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Abstract

MisclassiÞcation in binary choice (binomial response) models occurs when the dependent variable
is measured with error, that is, when an actual �one� response is sometimes recorded as a zero, and vice
versa. This paper shows that binary response models with misclassiÞcation are semiparametrically iden-
tiÞed, even when the probabilities of misclassiÞcation depend in unknown ways on model covariates,
and the distribution of the errors is unknown.
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1 Introduction

This paper shows that binary response models with misclassiÞcation of the dependent variable are semipara-
metrically identiÞed, even when the probabilities of misclassiÞcation depend in unknown ways on model
covariates, and the distribution of the errors is unknown.
Let xi be a vector of covariates that may affect both the response of observation i, and the probability

that the response is observed incorrectly. For identiÞcation, assume there exists a covariate �i that affects
the true response but does not affect the probability of misclassiÞcation. If more than one one such covariate
exists, let �i be any one of the available candidates (that satisÞes the regularity conditions listed below), and
the others can without loss of generality be included in the vector xi �
Let y�i be an unobserved latent variable associated with observation i, given by

y�i � �i� � xi� � ei

where the ei are independently, identically distributed errors. The true response is given by

�yi � I �y�i � 0�

where I ��� equals one if � is true and zero otherwise. When �yi is observed, this is the standard latent variable
speciÞcation of the binary response model (see, e.g., McFadden 1984).
Now permit the true response (i.e., classiÞcation of observation i) to be observed with error. Letting yi

denote the observed binary dependent variable, the misclassiÞcation probabilities are

a�xi � � Pr�yi � 1 � �yi � 0� xi �
a��xi � � Pr�yi � 0 � �yi � 1� xi �

So a�xi � is the probability that an actual zero response is misclassiÞed (i.e., incorrectly recorded) as a one,
and a��xi � is the probability that a one response is misclassiÞed as a zero. These misclassiÞcation probabil-
ities are permitted to depend in an unknown way on observed covariates xi � This framework encompasses
models where misclassiÞcation probabilities may also depend on variables that do not affect the true re-
sponse, since any covariate x ji that affects a or a� but not y� is just a covariate that has a coefÞcient � j that
equals zero.
DeÞne b�x� as

b�xi � � [1� a�xi �� a��xi �]

and deÞne the function g to be the conditional expectation of y, which in this model is

�1� g��i � xi � � E�yi � �i � xi � � a�xi �� b�xi �F��i� � xi��

2



where F is the cumulative distribution function of the random variable �e�
Another model that corresponds to equation (1) is when a fraction a�x� of respondents having char-

acteristics x always answer one, a fraction a��x� always answer zero, and the remainder respond with
I ��� � x� � e � 0�� In this interpretation some respondents give �natural responses� that are due to fac-
tors other than the latent variable, while the other respondents follow the latent variable model. While this
model is observationally equivalent to the misclassiÞcation model, the interpretation of the natural response
model (in particular, the implied marginal effects) is quite different. See, e.g., Finney (1964).
Examples of recent papers that consider estimation of misclassiÞcation model parameters or misclas-

siÞcation probabilities include Manski (1985), Chua and Fuller (1987), Brown and Light (1992), Poterba
and Summers (1995), Abrevaya and Hausman (1997), and Hausman, Abrevaya, and Scott-Morton (1998).
These last two papers provide parametric (maximum likelihood) estimators of the model when the function
F is known, and a semiparametric estimator for the case where F is unknown and the misclassiÞcation
probabilities a and a� are constants (independent of all covariates). They also show that when F is un-
known, the coefÞcients of covariates that do not affect the misclassiÞcation probabilities can be estimated.
This paper shows that (given some regularity) the entire model is identiÞed even when the functions a�

a�, and F are unknown.

ASSUMPTION A1. Assume for all x that 0 � a�x�� 0 � a��x�� and a�x�� a��x� � 1� Assume � ,
conditional on x� is continuously distributed. Assume that F�	� is three times differentiable with f �	� �

dF�	�
d	 �� 0 and f ��	� � d f �	�
d	. Assume �� � � 1 and, for all �� �� �� prob
�
[ f ���� � x��
 f ��� � x��] �� E

0�

The assumption that the sum of misclassiÞcation probabilities be less than one is what Hausman et.
al. (1998) call the monotonicity condition, and holds by construction in the �natural response� form of
the model. Letting �� � � 1 is an arbitrary free normalization, as long as � �� 0� Only the covariate � is
assumed to be continuous. The Þnal condition in Assumption A.1 is a parametric identiÞcation assumption
that would provide identiÞcation of � from the score function if f was a known function and there was no
misclassiÞcation.
DeÞne the function ���� x� by

�2� ���� x� �
�2g��� x�
��2

�g��� x�
��
sign[E�

�g��� x�
��

�]

Let r��� x� be any function such that r��� x� � 0� sup r��� x� is Þnite, and E[r��� x�] � 1�

Lemma 1 Given Assumption A1, ���� x� � f �����x��
 f ����x��� � � sign �E[r��� x��g��� x�
��]� �
and � � argmin�� E

