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Abstract
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1 Introduction

Durables are consumed over many periods, so they can be (and often are) traded as used
goods. For a variety of reasons, one of the most challenging aspects of modeling durables
is appropriately modeling this secondhand market. First, if durables degrade over time, the
secondhand market contains goods of a variety of different qualities, each imperfectly sub-
stitutable for a brand new durable. The model of the secondhand market must, therefore,
account for these (vertically) differentiated products. Second, the extent of the aforemen-
tioned product spectrum should clearly depend on the willingness of consumers to hold very
degraded durables, i.e., scrappage should be endogenous.

Rust (1985) is the first paper to present a model with the above two characteristics.
He both proves the existence of a stationary equilibrium of the model and, for a particular
specification of the depreciation process, characterizes equilibrium prices. Unfortunately, his
model leaves unexplained one significant characteristic of consumers’ behavior, the holding
of durables across multiple periods. To the contrary, in his model every consumer holds a
durable (e.g., car) essentially only one period, repeatedly purchasing the same grade car.

This is apparently an undesirable feature of the Rust model, probably attributable to the
fact that the Rust economy is too perfect to describe the real world. In the absence of some
sort of market frictions or imperfections, consumers have no incentive to hold their durables
across multiple quality levels. Each heterogeneous consumer will choose a durable from the
product spectrum so as to maximize her net surplus. One way to explain consumers’ car
holding behavior is to introduce asymmetric information between sellers and buyers. Akerlof
(1970) argues that asymmetric information between buyers and sellers of used durables may
entirely shut down the market in secondhand durables. Recent work by Hendel and Lizzeri
(1997,1999), however, suggests some concerns about the pre-trade allocation of durables
assumed by Akerlof. They show the existence of a market equilibrium in a model with
durables of two vintages (“new” and “used”) and exogenous scrappage (i.e., durables become
useless after two periods). They argue that, while asymmetric information may attenuate
equilibrium trade in the secondhand market, the used market never shuts down completely
and the distortions produced by asymmetric information are smaller than previously thought.

There is another way to explain consumer holdings of durable goods. If there are positive
transaction costs in trade (e.g., search for replacement durables is costly), consumers may
hold their durables over multiple periods to economize on transaction costs. Sandfort (1999b)
presents a model in which every transaction is subject to a fixed, per-transaction, expenditure
and in which durables degrade stochastically from one quality level to another. Thus, for
any given durable, there are a variety of close, but imperfect, substitutes. Scrappage is
endogenous, so the willingness of consumers to hold a durable across multiple quality levels
is related to the costliness of transactions. Numerical examples show that, as the transaction
cost increases, consumers tend to hold their durables over a wider range of qualities (e.g., on
average, they hold their cars longer). As the transaction cost increases, the markets for high
quality used durables close, since all owners of these durables prefer to hold the durable to
a more degraded state rather than trade it and incur the transaction cost. In the limit, as
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the transaction cost becomes large, trade in used durables of every quality ceases.
In this paper, we present a model of the primary and secondhand markets for a non-

divisible consumer durable with positive transaction costs. Time is discrete, and in every
period consumers have the option to either continue with their current holdings (possibly
none) of the durable or to replace their current holdings with the best available (possibly
used) alternative. Durables are available in a variety of types (e.g., Porsche and BMW)
and each type degrades according to a type-specific stochastic process. As a result, each
consumer’s choice problem reduces to optimal control of the stochastic processes governing
depreciation. Consumers are heterogeneous in their tastes for type and degradation of the
durable good, but we do not impose a single-crossing condition on tastes, as does Rust
(1985).

Introducing transaction costs requires us to depart significantly from Rust’s (1985) ap-
proach in proving existence of a stationary equilibrium. To explain the difference, we first
briefly describe Rust’s (1985) approach. Without transaction costs, one can show that each
consumer always chooses to consume a durable of a single grade (i.e., level of degradation).
Thus, it is easy to find a stationary distribution of durables over grades by setting a thresh-
old grade such that durables of this grade or lower are scrapped, while durables of higher
grades are not. Under the assumption that indifference curves satisfy the single-crossing
property, consumers sort themselves over all grades higher than the threshold grade. Using
this “location function” which describes consumer choices, Rust then finds a price function
supporting these choices. Finally, the intermediate value theorem guarantees the existence of
a threshold grade that implies, via the related stationary distribution and location function,
a price function consistent with the exogenous prices of brand new cars and cars sold as
scrap.

With transaction costs, consumers’ behavior is no longer so simple, since consumers’ de-
cision rules are no longer characterized by replacement in every period. Thus, we can no
longer separate the consumers’ decision problem from that of obtaining supporting prices.
Instead, we need a fixed point theorem (in particular, Fan-Glicksberg’s fixed point theorem)
to find a price vector and durable good distribution simultaneously. The proof is based
on the method of Jovanovic and Rosenthal (1988) in finding a stationary equilibrium in an
anonymous sequential game (see also Mas-Colell (1984)). One difficulty related to introduc-
ing prices into their model is ensuring that the price vector is bounded above. We show in
our Lemma that the fixed point prices are equilibrium prices. Given that we use a fixed point
theorem, introduction of multiple types of durables comes at no cost, as does relaxation of
the single-crossing condition.

