (x, t) + max (β (t∗ − (t + T (x, t))), γ (t + T (x, t)− t∗)))

where γ is the cost of time late; late arrival is infinitely expensive rather than simply disallowed.
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Throughout the rest of the paper it is assumed that α > β, which is supported by

empirical observation (Small (1982)). This assumption ensures that n (x, t) has no mass

points, and that T, Tt, Tx, and Txt are continuous functions.

From (1) and (6),

p (x) = αT (x, t) + β(t∗ − t− T (x, t)) for (x, t) ∈ D (x, t) , 7a (7)

implying that

T (x, t) =
p (x)− β (t∗ − t)

α− β
for (x, t) ∈ D (x, t) .7b (8)

Thus, at each location, over the departure set at that location travel time increases linearly

in departure time at the rate β
α−β

.

It will prove convenient at this point to make the transformation of variables

a (x, t) = t + T (x, t) , 8 (9)

where a (x, t) is the arrival time at the CBD of an individual who departs location x at time

t. The inverse transformation is

t (x, a) = a− T̂ (x, a) , 8

′
(10)

which relates departure time to arrival time. The trip-timing condition, expressed in terms

of arrival time, is

p (x) = αT̂ (x, a) + β (t∗ − a) for (x, a) ∈ A (x, a) , 9 (11)

where A (x, a) is the set of (x, a) for which the arrival rate is positive. The advantage of

working in terms of arrival time is that T̂
(
x, a

′
)

tracks the cohort of vehicles that arrive at

time a
′
. Then

T̂ (x + dx, a) = T̂ (x, a) +
dx

v
(
x, a− T̂ (x, a)

) , 10a (12)
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since a vehicle which arrives at a passes location x at a− T̂ (x, a) . Then

T̂x (x, a) =
1

v
(
x, a− T̂ (x, a)

)
=

1

V
(
D
(
x, a− T̂ (x, a)

)) .10b (13)

Differentiation of (9) with respect to a and x yields

.}T̂a =
β

α
T̂ax = 0for (x, a) ∈ intA (x, a) , 11a, b (14)

while differentiation of (10b) with respect to a yield

T̂xa (x, a) = −
V

′
Dt

(
1− T̂a

)
V 2

12 (15)

Since V and V
′
are strictly positive, (11) and (12) together imply that

Dt

(
x, a− T̂ (x, a)

)
= 0 for (x, a) ∈ intA (x, a) 13a (16)

and

Dt (x, t) = 0 for (x, t) ∈ intD (x, t) .13b (17)

Eq. (13b) states that traffic density is constant at a particular location over the interior of

each connected subset of the departure set at that location, which implies from (4) that the

departure rate too is constant over the interior of each connected subset of the departure

set at that location.
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A departure pattern consistent with these results is displayed in Figure 2. The function

t0 (x) indicates the time of the first departure from x, and the function t` (x) the time of

the last departure. At x, departure occurs at the rate n(x, t) = Nx

tl(x)−to(x)
from to(x) to

tl(x). The departure set is the area between t0 (x) and t` (x) . A dashed-and-dotted lines

indicates the time line of a particular cohort of cars, with slope equal to the inverse of

velocity. Cohort (1) contains cars that enter the road at the rate n (x, t) = N(x)
t`(x)−t0(x)

from
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x = 0 to x = x1, with no cars entering closer to the CBD than x1. Cohort (2) departs after

cohort (1). The departure pattern is the same for cohort (2) as for cohort (1) up to x1, but

differs from cohort (1) in that entry occurs from x1 to x2 as well. The entry of these cars

increases the travel time of all the cars entering the road from x = 0 to x = x1 by the same

amount Succeeding cohorts follow the same pattern, with travel conditions unchanged from

the boundary of the city to the location closest to the CBD at which entry occurs, with

this location moving continually closer to the CBD at a rate such that the travel time of all

cars entering the road at more distant locations increases at the rate β
α−β

. The final cohort

contains cars which enter from all locations and arrives at the CBD at t∗.