�
����� x�� E[���� x���� � x��]�2

�
� Also, � � E �r��� x�[����� x�
�x]
[����� x�
��]� � �

3



This Lemma shows identiÞcation of the model coefÞcients. Estimation based on this Lemma could
proceed as follows. First, estimate �g as a nonparametric regression of y on � and x � Next deÞne �� by
equation (2), replacing g with �g and the expectation with a sample average. Then let �� equal the sign of
any weighted average derivative of E�y��� x� with respect to � (using, e.g., the estimator of Powell, Stock
and Stoker 1989).
The Lemma suggests two different estimators for �� Let 
��� � x��� � E[���� x���� � x��] for any

��� and let�
���� � x��� be a nonparametric regression of����� x� on ��� � x��� The estimate�� is then the
value of �� that minimizes the sample average of [����� x���
���� � x���]2� This is essentially Ichimura�s
(1993) linear index model estimator, using����� x� as the dependent variable.
Another estimator for � suggested by the Lemma is to let�� equal the sample average of r��� x�[������ x�
�x]
[������

This is an average derivative type estimator, which is only feasible for continuously distributed regressors
because of the need to estimate the term ������ x�
�x .
More generally, Lemma 1 shows that ���� x� � 
��� � x��, so � can be estimated using any of a

variety of linear index model estimators, treating ����� x� as the dependent variable. For example, Pow-
ell, Stock, and Stoker (1989) could be used to estimate the coefÞcients of the continuous regressors, and
Horowitz and Härdle (1996) for the discrete regressors. The limiting distributions of these estimators will
be affected by the use of an estimated dependent variable����� x� instead of an observed one. However, all
of these estimators involve unconditional expectations, estimated as averages of functions of nonparametric
regressions. With sufÞcient regularity (including judicious selection of the function r� e.g., having r be a
density function that equals zero wherever � might be small), such expectations can typically be estimated
at rate root n. See, e.g., Newey and McFadden (1994). Also, some relevant results on the uniform conver-
gence and limiting distribution of nonparametric kernel estimators based on estimated (generated) variables
include Andrews (1995) and Ahn (1997).
DeÞne 	 � �� � x�, which by Lemma 1 is identiÞed. Let f��	� denote the unconditional probability

density function of 	� DeÞne h by h�	� x� � E�y � 	� x� � a�x�� b�x�F�	�� DeÞne the function � by
the indeÞnite integral

��	� � E
�
�2h�	� x�
�	2

�h�	� x�
�	
� 	

�
�3� ���� � exp 	����d�

Let �� and �e denote the supports of 	 and �e� respectively. DeÞne the constant c by c � 	��

��	�d	.

Lemma 2 Given Assumption A1, f �	� � ��	�
c and b�x� � E �[�h�	� x�
�	]
��	� � x� c� If �e is a
subset of ��� then c � E[��	�
 f��	�]

This Lemma shows that the density function f �	� and the misclassiÞcation function b�x� are identiÞed
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up to the constant c� and the constant c is also identiÞed (and can be estimated as a sample average),
provided that the data generating process for 	 has sufÞciently large support.
Estimators based directly on Lemma 2 would consist of the following steps. First, construct �	 �

��� � x��� and let�h��	� x� be a nonparametric regression of y on �	 and x � Next, let�� ��	� be a nonparametric
regression of [�2�h��	� x�
��	2]
[��h��	� x�
��	] on �	, and deÞne the function ���	� � exp	���	�d	�

The scalar�c then equals the sample average of ����	�
�f���	�, where �f� is a nonparametric estimator (for
example, a kernel estimator) of the density of �	� Finally, �f��	� � ���	�
�c, and �b�x� equals �c times a
nonparametric regression of [��h��	� x�
��	]
����	� on x � The resulting estimates should be consistent, as
long as uniformly consistent nonparametric estimators are used at each stage. Note that consistency may
require trimming (possibly asymptotic trimming) to a compact subset of ��, because of division by the
density f��
The above Lemmas show that the marginal effects � Pr��y � 1 � �� x�
�x � f ��� � x��� and � Pr��y �

1 � �� x�
�� � f ��� � x��� are identiÞed, and that the misclassiÞcation error function b�x� is also
identiÞed. If a�x� � a��x�, that is, if the probability of misclassiÞcation doesn�t depend on�y� then Lemma
2 implies that the misclassiÞcation probability a�x� � a��x� � [1� b�x�]
2 is also identiÞed.
Instead of using Lemma 2, log derivatives of b�x� (and hence of a�x� and a��x� when they are equal)

with respect to continuously distributed elements of x can be directly estimated, without requiring numerical
integration, the �large 	 support� assumption, or the generated variable �	� by the following Lemma.