The remainder of this section provides a brief background on competitive models of
durable goods. The second section presents the model, equilibrium concept, assumptions
and our main result, the existence theorem. The third section presents some remarks on
the assumptions sufficient to show the existence of equilibria of the model. The proof of our
existence result may be found in the fourth section.
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1.1 Literature Review

Unsurprisingly, the literature modeling durable goods under competition is closely connected
to the product differentiation literature and contains both discrete and continuous choice
models. Bresnahan (1981) and Manski (1982,1983) were the first to model automobile de-
mand as a discrete choice problem, an approach extended by Berkovec (1985). The empirical
studies in this tradition, including more recent work by Berry, Levinsohn and Pakes (1994),
concentrate on the automobile industry because of both the importance of the industry and
the availability of high quality registration data. Sandfort (1999a) considers a discrete choice
model of automobile demand in which automobile holdings are motivated by the costliness
of time spent in search for a replacement.

Models which employ a continuum of agents or a continuum of goods include Swan
(1970), Liebowitz (1982), Bond (1983) and Rust (1985). The Rust model is the most general
of these, since it assumes neither perfect rental markets in the durable nor exogenously-lived
durables. As noted above, each consumer in Rust’s model chooses an optimal location in the
product spectrum based on her preference for quality (which is subject to a single crossing
condition). Allowing the product spectrum to be endogenous then forms a very natural way
of incorporating endogenous scrappage into the model. The key feature distinguishing this
model from a standard product differentiation model is the constraint which the depreciation
process places on the quantity of each good which can be supplied. Used goods cannot just
be produced; they must depreciate from new goods. Hence, the product spectrum and prices
must be computed in such a way that they are consistent with both consumer preferences
and depreciation. None of the aforementioned models has very much to say about individual
consumer holdings of durable goods.

Anderson and Ginsburgh (1994) consider the effect of transaction costs on the primary
and secondhand markets for durables when durables depreciate deterministically from a
“new” quality level to a “used” quality level.1 Using single-crossing of indifference curves,
they characterize the relationship between the costliness of transactions and activity in the
secondhand market. Our approach does not subsume that of Anderson and Ginsburgh,
although we add variation in types of durables (e.g. BMW, Mercedes, Volvo) and endoge-
nous scrappage to the model.2 Sandfort (1999c) considers a model in which durables may
be one of two distinct types. Each type of durable depreciates through a continuum of
possible states. In this context, one may address the substitutability of depreciable and
non-depreciable components of an automobile (e.g., odometer reading versus wheelbase or
maximum horsepower).

1Both Liebowitz (1982) and Bond (1983) consider depreciation of this kind.
2While our model does not treat the case of deterministic depreciation, the extension of our approach to

include deterministic depreciation is straightforward.
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2 The Model

2.1 Overview of Economy

There are finite types of durable goods (BMW, Mercedes, Volvo, Porsche and so on). Each
durable can occupy one of a variety of different conditions or “states” (e.g., odometer read-
ings). There are periods t = 0, 1, 2, .... A physical stochastic process describes the trans-
formation of a durable’s condition in period t to its condition in period t + 1. There are
atomless, infinitely-lived, consumers with heterogeneous tastes for the services provided by
durables. That is, some like an old Porsche better than a brand new BMW, while some
do not. Each consumer is assumed to consume at most one unit of a durable good. Since
durables degrade over time, a given consumer will occasionally desire to replace her durable,
either with a brand new durable or with a secondhand one. In our economy, there are com-
plete markets for any type of durable in any state and consumers have perfect information
about durables (so that there is no lemon problem). Prices of new and used durable goods
are determined competitively. A stationary equilibrium requires that both prices and the
distribution of durables are stationary.

2.2 Commodities

There are J types of durable goods in the economy. The set of durable goods {1, ..., J} is
denoted by J . There are S + 1 states (levels of degradation) for each durable good, and the
set of states {0, 1, ..., S} is denoted by S. State s = 0 indicates a brand new durable good,
while increasing s ∈ S indicates increasing degradation. Thus, for every durable j ∈ J ,
the state S denotes a completely degraded durable (whose value, in equilibrium, should be
no greater than scrap). It follows that there are J(S + 1) physically different commodities
among which consumers may choose. Each commodity is identified by a pair (j, s) ∈ J ×S.
For each type of durable good j ∈ J , transition between states is governed by a Markovian
depreciation process: φj : S × S → [0, 1] such that

∑
s′∈S φj(s, s

′) = 1 for any s ∈ S.
The decision not to consume a durable is denoted by ∅, so that a consumer’s durable good
consumption in any period may be represented by ω ∈ Ω ≡ (J × S) ∪ {∅}. In addition,
there is a perfectly divisible good (money), which is treated as the numeraire.