The departure pattern satisfies the condition that everyone commute, since at any loca-

tion x departures occur at the rate N(x)
t`(x)−t0(x)

for a period of time t` (x)− t0 (x) . Furthermore

at x: i) entry earlier than t0 (x) results in higher trip costs than entry between t0 (x) and

t` (x) ; ii) trip costs are the same for entry at any time between t0 (x) and t` (x) , the in-

crease in travel time costs being exactly offset by the decrease in time early costs; and iii)

entry later than t` (x) results in late arrival, which is not permitted. Thus, the indicated

departure pattern satisfies the trip-timing condition too.

Such a departure pattern will be referred to as a horn departure pattern since its depar-

ture set (in x− t space) has the shape of a horn — see Figure 2.

It can be shown that the indicated departure pattern is the unique equilibrium departure

pattern by developing an exhaustive typology of alternative departure sets satisfying the

everyone-commutes condition, and constructively demonstrating that each violates the trip-

timing condition 5.

Documents/Nika/Arnott/figures/Slide1.wmf

Additional insight may be gained by displaying the equilibrium arrival set A(x, a). In

x-a space, cohorts are characterized by horizontal lines since all cars in a cohort arrive

5Perhaps there is a theorem from the theory of partial differential equations which can be used to
establish uniqueness.
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at the CBD at the same time, wherever they entered the road. The functions a0 (x) and

a` (x) give the times of the first and last arrivals from x at the CBD. Since the last cohort

contains cars from every location, a` (x) is a horizontal line at t∗. Thus, the equilibrium is

fully characterized by the function a0 (x) .

Much ink has been spent on hypercongestion-travel on the positively-sloped portion of

the flow-velocity curve. From the perspective of the corridor problem, there is nothing espe-

cially paradoxical about hypercongestion in an untolled equilibrium. Consider the extreme

case where the negatively-sloped portion of the flow-velocity curve is in fact completely ver-

tical. To satisfy the trip-timing condition, travel time must be higher for later cohorts, and

this would require that travel be hypercongested for all (x, t) for which n (x, t) > 0. Thus,

hypercongestion with flow congestion is completely analogous to queuing with bottleneck

congestion. Whether hypercongestion can arise at the social optimum is considered later.

3 Characterization of the social optimum

Consider a section of road between x and x + dx. The cost of travel time on that section

of road between t and t + dt equals the flow of cars that traverse that section of road in

that time interval, f (x, t) dt, times the time it takes each car to traverse that section of

road times the value of travel time, (f (x, t) dt)
(

dx
v(x,t)

)
α. From the fundamental identity of

traffic flow, flow=density per unit length times velocity. Since density per unit length equals

density per unit area times width, the cost of travel time on that section of road over that

interval of time is simply D (x, t) w (x) dx dt. Thus, total travel time costs on the road are

TTC = αT (x,t)D (x, t) w (x) dxdt, 14a (18)

where T (x, t) is the set of (x, t) for which there are cars on the road. The cost of time early

for arrivals at the CBD between t and t+dt is (f (x̄, t) dt) (t∗ − t) β, so that total time early
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costs are

TEC = β
∫

A(0,t)

D (x̄, t) w (x̄) V (D (x̄, t)) (t∗ − t) dt.14b (19)

The optimal control problem is therefore to choose 〈n (x, t)〉 to minimize TTC + TEC,

subject to the everyone–commutes constraint, a non-negativity constraint on 〈n (x, t)〉 , a

constraint that D (x̄, t) = 0 for t > t∗, which ensures no late arrivals, the equation of motion

for traffic flow on the road, (4), and the boundary condition that there be no traffic on the

road prior to t0(0). n (x, t) is the control variable, and D (x, t) the state variable.

< D (x, t) >< n (x, t) >min Λ = α
∫ ∫

D (x, t) w (x) dx dt+β
∫

D (x̄, t) w (x̄) V (D (x̄, t)) (t∗ − t) dt

s.t. i) (5)

ii) (4)

iii) n (x, t) ≥ 0 (15)

iv) D (x̄, t) = 0 for t ≥ t∗

Robson ( ) employs a heuristic solution method to solve an analogous optimal control

problem. First, x is held fixed, and the problem treated as a regular optimal control program

with an ordinary differential equation constraint, with time as the running variable. Then t

is held fixed, and the problem treated as a regular optimal control program with an ordinary

differential equation constraint, with location as the running variable.