Lemma 3 Let x j be any continuously distributed element of x and let � j be the corresponding element of
�� Let Assumption A1 hold, and assume b�x� is differentiable in x j � Then

� ln b�x�
�x j

� E

�
�2g��� x�
���x j
�g��� x�
��

� ���� x�� j � x

	

By Lemma 3, a nonparametric regression of [�2�g��� x�
���x j ]
[��g��� x�
��]������ x��� j on x is an es-
timator of � ln b�x�
�x j �Dividing this estimate by�2 yields an estimate of � ln a�x�
�x j and � ln a��x�
�x j
when a�x� � a��x��
Next, consider identiÞcation of a�x� and a��x� when they are not equal. Let F��	 � x� denote the

conditional cumulative distribution function of 	 given x and let f��	 � x� � �F��	 � x�
�	 be the
conditional probability density function of 	 given x� and let ���x denote the support of 	 given x � Let
��x� � 1� E[ f �	�F��	 � x�
 f��	 � x� � x]�

Lemma 4 Let Assumption A1 hold, and assume that �e is a subset of ���x � Then a�x� � E[h�	� x� �

x]� b�x���x�, a��x� � b�x�� 1� a�x�� and F�	� � E �[h�	� x�� a�x�]
b�x� � 	�

Estimation of ��x� requires extreme values of 	 given x , and hence of �� to be observable. Some
intuition for this result comes from the observation that g��� x� ≈ a�x� for very large �� and g��� x� ≈
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1 � a��x� for very small �� Hence, analogous to the estimation of c, data in the tails are required for
estimation of a�x� and a��x�. Estimation proceeds as in the previous Lemmas, that is, employing �	 in
place of 	, nonparametric estimation of the density function f��	 � x�, and nonparametric regression to
estimate conditional expectations.
Taken together, these Lemmas show that the entire model is identiÞed. The parameters � and � can

be consistently estimated (with regularity, at rate root n), and the functions a�x�� a��x�� and F�	�, can be
consistently estimated nonparametrically. The estimators provided here are not likely to be very practical,
since they involve up to third order derivatives and repeated applications of nonparametric regression, and
they do not exploit some features of the model such as monotonicity of F . However, the demonstration that
the entire model is identiÞed suggests that the search for better estimators would be worthwhile.

A Appendix

Proof of Lemma 1:
�g��� x�
�� � b�x� f ��� � x��� � b�x� � 0� and f ��� � x�� � 0� so � � sign[�g��� x�
��]�

�2g��� x�
��2 � b�x� f ���� � x��� 2� and � 2 � 1� so ���� x� � f ���� � x��
 f ��� � x��� Let 
��� �

x��� � E[���� x���� � x��]� It follows from the previous expression for � that ���� x� and the Þnal
equality in Assumption A1 that prob[���� x� � 
��� � x���] � 0 for all � �� ��, and ���� x� �


��� � x��� so � � argmin�� E
�
����� x�� E[���� x���� � x��]�2

�
�

The alternative expression �
� � [����� x�
�x]
[����� x�
��] follows because � depends on x and �
only through �� � x�� so E �r��� x�[����� x�
�x]
[����� x�
��]� � � E[r��� x��
� ]� � ��

Proof of Lemma 2:
�h�	� x�
�	 � b�x� f �	�� �2h�	� x�
�	2 � b�x� f ��	�� so [�2h�	� x�
�	2]
[�h�	� x�
�	] �

f ��	�
 f �	� � E
�
[�2h�	� x�
�	2]
[�h�	� x�
�	] � 	



� Then ���� � exp[	 f ����
 f ���d� ] �

f ���c� where ln c is the constant of integration.
E �[�h�	� x�
�	]
��	� � x� 
c � E �[b�x� f �	�]
��	� � x� 
c � E �[b�x� f �	�]
[ f �	�c] � x� 
c �

b�x��
E[��	�
 f��	�] � 	��

[��	�
 f��	�] f��	�d	 � 	��

��	�d	 � 	��

f �	�cd	 � c� where the
last equality holds as long as �� contains every value of e for which f �e� is nonzero.

�

Proof of Lemma 3:
�2g��� x�
���x j � f �� ���x��b�x�
�x j�b�x� f ��� ���x�� j � so [�2g��� x�
���x j ]
[�g��� x�
��] �

[�b�x�
�x j ]
b�x�� [ f ��� � ��x�
 f �� � ��x�]� j � � ln b�x�
�x j ����� x�� j � The lemma then follows
immediately.

6



Proof of Lemma 4
Let ����x denote the boundary of the support ���x . Applying an integration by parts gives E[F�	� �

x] � 	���x F�	� f��	 � x�d	 � F�	�F��	 � x� �������x �	���x f �	�F��	 � x�d	� Having �e be a
subset of���x ensures that F�	�F��	 � x� �������x� 1� and so ��x� � 1�	���x [ f �	�F��	 � x�
 f��	 �

x�] f��	 � x�d	 � E[F�	� � x] Therefore, E[h�	� x� � x] � a�x��b�x�E[F�	� � x] � a�x��b�x���x��
which gives the identiÞcation of a�x�� a��x� � b�x� � 1 � a�x� then follows from the deÞnition of b�x��
and h�	� x� � a�x�� b�x�F�	� is then used to obtain F�	��
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