2.3 Commodity Markets

We assume that supply of brand new durable goods is perfectly elastic, i.e., that, for each
j ∈ J , durables in state s = 0 are perfectly elastically supplied at price p̄j > 0. We assume
further that durables of type j ∈ J , regardless of state, may be sold as scrap. Thus, demand
for scrap durables of type j ∈ J is also perfectly elastic at p

j
≥ 0. Naturally, we assume

p̄j > p
j
. Since markets are complete, there is price for each durable at each state. Let pjs(t)

be the price of durable (j, s) at period t and p∅ = 0 denote the price of not consuming a
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durable. The price set for all durable goods is denoted by P ≡ <J(S+1)
+ × {0}.3

2.4 Consumers

There is a continuum of consumers with different characteristics. The set of characteristics
is denoted by a space A, and a ∈ A is its representative element. Each consumer consumes
at most one durable good at each period t = 0, 1, 2, ..., denoted ω(t) ∈ Ω. Every consumer’s
utility function is time-additively separable, so the utility that a type a consumer obtains
from her consumption plan (ω(t), x(t))∞t=0, (where x(t) denotes consumption of the divisible
good at period t), is written as:

∞∑
t=0

(βa)tUa(ω(t), x(t)),

where Ua : Ω × <+ → < denotes atemporal utility from consuming a durable good and
divisible money, and βa ∈ [0, 1) denotes type a consumer’s discount factor. We assume that
Ua is quasi-linear in money in order to eliminate wealth effects:

Ua(ω(t), x(t)) = uaω(t) + x(t). (1)

Finally, each time a consumer of type a ∈ A transacts in the market for durables, she
pays a transaction cost ca ≥ 0. To concentrate on consumers’ choices of durable goods,
we follow Rust (1985) in modeling neither consumers’ savings decisions nor their liquidity
constraints. In addition, we assume that the interest rate is zero. Consequently, a consumer
type in this durable goods economy is fully characterized by a triple (βa, ca, (uaω)ω∈Ω). Thus,
the space of consumer types, A, can be regarded as the space of utility functions, i.e., the
metric space A ⊂ [0, 1)×<+ ×<#Ω

+ .4 Since we are interested in a stationary distribution of
durables over consumers, it is convenient for us to use Hart, Hildenbrand, and Kohlberg’s
(1974) equilibrium-as-distribution approach. The distribution of consumers is described by
a probabilistic measure ν on A (ν(A) = 1).

2.5 Timing of Events

We now describe the timing of depreciation and trade. At the beginning of each period
t = 1, 2, . . . , each consumer owns a durable good ω ∈ Ω, which is the outcome of trade in the
previous period, t− 1 (or the initial allocation in the case t = 1). Ownership of the durable
∅ ∈ Ω is regarded as the choice not to consume a durable in period t − 1. Immediately
upon entering period t, a durable in state ω = (j, s) depreciates according to the exogenous
depreciation process {φj(s, ·)} to a new state ω′ = (j, s′). Of course, the durable ∅ does

3Of course, at an equilibrium, perfectly elastic supply for brand new durable goods and perfectly elastic
demand for scraps will imply constraints on prices.

4Formally, the representative consumer is a = (β, c, (uω)ω∈Ω) ∈ A. For the purpose of readability, we
abuse conventional notation, denoting a’s transaction cost (for example) as ca rather than ac.
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not depreciate. Taking the durable ω′ as her endowment, the consumer must then decide
on her durable goods holdings over period t. She may continue to hold her current durable
ω′ or may sell it on the secondhand market, purchasing a replacement ω′′ = (j′′, s′′) ∈ Ω.
Production of brand new (s = 0) durable goods and the trade described above take place
contemporaneously.

2.6 Consumers’ Choice Problem

Since our focus is to find a stationary equilibrium allocation, we assume that the market
price p ∈ P is constant over time as well. Based on her (post-depreciation) endowment
durable ω ∈ Ω and on prevailing market prices p, the consumer decides whether to replace ω
and determines an optimal replacement ω′ ∈ Ω. To formalize the consumer’s choice problem,
it is convenient to define the consumer’s value function V : A×Ω× P → <+ such that:

(Case-I) If ω = (j, s) ∈ J × S,

V (a, j, s, p) = max



uajs + βa
∑

s̃∈S φj(s, s̃)V (a, j, s̃, p),

max
(j′,s′)∈J×S

(
uaj′s′ + pjs − pj′s′ − ca + βa

∑̃
s∈S

φj′(s
′, s̃)V (a, j′, s̃, p)

)
,

pjs − ca + βaV (a, ∅, p)


,

(Case-II) If ω = ∅,

V (a, ∅, p) = max


βaV (a, ∅, p),

max
(j′,s′)∈J×S

(
uaj′s′ − pj′s′ − ca + βa

∑̃
s∈S

φj′(s
′, s̃)V (a, j′, s̃, p)

)
 ,

since p∅ = 0 and ua∅ is normalized to zero. In each of the above two cases, the first component
of the contents of the brace gives the expected present value of keeping the endowment
durable (i.e., not trading). The second component gives the expected present value of optimal
replacement with a durable ω′ = (j′, s′), net of the transaction cost. Note that the optimal
replacement does not depend on the endowment durable ω. This is a result of the absence of
wealth effects under quasi-linear utility and the absence of borrowing constraints. In Case-I,
the third component gives the value of selling the endowment durable without replacement,
again, net of the transaction cost.

Now consider a consumer of type a endowed (before trade) with a durable in state ω.
We say that a durable good ω′ is her optimal choice iff

Ṽ (a, ω, ω′, p) ≥ Ṽ (a, ω,Ω, p), (2)
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where Ṽ : A× Ω× Ω× P → < is such that

(Case-I) if ω′ = ω = (j, s),

Ṽ (a, ω, ω′, p) = uajs + βa
∑
s̃∈S

φj(s, s̃)V (a, j, s̃, p),

(Case-II) if ω′ = ω = ∅,

Ṽ (a, ω, ω′, p) = βaV (a, ∅, p),

(Case-III) if ω′ = (j′, s′) 6= ω,

Ṽ (a, ω, ω′, p) = uaj′s′ + pω − pj′s′ − ca + βa
∑
s̃∈S

φj′(s
′, s̃)V (a, j′, s̃, p),

(Case-IV) if ω′ = ∅ 6= ω,

Ṽ (a, ω, ω′, p) = pω − ca + βaV (a, ∅, p).