Solution to be determined. Hypercongestion, which occurs if an increase in

density decreases flow — i.e. DV
′
+ V < 0- to be investigated. Conjecture:

No hypercongestion occurs (though it can occur at the SO on a network —

analogous to de Palma and Jehiel)

If the social optimum can be achieved through tolling, each individual should face a trip

price equal to marginal social cost:

p (x) =
∂Λ

∂N (x)
, 16 (20)
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where ∂Λ
∂N(x)

is given by the shadow price on (5) . The corresponding optimal Pigouvian toll

would be

π∗ (x, t) = p∗ (x)− αT ∗ (x, t)− β (t∗ − (t + T ∗ (x, t))) .17 (21)

4 IV. The Corridor Problem with Fixed Land Use:

“Buses”

4.1 Model Specification

Unfortunately the corridor problem with flow congestion does not admit closed-form solu-

tions. Solving the corridor problem for particular examples requires the use of the computer,

which in turn requires discretizing the problem. Discretization entails, among other things,

converting a partial differential equation into a partial difference equation. There are many

ways of discretizing a partial differential equation, and different methods may give rise

to solutions with qualitatively different properties. In the rest of the paper, a particular

discretization is employed that was chosen on the basis of its intuitiveness.

It is assumed that “buses” depart at regular intervals from the boundary of residential

settlement and travel to the CBD, and that individuals board at regularly-spaced bus stops,

indexed by i = 1, ..., I, from the boundary to the CBD. The congestion technology of the

buses is more akin to flow congestion than actual bus congestion, however. Loading and

unloading passengers takes no time, and the speed of a bus depends on the ratio of its

number of passengers to its width or capacity, which is constant between one bus stop and

the next but varies across stops. It is furthermore assumed that the technology of congestion

takes the Vickrey form; in particular the time it takes to travel from bus stop i to bus stop

i + 1 on bus j is given by

τ i
j = c0 + c1

(
P i

j

wi

)γ

,

where c0, c1 and γ are constants, P i
j is the number of passengers travelling on bus j from

stop i to stop i + 1, and wi is the width of the road from stop i to stop i + 1. Employing
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the Vickrey congestion function has several advantages: it is familiar and its properties

well-understood; it leads to simple solution of a pseudo social optimum; and traffic does not

get stuck out of equilibrium since travel time is finite for any finite number of passengers.

Its principal disadvantage is that it assumes that the elasticity of private congestion (the

excess of travel time over free-flow travel time) with respect to the “volume-capacity” ratio

is constant, whereas it is typically increasing in the ratio.

The travel cost function has the form employed in the previous section, (1)

4.2 No-toll equilibrium

An argument analogous to that of the previous section establishes that, except for problems

introduced by the discreteness of buses and bus stops: i) the first bus picks up passengers

at the first bus stop, and possibly succeeding bus stops, without skipping stops; ii) bus

j + 1 boards passengers at all the bus stops that bus j did, and possibly succeeding stops,

without skipping; and iii) over a stop’s departure set, an equal number of passengers board

each bus. The last bus therefore picks up passengers at all stops.

Due to the discreteness of buses, the first bus may be only ‘partly utilized’ — which will

be defined shortly. The solution algorithm has two parts. The first solves for the equilibrium

number of buses, the second for the full equilibrium. In the first part the solution algorithm

assumes the first bus to be fully utilized, and then solves for the minimum number of buses

such that the last bus is only partly utilized. In particular: J denotes the number of buses.

Start with J = 1. Board all passengers. If the trip time from i = 1 (the departure stop) to

the depot at CBD (stop I + 1) is more than βs
α−β

higher than that of bus zero which carries

no passengers, where s is the spacing between bus departures, set J = 2, else J = 1 is the

equilibrium number of buses. With J = 2, board the first bus per the above results until

trip time is βs
α−β

higher than that of bus zero. Put all remaining passengers on the second

bus. If its trip time is less than 2βs
α−β

higher than that of bus zero, equilibrium entails one

fully utilized, and one partly utilized bus, else set J = 3, - - -. The second part of the
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algorithm assumes that the last bus arrives at t∗ and recognizes that it is the first and not

the last bus that is fully utilized. In particular, it solves for θ such that trip time on the

first bus is θβs
α−β

higher than that on bus zero, on the second bus is (1+θ)βs
α−β

higher - - -, and

such that bus J picks up all remaining passengers and trip time is (J−1+θ)βs
α−β

higher than

that on bus zero.

