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1. An Optimizing IS-LM-PC Specification

1.1. Overview

Here, the models of Ireland (1997) and McCallum and Nelson (1999) are modified
to focus on the role of money in the monetary business cycle. The economy
consists of a representative household, a representative finished goods-producing
firm, a continuum of intermediate goods-producing firms indexed by i € [0, 1],
and a monetary authority. During each period ¢t = 0,1, 2, ..., each intermediate
goods-producing firm produces a distinct, perishable intermediate good. Hence,
intermediate goods may also be indexed by i € [0, 1], where firm ¢ produces good
. The model features enough symmetry, however, to allow the analysis to focus
on the behavior of a representative intermediate goods-producing firm, identified
by the generic index 3.

1.2. The Representative Household

The representative household enters period ¢ with money M, ; and bonds B, ;. At
the beginning of the period, the household receives a lump-sum nominal transfer 7;
from the monetary authority. Next, the household’s bonds mature, providing B;_
additional units of money. The household uses some of this money to purchase
B; new bonds at nominal cost B;/r;, where r; denotes the gross nominal interest
rate between tand ¢ + 1.
The household supplies (i) units of labor to each intermediate goods-producing

firm ¢ € [0, 1], for a total of

1
he = / he(i)di
0



during period ¢. The household is paid at the nominal wage rate W;. The house-
hold consumes ¢; units of the finished good, purchased at the nominal price P,
from the representative finished goods-producing firm.

At the end of period ¢, the household receives nominal profits D (i) from each
intermediate goods-producing firm i € [0, 1], for a total of

1
D, = / Dy (i)di.
0
The household then carries M; units of money into period ¢ + 1, subject to the

budget constraint

My« + T+ By + Wihy + Dy
P > ¢
t

n Bt/rt‘f‘Mt'

= )

The household’s preferences are described by the expected utility function

Eiﬁtat{u[ct, (My/Py)Jer] — e},

where 1 > 8 > 0 and n > 0. The preference shocks a; and e; follow the autore-
gressive process
In(a;) = p,In(a; 1) + €a (2)
and
In(e;) = (1 - p.) In(e) + pe In(er—1) + et (3)
where 1 > p, > —1,1 > p, > —1, e > 0, and the zero-mean, serially uncorrelated
innovations ¢,; and &.; are normally distributed with standard deviations o, and
Oe.

Thus, the household chooses ¢;, h;, B;, and M, for allt = 0, 1, 2, ..., to maximize
its utility subject to the budget constraint (1) for all ¢ = 0,1,2,.... Letting
my = M,/ P, denote real balances, m; = P,/ P,_; the inflation rate, w, = W,/ P, the
real wage rate, and )\, the nonnegative multiplier on (1), the first-order conditions
for this problem are

agur(ce, me/er) = A,

na; = Aw,
Ar = ﬁTtEt<)\t+1/7Tt+1),
(ar/e)us(ce, me/e) = A — BE (Aei1/mes),
and (1) with equality for all t =0,1,2,....
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1.3. The Representative Finished Goods-Producing Firm

During each period t = 0,1, 2, ..., the representative finished goods-producing firm
uses y;(¢) units of each intermediate good i € [0, 1], purchased at nominal price
P,(i), to manufacture y; units of the finished good according to the constant-
returns-to-scale technology described by

1
[/ yt(i)(‘)—l)/‘)dz’
0

where 6 > 1. Thus, the finished goods-producing firm chooses y;(7) for all ¢ € [0, 1]
to maximize its profits, given by

1 1
Pl [w@Ovra) = [ RGuG)d
0 0
for all t =0,1,2,.... The first-order conditions for this problem are

(i) = [P(i)/ P ",

for alli € [0,1] and ¢t =0,1,2,....
Competition drives the finished goods-producing firm’s profits to zero in equi-
librium. This zero-profit condition implies that

0/(6-1)
:| Z Yt,

0/(0—1)

1 1/(1-9)
P = [ / Pt(z')l‘edi]
0

forallt=0,1,2,....