This is to say that a consumer chooses the durable good that maximizes her expected
present value.

2.7 Allocations within a Period

Next, we describe durable good allocations within a period. As we have seen in the previous
subsection, our notation must capture the joint distribution of durables and consumers both
before and after trade. We begin by defining the set of durable good allocations. A durable
good allocation is a probability measure µ ∈ MA×Ω, where µA = ν.5 That is, a durable
good allocation is a joint distribution of durables and consumers with the property that
its marginal distribution over consumer tastes is consistent with the exogenous distribution
of consumer tastes ν. A point (a, ω) ∈ A × Ω describes a consumer of type a holding the
durable ω (or no durable, in the case ω = ∅).

As noted above, an allocation within a period must contain information about both
the pre- and post- trade durable good allocations. Therefore we define the collection of
allocations within a period to be T = {τ ∈ MA×Ω1×Ω2 : τA = ν}, with Ω1 = Ω2 = Ω. If
τ ∈ T , it follows immediately that τA×Ω1 and τA×Ω2 are durable good allocations. Thus, we
adopt the convention that Ω1 represents the set of states before trade and Ω2 represents the
set of states after trade. Of course, the assumption of stationarity imposes constraints on the
relationship between these two distributions. In particular, stationarity requires that, (1)
if the durable good allocation τA×Ω1 represents initial endowments, τA×Ω2 should represent
the durable good allocation after all consumers have made optimizing trades based on those

5If E is a metric space, then BE represents the collection of Borel sets on E. We denote byME the space
of all probability measures on E. If µ ∈ME×F , we denote by µE the marginal distribution on E.
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endowments and (2) when τA×Ω2 depreciates, it becomes τA×Ω1 . Although depreciation and
trade actually occur instantaneously upon entry into each period t, the following figure
nonetheless approximates the relationship between the timing of events and the durable
good allocations τA×Ω1 and τA×Ω2 :

t t+ 1t− 1 Time

Depreciation Trade

Allocation
τA×Ω2

←−− Allocation
τA×Ω1

−−→←−−− Allocation τA×Ω2 −−−→............................................................................................................................. ..
..........

Figure 1

2.8 Supply Side

Brand new durables of each type j, (i.e., ω = (j, 0)) are supplied perfectly elastically at
price p̄j. There also exists perfectly elastic demand (a scrappage sector) for durables in any
state at the scrap price p

j
< p̄j. The flow supply correspondence is therefore given by

η : P � <Ω such that
(Case-I)

η∅ = [0,∞) (3)

(Case-II) if ω = (j, 0) for j ∈ J ,

ηj0(pj) =


∞ pj > p̄j,

[0,∞) pj = p̄j,

0 pj < p̄j,

(4)

(Case-III) if ω = (j, s) for j ∈ J and s > 0,

ηjs(pj) =


0 pj > p

j
,

(−∞, 0] pj = p
j
,

−∞ pj < p
j
.

(5)

The fact that the choice not to own a durable is always available to every consumer is indi-
cated by (Case-I). (Case-II) states that supply of brand new durable goods is perfectly elastic
at the exogenous price p̄j, while (Case-III) indicates that demand for scrapped durables is
also perfectly elastic at the price p

j
.

Supply of durables of all types j in states s > 0 is controlled by the exogenous depreciation
process δ :MA×Ω2 →MA×Ω1 . In particular, if µ ∈ MA×Ω2 is the durable goods allocation
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which prevails before depreciation, then µ′ = δ(µ) is the durable goods allocation which
prevails after depreciation. Because Ω is finite, we may always represent µ by a collection of
component distributions {µω}ω∈Ω. Using this notation, δ is given by

δ(µ)ω =

{
µω ω = ∅,∑

s′ φj(s
′, s)µjs′ ω = (j, s).

(6)

The “outside good” (non-ownership of a durable) does not depreciate. For all other durables,
the probability of arriving in state (j, s) is simply the sum of the joint probabilities of being
in state (j, s′) and making the (j-specific) state transition from s′ to s. It is easily shown (see
Fact 2 below) that the depreciation mapping does not disturb µA, the marginal distribution
over consumer types.

2.9 Stationary Equilibrium

A stationary equilibrium is a list (τ ∗, p∗) ∈ T × P such that

(i) τ ∗A×Ω1
= δ(τ ∗A×Ω2

),

(ii) τ ∗
({

(a, ω, ω′) ∈ A× Ω1 × Ω2 : Ṽ (a, ω, ω′, p∗) ≥ Ṽ (a, ω,Ω, p∗)
})

= 1, and

(iii) τ ∗Ω1
− τ ∗Ω2

∈ η(p∗).