Recall the way in which the algorithm works. The first part determines the equilibrium

number of buses, and the second the θ associated with the first bus. The boarding pattern

satisfies three equilibrium conditions: i) the travel time of bus j, for j = 2, ..., J, from the

first bus stop to the depot is βs
α−β

higher than that of the previous bus; ii) at each bus stop,

the departure rate is constant over that stop’s departure interval; and iii) the first bus picks

up passengers at the bus stops furthest from the depot, the second bus passengers at those

bus stops and the next bus stops furthest away from the CBD, and so on.

Now turn to Table 1, which describe the base case equilibrium. The parameters are

chosen to provide sensible results for a long, narrow town nine miles long and one mile

wide, with road width .2 miles at all locations, and with 10,000 households per mile. Bus

stops are equally spaced one mile apart. One way interpret is that all households living

between nine and eight miles from the depot board at bus stop 1, etc; with the final mile

being occupied by the CBD and with the depot at the very edge of the city — perhaps

where the port is located. Free-flow travel speed is 20 m.p.h and the congestion technology

is such that the travel time between stops i and i + 1 (with i.e. 9 denoting the depot) on

bus j, τ i
j , is

τ i
j = .05 +

(
.05x10−10

)(P i
j

wi

)
,2·0

where wi is the width of the road between stops i and i+1, and P i
j the number of passengers

on the bus between stops i and stop i + 1 on bus j. Buses depart every .1 hrs., with the

first bus departing at such a time that the last bus arrives at the depot at t∗. The value of

travel time is $6.00/hr. and of time early is $4.00/hr.
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Table 1A: Bus Corridor

1 2 3 4 5 6 7 8
ni

1 33.3·×102 33.3·×102 33.3·×102 24.11×102 0.00 0.00 0.00 0.00 124.11×102

ni
2 33.3·×102 33.3·×102 33.3·×102 37.95×102 50.00×102 50.00×102 13.09×102 0.00 251.04×102

ni
3 33.3·×102 33.3·×102 33.3·×102 37.95×102 50.00×102 50.00×102 86.91×102 100.00×102 424.86×102

pi 5.49 5.19 4.86 4.48 4.04 3.47 2.76 1.63
ρi -

57.9×103

17.2×103 25.7×103 39.2×103 87.3×103 142.3×103 247.4×103 445×103

ρ̂i 0.8×103 6.6×103 22.3×103 55.5×103 125.4×103 239.3×103 496.2×103 952.2×103

T 1
3 θ t0 − t11 TC TFC TCTC TEC

0.916 0.579 1.116 31.91×104 10.08×104 15.84×104 5.99×104

Table 1B: Solow

1 2 3 4 5 6 7 8
ni

1 33.3·×102 33.3·×102 33.3·×102 33.3·×102 33.3·×102 33.3·×102 33.3·×102 33.3·×102

ni
2 33.3·×102 33.3·×102 33.3·×102 33.3·×102 33.3·×102 33.3·×102 33.3·×102 33.3·×102

ni
3 33.3·×102 33.3·×102 33.3·×102 33.3·×102 33.3·×102 33.3·×102 33.3·×102 33.3·×102

pi 4.10 3.79 3.46 3.08 2.65 2.14 1.54 0.83·

ρi 0.8×103 6.6×103 22.3×103 52.9×103 103.3×103 178.6×103 283.7×103 423.5×103

ρ̂i 0.8×103 6.6×103 22.3×103 52.9×103 103.3×103 178.6×103 283.7×103 423.5×103

T 1
3 θ t0 − t11 TC TFC TCTC TEC

n.a 0.883 21.60×104 11.52×104 10.08×104 n.a

Table 1: Base case: c0 = 0.05, c1 = 0.05 × 10−10, γ = 2.0, s = 0.1, α = 6.0, β = 4.0,

vf = 20, δ = 1.0

N · = 10, 000 10, 000 10, 000 10, 000 10, 000 10, 000 10, 000

w· = 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Notes: i) Units: miles, hours and dollars

ii) Costs are per rush hour. To convert to annualized costs multiply by 400

(2 rush hour trip per day, 200 work days per year)

iii) The tolerance on θ was 0.001 and double precision was used.

Table 1A depicts the no-toll equilibrium for the bus–corridor problem. There are three

buses in equilibrium. and θ = .579. The first bus departs from stop 1 at t11 = t∗ − 1.116,

picking up 3333.3 passengers there and taking.05 + (.05x10−10)
(

3333.3
.2

)2.0
= .05138 hors to
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travel to stop 2. There it picks up 3333.3 passengers and takes .05+(.05x10−10)
(

6666.6
.2

)2·0
=

.05 hours to travel to stop 3, . . . It picks up its last passengers at stop 4, and with

12,411 passenghers on board travels from there to the depot where it arrives at t11 + T1 =

(t∗ − 1.116) + βθs
α−β

= t∗ − 1.116 + .516 = t∗ − .6 . The second bus departs at t∗ − 1.016,

picks up the same number of passengers as bus 1 at stops 1,2, and 3, and more passengers

at stop 4. It also picks up passengers from stops 5,6, and 7, which bus 1 did not, and

travels from stop 7 to the depot with 25,104 passengers on board, arriving at the depot at

t12+T2 = (t11 + s)+ β(1+θ)s
α−β

= t∗− .3. The final bus picks up the same number of passengers as

did bus 2 at bus stops 1,...,6, picks up more passengers at stop 7, picks up all the households

at stop 8, and travels from there to the depot with 42,486 passengers on board, arriving at

the depot at t∗.

This departure pattern ensures that the trip price at a particular bus stop is the same

on all buses for which there are departures at that stop. The trip price at bus stop 1 is

$5.49, etc. Total travel costs are are simply calculated as TC =
∑
i

piN i = $31.91 x 104.

Several other aggregates are calculated. TFC are total free-flow travel costs − what

travel costs would be if there were no congestion and everyone arrived at work on time.

The costs due to congestion ate TC−TFC, which can be decomposed into total congestion

travel time costs, TCTC− the increase in travel time costs due to congestion− and total

time early costs, TEC.

Figure 4 provides a diagrammatic depiction of the equilibrium pattern of travel in x-t

space. The lower bold line is the locus of earliest departure times at the various bus stops,

the upper bold line the corresponding locus of latest departure times (which since the last

bus boards passengers from all stops, coincides with the time line of the last bus). The

dashed lines are the time lines for the various buses. The slope of a bus’ time line at a

particular (x, t) gives the reciprocal of its velocity when is passes location x at time t. Buses

depart at intervals of .1 hr and arrive at the depot at intervals of .3 hrs.
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The {ρi} give the shadow rents on land in road use per rush hour between stops i

and i + 1. ρi was calculated by widening the road from .200 to .201 between stops i and

i + 1, with the road width being held fixed at .200 at all other locations, calculating the

corresponding equilibrium, computing the reduction in total costs from the road widening,

and then multiplying by 1000 to give the rent in $/ml.2. The {ρ̂i} gives the corresponding

shadow rent, holding the boarding pattern as it was in the base case , but postponing the

departure time of the first bus such that the last bus continues to arrive on time,6 which is

here termed the pseudo shadow rent. Four points are of particular interest:

i) Both the shadow rent and pseudo shadow rent fall off with distance from the CBD, as

simple intuition would suggest since for every bus the road is at least as congested at more

central locations.

ii)The pseudo shadow rents are at least as high as the actual shadow rents reflecting that

some of the benefits of the road expansion are dissipated due to the change in the board-

ing pattern included by the road expansion. This phenomenon is typical of second-best

economies. Arnott (1979) termed the benefits from the road expansion, not allowing gen-

eral equilibrium adjustments to it, the direct benefits, and the loss in benefits due to the

general equilibrium adjustments, the indirect costs. Here there is only one general equi-

librium adjustment — the change in the boarding pattern; in particular, it becomes even

more excessively concentrated relative to the social optimum (which shall be examined

subsequently).