Condition (i) states that the pre-trade/endowment durable goods allocation must be feasible
relative to the technology for depreciation, δ. Condition (ii) says that almost every consumer
chooses optimally at the equilibrium prices p∗. In particular, the contents of the brace
in condition (ii) describes the set of all combinations of agents (a), pre-trade/endowment
durables (ω) and post-trade/replacement durables (ω′) such that ω′ is an optimal choice for
agent a given endowment durable ω. The conjunction of Conditions (i) and (ii) embodies
the stationarity of the equilibrium. Condition (i) states that the post-trade durable goods
allocation τ ∗A×Ω2

, which prevails at the end of every period t, is transformed via depreciation
(at the beginning of period t + 1) into the pre-trade/endowment durable goods allocation
τ ∗A×Ω1

. Condition (ii) states that the pre-trade/endowment durable goods allocation τ ∗A×Ω1
,

which prevails at the beginning of every period t, is transformed via optimal replacement into
the post-trade durable goods allocation τ ∗A×Ω2

, which prevails throughout period t. Condition
(iii) is the market clearing condition.

2.10 The Existence Theorem

To prove the existence of equilibrium, we impose the following regularity conditions:
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Assumptions

A1. There exists β̄ such that 0 ≤ βa ≤ β̄ < 1, for any a ∈ A.

A2. For any a ∈ A, j ∈ J and s < S, ūj ≥ uajs ≥ uajs+1 ≥ ua∅ for some ūj ≥ 0. As previously
noted, we normalize ua∅ = 0.

A3. There exists c̄ such that, for any a ∈ A, 0 ≤ ca ≤ c̄.

A4. For every j ∈ J , the transition probability function φj : S × S → [0, 1] satisfies

(i)
∑S

s′=s φj(s, s
′) = 1 for any s ∈ S,

(ii) φj(s, s
′) > 0 for any s < s′ ≤ S.

Given these assumptions, we can prove the existence of a stationary equilibrium. Our
main result is:

Theorem. Suppose A1–A4 hold. Then there exists a stationary equilibrium in our durable
goods economy.

3 Remarks on Assumptions

Assumptions A1–A3 are used to compactify the space T in the topology of weak conver-
gence. Assumptions A3 and A4 are used to show boundedness of the equilibrium prices.
Showing boundedness of the equilibrium prices is significant because truncation of the price
space to a compact set is central to the application of a fixed point theorem. In establish-
ing bounds on the price space, a difficulty which must be confronted is that value function
has prices as arguments. As a result, consumers take capital gains and losses into account
when determining their optimal buying and selling plans (e.g., most consumers consider an
automobile’s resale value before purchasing). Thus, we need to guarantee that prices do
not increase without bound by identifying an explicit upper bound. Note that, even under
the assumptions on tastes and the depreciation process, prices are not bounded above by
p̄j (even though durables in state (j, 0) are supplied perfectly elastically at this price). The
following example illustrates this point.

Example. Suppose that there is one type of durable good (J = 1) and one type of consumer.
Suppose further that S = {0, 1, 2} and the transition probabilities are defined by

φ(0, 0) = 0 φ(0, 1) = 0.25 φ(0, 2) = 0.75

φ(1, 1) = 0.75 φ(1, 2) = 0.25

φ(2, 2) = 1

We let u0 = 1, u1 = 0.9 and u2 = 0. New and scrap prices are given by p̄ = 1 and p = 0.
The discount rate is β = 0.8. The transaction cost is c = 0. Then the equilibrium prices are
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given by p0 = p̄ = 1, p1 = 1.5 and p2 = p = 0.

The above result is easily demonstrated. Initially, suppose that the optimal decision rule
is characterized by keeping any durable in states 0 or 1 and replacing any durable in state 2
with a brand new (state 0) durable. Then, since every consumer follows this decision rule,
the value function is given by

V (0) = 1 + 0.8(0.25V (1) + 0.75V (2)) = 1 + 0.2V (1) + 0.6V (2)

V (1) = 0.9 + 0.8(0.75V (1) + 0.25V (2))= 0.9 + 0.6V (1) + 0.2V (2)

V (2) = p− p̄+ V (0) = − 1 + V (0)

Solving this matrix equation gives V (0) = 2.5, V (1) = 3 and V (2) = 1.5, from which the
prices given above follow. Notice that p1 > p0. The intuition behind this result can be easily
explained by supposing perfect rental markets for durables in all states s = 0, 1, 2. Since
more degraded durables provide lower services (i.e., u0 > u1 > u2), it is clear that the rental
prices of these durables must be decreasing with s. Furthermore, since durables in states 0
and 1 provide similar services, their rental prices should be similar. Because rental markets
are perfect, the value of holding a durable in perpetuity (i.e., its price) is simply the expected
present discounted value of its future rental prices. Now observe that durables occupying
state 0 are very likely to make a transition to a low-quality state in the following period,
while durables in state 1 are very likely not to degrade at all. Recalling that the rental prices
of durables 0 and 1 are similar, durable 1 clearly generates a higher expected future reward
and will therefore command a higher market price.

Finally, consider the following modification of Assumption A4 which allows for determin-
istic depreciation.

A4’. For every j ∈ J , the transition probability function φj : S × S → [0, 1] is given, for
any s, t ∈ S with s < S, by

φj(s, t) =

{
1 if t = s+ 1,

0 otherwise

and φj(S, S) = 1.