iii) The indirect costs from a road expansion may exceed the direct benefits, leading to a

negative shadow rent; in the example, this occurs only at the bus stop 1.

iv) The shadow rent on land in road use at bus stop 8 is very high, $695 per acre-rush-

hour, which with 2 rush hours per day, 200 working days a year, and a discount rate of 5%,

6Since the real widening decreases the travel time of the last bus more than that of earlier buses, total
time early costs are reduced, as well as total congestion travel time costs.
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translates into a shadow value of land in road use of $5.56 x 106per acre; which suggests that

in a fuller model which endogenizes residential location7 it will be (second-best) optimal to

allocate almost all and close to the CBD to roads.

Finally, note that the assumption that everyone starts work at the same time tends to

inflate total travel costs. In response to congestion, some firms change their work start

times, while others offer flexible working hours, which would reduce congestion. It would

be interesting to extend the model à la Henderson ( ) to endogenize work start times.

One could then investigate whether households at locations further distant from the CBD

choose to start work earlier or later; the natural conjecture is earlier since they have further

to travel under congested conditions, and hence should derive greater benefit from early

departure. Another useful extension would be to allow late arrival. The extension to treat

congestion with a realisitc pattern of employment locations in a two-dimensional city will

be neccessary before the model can be confronted with real world data, but will be difficult.

Table 1B displays the equilibrium for the same set of parameters but for the Solow

model. The Solow model ignores time early costs, and assumes that at each location traffic

flow is constant over a rush hour of fixed duration. It is not clear exactly what this cor-

responds to in terms of the bus/corridor model. Here it is treated as corresponding to the

bus/corridor model with three buses, on each of which a third of the households at each

bus stop are boarded. Trip price is lower in this interpretation of the Solow model than in

the bus-corridor model for two reasons: first, the Solow model ignores time early costs, and

second the departure pattern (conditional on the number of buses) is efficient — due to the

convexity of travel time function, efficiency entails the same boarding pattern for each bus.

Total congestion travel time costs are correspondingly lower. In the Solow model, since

the departure pattern is exogenous, the indirect costs associated with widening the road

are zero, and consequently the shadow rents on land in road use and the pseudo shadow

rents coincide. Because its departure pattern is efficient, the Solow equilibrium entails less

7Such a model will be developed in subsequent papers
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congestion than the bus/corridor equilibrium. As a result, the reduction in congestion costs

from widening the road — holding fixed the respective departure patterns — are lower in

the Solow than in the bus/corridor equilibrium, but still everywhere positive. However,

because widening the road entails indirect costs in the bus/corridor equilibrium but not in

the Solow equilibriumm whether the shadow rent on land in road use is higher or lower in

the the Solow equilibrium than in the bus/corridor equilibrium is a priori ambiguous, and

in the example the two shadow rent functions “intersect” twice. The sequal to this paper

will compare the two equilibria with residential land use endogenous, and with and without

the allocation of land between roads and housing being optimized.

4.3 Social Optimum

The bus discrete approximation of the corridor problem worked well in the no-toll equi-

librium problem in the sense that it generated qualitatively the same solution as the pure

corridor problem. It is not without its problems, however. The equation of continuity links

congestion at a location to congestion both upstream and downstream. The bus approxi-

mation severs this link, with the speed of a bus unrelated to the situation of buses either

upstream or downstream. This creates a difficulty in the bus approximation of the social

optimum corridor problem.

To illustrate, write down the social optimum problem, on the assumption that in the

social optimum all buses except the last are strictly early, which would be true if the

qualitative departure pattern were a horn pattern, as in the no-toll equilibrium:{
ni

j

}{
P i

j

} minα
J∑

j=1

I∑
i=1

P i
j τ

i
j + β

J∑
j=1

(
t∗ −

(
t1 + (j − 1) s +

I∑
i=1

τ i
j

))
P I

j

s.t. i)
J∑

j=1

ni
j = N i, i = 1, ..., I

ii) ni
j ≥ 0, i = 1, ..., I, j − 1, ..., J18 (22)