Under Assumptions A1–A3 and A4’, our Theorem will also hold. The only part of the proof
which must be altered is the construction of the upper bound on prices, which will be a
different upper bound under Assumption A4’. The argument in the Lemma needs some
modification, but the technique of the proof (namely, presenting a replacement policy which
dominates that of replacement with the durable which is in excess demand) remains the
same.
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4 The Existence Proof

The outline of the proof is as follows. First, we show that each consumer’s value function
exists and is unique and continuous (Fact 1) and that the depreciation mapping defined
in (??) is continuous (Fact 2). Second, we construct a correspondence which maps each
durable goods allocation within a period into the collection of all allocations within a period
which are technologically feasible and represent optimal choices by consumers. Any durable
goods allocation within a period in the target space of this correspondence will therefore
satisfy the first and second equilibrium conditions. We show that this correspondence is
nonempty, convex-valued and has closed graph (Fact 3). Third, we define an aggregate
demand correspondence which describes the extent to which the third equilibrium condition
is violated and show that this correspondence is also nonempty, convex-valued and has closed
graph (Fact 4). Fourth, we construct a Gale-Nikaido type price correspondence (Debreu:
1954, 5.6 (1)) that is nonempty, convex-valued, and has a closed graph (Fact 5). Using these
component mappings, we construct a product mapping that (by the Fan-Glicksburg Fixed
Point Theorem) has a fixed point (Fact 6). Finally, we show that the fixed point is actually
a stationary equilibrium of our economy. Our Lemma shows that the Gale-Nikaido mapping
turns out to be useful in our setting, as well.

First, let P̃ ≡
∏

j∈J

(
[p
j
, p̄j]×

∏S
s=1[p

j
, M̄j]

)
× {0}, where

M̄j ≡ p̄j +
p̄j − pj + c̄

mins>0 φj(0, s)
.

Note that this truncation of P is a compact set. Because demand for scrapped durables is
perfectly elastic at p

j
, an equilibrium price never lies below p

j
for any state. Furthermore, the

price of a brand new durable of type j cannot exceed p̄j, so pj0 (the price of a type j durable
in state 0) must lie in [p

j
, p̄j]. For other states, we do not know if price is bounded above by

p̄j, so we set a large upper bound M̄j. Assumption A4(ii) guarantees that the denominator
of M̄j is positive. The last component, {0}, is the price of not holding a durable. Using this
truncation of P , we can show that the value function is well-behaved:

Fact 1. For any a ∈ A, any p ∈ P̃ , and any ω ∈ Ω, V (a, ω, p) is uniquely determined. Also,
V is continuous.

Proof. It is easy to see that Blackwell’s sufficient conditions for contraction mapping are
satisfied in this case (see Lucas and Stokey (1989)). Thus, the value function exists and is
uniquely determined. Continuity of V is apparent.�

An immediate consequence of Fact 1 is that Ṽ : A × Ω1 × Ω2 × P → <+ is a continuous
function. Next, we show that the depreciation process is similarly well-behaved:

Fact 2. If δ :MA×Ω2 →MA×Ω1 is as given in (??), then δ is continuous.

Proof: Let µn be a sequence of probabilities in MA×Ω2 converging to µ in the topology of
weak convergence. Then δ is continuous if δ(µn) → δ(µ) weakly, as well. Let {µnw}ω∈Ω
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represent the component distributions of µn and {δ(µn)w}ω∈Ω those of δ(µn). Clearly,
δ(µn) → δ(µ) iff every component distribution converges. If ω = ∅, δ(µn)∅ = µn∅ , so con-
vergence follows immediately. Therefore, let ω = (j, s) and let f : A → < be bounded and
continuous. We wish to show that

∫
A
fd(δ(µn)js)→

∫
A
fd(δ(µ)js). We have∫

A

fd(δ(µn)js) =

∫
A

fd

[∑
s′

φj(s
′, s)µnjs′

]
,

=
∑
s′

φj(s
′, s)

∫
A

fdµnjs′ ,

where the second step follows from the Lebesgue-Radon-Nikodym Theorem (Folland, p. 84,
Theorem 3.8). Using our hypothesis that µn → µ yields the desired result.�

Define the correspondences D : T � T , B : P̃ � T and θ : T × P̃ � T by

D(τ) =
{
τ ′ ∈ T : τ ′A×Ω1

= δ(τA×Ω2)
}
,

B(p) =
{
τ ′ ∈ T : τ ′

({
(a, ω, ω′) ∈ A× Ω1 × Ω2 : Ṽ (a, ω, ω′, p) ≥ Ṽ (a, ω,Ω, p)

})
= 1
}
,

θ(τ, p) = D(τ) ∩B(p).

Given any initial durable goods allocation τ , D(τ) gives the collection of all durable goods
allocations which are feasible, given the depreciation technology δ. Given any price vector p,
B(p) describes the set of all durable goods allocations within a period in which almost every
consumer is optimizing at prices p. Consequently, θ(τ, p) characterizes the collection of all
durable goods allocations within a period which are both technologically feasible from τ and
in which almost every consumer is optimizing at p. The following fact is closely related to
Jovanovic and Rosenthal (1988), and the proof is therefore relegated to the Appendix.

Fact 3. The mapping θ is nonempty, convex-valued, and has closed graph.

Next, let us define the aggregate demand correspondence (supply side is not taken into
consideration). Let Z ≡ [−1, 1]Ω. Let ζ : T → Z be such that ζ(τ) = (τΩ2 − τΩ1). Obviously,
ζ is a continuous function.

Fact 4. ζ is a continuous function.