iii) P i
j =

i∑
i=1

ni
j, i = 1, ..., I, j = 1, ..., J
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iv) t∗ ≥ t1 + (J − 1) s +
I∑

i=1

τ i
J ,

where t1 is the time of the first bus to depart and τ i
j = τ i

j

(
P i

j

)
. The solution minimizes the

sum of the total cost of travel time plus the total cost of time early, subject to the constraints

that: i) everyone commute; ii)
{
ni

j

}
be non-negative; iii) the number of passengers on the

bus between stops i and i + 1 equal the number of passengers who have boarded the bus at

stops 1 through i; and iv) the J th bus cannot arrive late. Since early buses may be empty,

the choice of J is arbitrary as long as it does not constrain the solution, which is assumed.

Let Ωi denote the shadow price on constraint i) for bus stop i , which equals the marginal

social cost of an extra passenger at bus stop i. Solving the social optimum problem and

substituting out the Lagrange multipliers yields

Ωi =



I∑
i′=i

{
α

(
τ i

′

j + P i
′

j

∂τ i
j

∂P i
′

j

)
− β

∂τ i
j

∂P i
′

j

P I
j

}
+ β

(
t∗ − (t1 + (j − 1) s)−

I∑
i′=i

τ i
′

j

)
forj = 1, ..., J − 1

I∑
i
′
=i

{
α
(
τ i

′

J + P i
′

J
∂τ i

J

∂P i
′

J

)
− β

∂τ i
J

∂P i
′

J

P I
J

}
+ β

(
I∑

i′=i

N i
′
)(

I∑
i′=i

∂τ i
′

J

∂P i
′

J

)
forj = J

19 (23)

Since, by the assumption, buses j = 1, ...J−1 are strictly early, the marginal cost of carrying

the extra passenger at stop i on any bus except the last is the user cost

(
I∑

i′=i

ατ i
′

j +

β

(
t∗ − (t1 + (j − 1) s)−

I∑
i′=i

τ i
′

j

)
plus the congestion externality cost

(
I∑

i′=i

{
αP i

′

j

∂τ i
′

j

∂P
i
′

j

− β
∂τ i

′

j

∂P i
′

j

P I
j

})
.

The congestion externality cost equals the increase in total travel time costs the extra pas-

senger imposes on others minus the decrease in total time early costs due to later arrival

of the bus deriving from the increase in travel time caused by the extra passenger. The

expression for the user cost of bus J is the same as that for the previous buses, as is the

travel time component of the congestion externality. However, there is an additional cost.

To satisfy the condition that the last bus arrive no later than t∗, the starting times of all

buses have to brought forward by
I∑

i
′
=i

∂τ i
′

J

∂P i
′

J

. The result — that an additional passenger causes

additional total time early costs only when put on the last bus — is entirely an artifact of
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the assumed bus technology.

This problem is dealt with in ad hoc way. A pseudo social optimum is solved for in

which the toll is set equal to the travel time externality cost. With the Vickrey congestion

cost function, the toll would then be πi
j = γα

(
T i

j − F i
)

when T i
j is the time to travel from

bus stop i to the depot on bus j, in excess of the free flow travel cost, F i. Accordingly,

pi = αT i
j + β

(
t∗ −

(
tij + T i

j

))
+ πi

j

= αT i
j + β

(
t∗ −

(
tij + T i

j

))
+ γα

(
T i

j − F i
)

= αF i + β
(
t∗ −

(
tij + F i

))
+ ((1 + γ) α− β)

(
T i

j − F i
)

20 (24)

if ni
j > 0. Comparing ρi on buses j and j + 1 on the assumption that both ni

j > 0 and

ni
j+1 > 0 yields

β
(
t∗ −

(
tij + F i

))
+ ((1 + γ) α + β)

(
T i

j − F i
)

= β
(
t∗ −

(
tij+1 + F i

))
+ ((1 + γ) α + β)

(
T i

j+1 − F i
)

or

β
(
tij+1 − tij

)
= ((1− γ) α + β)

(
T i

j+1 − T i
j

)
21 (25)

Assume that the departure pattern is horn-shaped. Then the travel time from the boundary

of the city to bus stop i is the same for both buses, so that tij+1 − tij = s. and T i
j+1 − T i

j =

βs
(1−γ)α+β

. Let j (i) denote the first bus which picks up passengers at stop i. Then for j > j (1)

T 1
j+1 − T 1

j =
βs

(1− γ) α + β
22 (26)

The departure pattern is that which would occur in the no-toll equilibrium if α were replaced

by (1− γ) α.The corresponding equilibrium is termed the pseudo social optimum. 8.