Let π : Z � P̃ be such that π(z) = arg maxp∈P̃ p ·z. Note that p∅ = 0 and p∅z∅ = 0. This
mapping is used in Gale and Nikaido’s lemma (see Debreu (1959)). Note that we cannot use
a standard argument to show the excess demand is nonnegative, since Walras’ law does not
hold in our economy. This is the reason why we introduced M̄j. As is well-known, π has the
following nice property (a direct application of the Maximum Theorem):

Fact 5. π is nonempty, convex-valued, and has a closed graph.

Let ϕ : T × Z × P̃ � T × Z × P̃ be a product of θ : T × P̃ � T , ζ : T → Z, and
π : Z � P̃ . This is our fixed point mapping which is nonempty, convex-valued, and has a
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closed graph. From A1–A3, T is compact in the topology of weak convergence. The sets Z
and P̃ are compact in the metric topology. Therefore, by the Fan-Glicksburg Fixed Point
Theorem, we obtain the following:

Fact 6. There exists (τ ∗, z∗, p∗) ∈ T × Z × P̃ such that (τ ∗, z∗, p∗) ∈ ϕ(τ ∗, z∗, p∗).

In the rest of the proof, we show (τ ∗, z∗, p∗) ∈ T × Z × P̃ is a stationary equilibrium.
Since p∗ ∈ π(z∗), we have (i) z∗j0 > 0 implies p∗js = p̄j for any j ∈ J , (ii) z∗js > 0 implies
p∗js = M̄j for any j ∈ J and any s ∈ S\{0}, and (iii) z∗js < 0 implies p∗js = p

j
for any j ∈ J

and s ∈ S. If case (ii) occurs, then z∗ is not a feasible allocation. The following lemma
excludes this case:

Lemma. Under Assumptions A3 and A4, z∗js ≤ 0 for any j ∈ J and any s ∈ S\{0}.

Proof. Suppose that z∗js > 0. Then, by the construction of π, p∗js = M̄j holds. Since z∗js > 0,
there exists a measurable set E ⊂ A with ν(E) > 0 such that each consumer a ∈ E chooses
ω′ = (j, s) as her optimal choice at the prices p∗. With a ∈ E, and given quasi-linear utility,
a’s optimal choice ω′ = (j, s) is independent of her current durable goods holdings ω ∈ Ω,
as long as she transacts in the market. Using this observation, her value function is given
by V (a, j, s, p∗) ≡ uajs + βa

∑S
s̃=s φj(s, s̃)V (a, j, s̃, p∗), where

V (a, j, s̃, p∗) = max

{
uajs̃ + βa

S∑
s′=s̃

φj(s̃, s
′)V (a, j, s′, p∗), V (a, j, s, p∗) + p∗js̃ − p∗js − ca

}

≤ max

{
uajs̃ + βa

S∑
s′=s̃

φj(s̃, s
′)V (a, j, s′, p∗), V (a, j, s, p∗)

}
= V (a, j, s, p∗).

The second line follows from p∗js = M̄j ≥ p∗js̃, and the third line follows from the fact that
(j, s) is an optimal choice in the presence of transaction costs.6 Thus, we can conclude
V (a, j, s, p∗) ≤ 1

1−βau
a
js.

7

Now suppose, instead, that consumer a ∈ E follows a replacement rule in which she
always replaces with the durable ω′ = (j, 0) and replaces her durable whenever it depreciates
to state (j, s) with s > 0. The present value of following this replacement rule, V̂ (a, j, 0, p∗),

6If transaction costs are zero, (j, s) continues to be an optimal choice, although (??) will hold with
equality.

7This is an intuitive result. Since p∗js = M̄j , the consumer a ∈ E cannot expect capital gains. Hence, her
value function is bounded above by the discounted value of her consumption stream only.
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is

V̂ (a, j, 0, p∗) = uaj0 + βa
[
φj(0, 0)V̂ (a, j, 0, p∗)

+
S∑
s̃=1

φj(0, s̃)
(
V̂ (a, j, 0, p∗) + (p∗js̃ − p̄j)− ca

)]

= uaj0 + βaV̂ (a, j, 0, p∗) + βa
S∑
s̃=1

φj(0, s̃)
(
p∗js̃ − p̄j − ca

)
= uaj0 + βaV̂ (a, j, 0, p∗) + βaφj(0, s)

(
M̄j − p̄j − ca

)
+βa

∑
s̃∈S\{0,s}

φj(0, s̃)
(
p∗js̃ − p̄j − ca

)
≥ uaj0 + βaV̂ (a, j, 0, p∗) + βaφj(0, s)

(
M̄j − p̄j − ca

)
+βa

∑
s̃∈S\{0,s}

φj(0, s̃)(pj − p̄j − c
a)

> uaj0 + βaV̂ (a, j, 0, p∗) + βaφj(0, s)
(
M̄j − p̄j

)
+ βa(p

j
− p̄j − ca)

= uaj0 + βaV̂ (a, j, 0, p∗) + βa
[
φj(0, s)

(
M̄j − p̄j

)
− (p̄j − pj + ca)

]
≥ uaj0 + βaV̂ (a, j, 0, p∗).

The last inequality follows from the definition of M̄j. This implies that V̂ (a, j, 0, p∗) >
1

1−βau
a
j0 ≥ 1

1−βau
a
js ≥ V (a, j, s, p∗). Thus, (j, s) could not have been an optimal choice for

any consumer a ∈ E, a contradiction. It follows that z∗js ≤ 0 for any j ∈ J and s > 0.�
By our Lemma, case (ii) is impossible at a fixed point of ϕ, so z∗js > 0 only if s = 0. To

complete the proof of the theorem, let y∗ = −z∗. Apparently, y∗ ∈ η(p∗), so (τ ∗, y∗, p∗) is a
stationary equilibrium.�
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Appendix

This section provides a proof of Fact 3. To do so, it is first necessary to prove two facts, 3a
and 3b, related (respectively) to the mappings D(·) and B(·).

Fact 3a. D is nonempty, convex-valued and has closed graph.

Proof. We first show that D is nonempty. Begin by choosing τ ∈ T , and let τ ′A×Ω1
=

δ(τA×Ω2). Let {τ ′A×Ω1(ω)}ω∈Ω1 represent the collection of component measures for τ ′A×Ω1
(sim-

ilarly for τ). By definition of the marginal,

τ ′A =
∑
ω∈Ω1

τ ′A×Ω1(ω)

= τA×Ω2(∅) +
∑
j

∑
s

∑
s′

φj(s
′, s)τA×Ω2(js′)

= τA×Ω2(∅) +
∑
j

∑
s′

τA×Ω2(js′)

=
∑
ω∈Ω2

τA×Ω2(ω),

which is ν because τ ∈ T . Since τ ′A×Ω1
= δ(τA×Ω2) and τ ′A = ν, it follows that τ ′ ∈ D(τ).

Next we show that D has closed graph. Let (τn, σn) be a sequence in T × T with
(τn, σn) → (τ, σ) and σn ∈ D(τn). Then it follows that D has closed graph if σ ∈ D(τ).
Since σn ∈ D(τn), σnA×Ω1

= δ(τnA×Ω2
). Consequently, we have

∫
fdσnA×Ω1

=
∫
fdδ(τnA×Ω2

) for
every bounded, uniformly continuous function f : A× Ω→ <. It follows that, for any n,∣∣∣∣∫ fdσA×Ω1 −

∫
fdδ(τA×Ω2)

∣∣∣∣
=

∣∣∣∣∫ fdσA×Ω1 −
∫
fdσnA×Ω1

+

∫
fdδ(τnA×Ω2

)−
∫
fdδ(τA×Ω2)

∣∣∣∣
≤
∣∣∣∣∫ fdσA×Ω1 −

∫
fdσnA×Ω1

∣∣∣∣+

∣∣∣∣∫ fdδ(τnA×Ω2
)−

∫
fdδ(τA×Ω2)

∣∣∣∣.
Proceeding to the limit, and using Fact 2,

∫
fdσA×Ω1 =

∫
fdδ(τA×Ω2) for every bounded,

uniformly continuous f , so that (Parthasarathy, p. 39, Theorem 5.9) σA×Ω1 = δ(τA×Ω2), and
the result follows. Convex-valuedness is immediate.�

Fact 3b. B is nonempty, convex-valued and has closed graph.

Proof. By the Maximum Theorem (Berge, p. 116), Ṽ ∗(a, ω, p)=maxω′∈Ω Ṽ (a, ω, ω′, p) is
continuous and M(p) ≡ {(a, ω, ω′) ∈ A × Ω1 × Ω2 : Ṽ (a, ω, ω′, p) − Ṽ ∗(a, ω, p) ≥ 0} is
measurable (and nonempty). It follows that there exists a probability whose support is
M(p), so B(p) is nonempty. Convex-valuedness is immediate.
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Finally, we show that B has closed graph. Let (pn, τn) be a sequence in P̃ × T with
(pn, τn) → (p, τ) and τn ∈ B(pn) for every n. Then B has closed graph if τ ∈ B(p), so it
suffices to show that τ(M(p)) = 1. Let supp(τ) denote the support of τ .8 We then have the
following chain of inclusions

supp(τ) ⊂ Ls supp(τn) ⊂ Ls M(pn) ⊂M(p),

where the first inclusion follows from the fact that τn → τ weakly, the second follows from
the fact that τn ∈ B(pn) for every n and the third from the fact that M(·) is upper semi-
continuous. Since τ is a probability, it follows that τ(M(p)) = 1.�

Fact 3. The mapping θ is nonempty, convex-valued, and has closed graph.

Proof. Using Facts 3a and 3b, the latter two properties are immediate, so we need argue
only that the intersection is nonempty. Let τ̂ ∈ D(τ) and let τ ′ ∈ T be constructed (as
above) so as to agree with τ̂ on its A × Ω1 marginal. For every p ∈ P̃ , let σp(a, ω) be a
measurable selection from the correspondence Γp : A× Ω1 � Ω2 given by

Γp(a, ω) = arg max
ω′∈Ω2

Ṽ (a, ω, ω′, p).

For each E ∈ BA×Ω1 , define

τ ′({(a, ω, ω′)|(a, ω) ∈ E, ω′ = σp(a, ω)}) = τ̂A×Ω1(E)

Since, if σp has unit measure under τ ′, τ ′ is necessarily in B(p), the proof is complete.�.

8The support of a measure µ is defined to be the complement of the union of all open sets of zero
µ-measure. If µ is a probability, then clearly µ(supp(µ)) = 1.
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