Table 2 displays the base case pseudo social optimum

8Perhaps the pseudo social optimum can be derived by imposing the additional constraint on (18) that

the headway between buses can be no smaller than s :
i∑

i′=1

τ i
′

j+1 ≥
i∑

i′=1

τ i
′

j for all j ≤ J − 1.
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1 2 3 4 5 6 7 8
N i 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
wi 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0

ni
1 16.6· 16.6· 1.91 0.0 0.0 0.0 0.0 0.0 35.2

ni
2 16.6· 16.6· 19.62 20.0 1.52 0.0 0.0 0.0 74.5

ni
3 16.6· 16.6· 19.62 20.0 24.62 11.25 0.0 0.0 108.82

ni
4 16.6· 16.6· 19.62 20.0 24.62 29.58 18.13 0.0 145.25

ni
5 16.6· 16.6· 19.62 20.0 24.62 29.58 40.94 23.79 191.88

ni
6 16.6· 16.6· 19.62 20.0 24.62 29.58 40.94 76.21 244.30

pi 9.971 9.064 8.139 7.176 6.157 5.042 3.779 2.243
ρi 0.000 0.023 0.115 0.713 0.893 0.996 1.752 3.301
p̂i 7.500 7.176 6.774 6.249 5.550 4.626 3.408 1.900
ρ̂i 0.008 0.066 0.223 0.529 1.034 1.787 2.837 4.235

T 1
6 = 0.554 t∗ − t11 = 1.054 TCTC = 1162

θ = 0.387 TC = 2830 TEC = 660

R = 2324 TFC = 1008

Notes: See Table 1 for parameter values

4.4 Comparisons

This subsection will make a variety of comparisons. The first is to compare the non-toll

equilibrium and the pseudo social optimum for the bus/corridor problem.

Departure pattern. Total trip cost. Proportion of total trip costs in excess of

free flow travel time costs saved by imposition of toll

In the Solow formulation, in contrast, with fixed land use there are no efficiency gains to

be achieved from congestion tolling since in that formulation land use is the only possible

margin of adjustment to tolling. The next section will treat variable land. Then it will be

of interest to investigate, for the bus/corridor by what proposition the efficiency gains from

congestion tolling are increased when land use is variable.

The next comparison to be made is between the pattern of the shadow rent on the land in

road use for the bus/corridor problem with and without the optimal toll, and for the Solow
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formulation with {N i} freed. The shadow rent in land use is computed as the reduction in

total trip costs from increasing wi by one unit, which we interpret as adding a unit area of

land to the road, at the various bus stops. The results are reached in Table 3.

INSERT TABLE 3 HERE

The shadow rent may be separated into two components, the direct benefit which derives

from adjustment in the departure pattern induced by the increase in road width. For the

Solow formulation, there is no adjustment in departure pattern, and consequently indirect

cost is zero. For the bus/tolling case, since the departure pattern is optimized, by the

Envelope Theorem the ratio of indirect cost to direct benefit is zero for a infinitesimal

expansion of road width, and “small” for a small proportional change in road width. For

the bus/no-tolling case, the indirect costs are of the same order of magnitude as the direct

benefits and could exceed these. In the above example, . . .TO BE CONTINUED

5 The Corridor Problem with Variable Land Use: Buses

5.1 Introduction

There are two interesting ways in which land use may be varied. The first is to endogenize

land use, the second is to optimize the allocation of land between residential and roads.

Kanemoto ( ) and Arnott ( ) provided through analyses of the corridor problem with

variable land use in a monocentric city with the Solow formulation of congestion. They

focused on two issues, first on the relationship between the market rent and shadow rent

on residential land at different locations, when congestion is unpriced, and second on the

characteristics of the misallocation of land between
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