1.4. The Representative Intermediate Goods-Producing Firm

During each period t = 0, 1, 2, ..., the representative intermediate goods-producing
firm hires h;(¢) units of labor from the representative household to manufacture
4(7) units of intermediate good i according to the constant-returns-to-scale tech-
nology described by

2ehy(8) > yu(4). (8)
The aggregate technology shock z; follows the autoregressive process

In(z) = (1 = p.) In(2) + p, n(z1) + €21, (9)

where 1 > p, > —1 and 2z > 0. The zero-mean, serially uncorrelated innovation
€, is normally distributed with standard deviation o,.
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Since the intermediate goods substitute imperfectly for one another in pro-
ducing the finished good, the representative intermediate goods-producing firm
sells its output in a monopolistically competitive market; during each period
t=0,1,2, ..., the intermediate goods-producing firm sets the nominal price P;()
for its output, subject to the requirement that it satisfy the representative finished
goods-producing firm’s demand. In addition, the intermediate goods-producing
firm faces a quadratic cost of adjusting its nominal price, measured in terms of
the finished good and given by

where ¢ > 0 and where 7 denotes the steady-state inflation rate.

The cost of price adjustment makes the intermediate goods-producing firm’s
problem dynamic; it chooses P,(7) for all t = 0,1, 2, ... to maximize its total market
value, given by

Eiﬁ%[&(z‘)/m,

where 3')\;/ P, measures the marginal utility value to the representative household
of an additional dollar in profits received during period ¢ and where

D) _ RO [RO] () 2 r@ ) (10
IR "R \m) 2mmae "
for all £ =0,1,2,.... The first-order conditions for this problem are
P P g
_ 1 0 Yt 11
0 = (1 Q)Atlpt] (B>+9At B (tht> (11)

- [
P (i) 1] lwl}

+BoE; {)\H-l lWPt(Z) — TB(i)?

forallt=0,1,2,....

1.5. The Monetary Authority

The monetary authority conducts monetary policy by adjusting the nominal inter-
est rate r; in response to deviations of output y;, inflation 7;, and money growth

= My/M; (12)
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from their steady-state values y, 7, and p according to the policy rule

In(ry/r) = p,In(ri1/r) +p, n(ye—1/y) + p (71 /7) +p, (1 /11) +€0t, (13)

where r is the steady-state value of r, and where the zero-mean, serially uncorre-
lated innovation ¢,; is normally distributed with standard deviation o,.

1.6. Symmetric Equilibrium

In a symmetric equilibrium, all intermediate goods-producing firms make identical

decisions, so that y:(i) = vy, hi(i) = hyy, Pi(i) = By, and d(i) = Dy(i)/ P =

D,/P, = d, for all i € [0,1] and ¢t = 0,1,2,.... In addition, the market-clearing

conditions M; = M;_1 + T, and B, = B;_; = 0 must hold for all t =0,1,2, ....
After imposing these conditions (1)-(13) become

2
T

yt:Ct‘f‘?(—t—l) Yt,
T

—
—_
~—

2

[\

In(a;) = p, In(a;—1) + €at,
In(e;) = (1 — p.) In(e) + p, In(es—1) + eet,

aguy(cp,my/er) = A,

-~ W

t
~— ' ~— ~— ~— ~— ~—

nay = AW,

At = OriEy(Aey1/Tes1),
(ar/ed)us(cr,mue/er) = Ao — BEY(Avs1/Tes1),
Y = zihy,

In(z;) = (1 - p.) In(2) + p, In(z11) + e,

2
e
dt:yt—wtht—?<—t—1> Yt,
2 \m

0 = (1—0))\+0N <%> — oM <ﬂ B 1) <ﬂ>

2 T T

o s (72 2) (52) (52

My_1 by = My Ty, (12)

~N

~~N I/~ /N N /N /N /N
oo

=)
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and

In(r/r) = p, In(ri—1/r) + py In(yi—1/y) + pr In(m—1 /7) + p, (e 1 /1) + €0 (13)

These 13 equations determine equilibrium values for the 13 variables y;, 7, my,
Tty Coy Py Wy, dyy Agy iy, Gty €1, and 2.

Use (4), (5), (8), and (10) to eliminate A, wy, hy, and d;. Then the system can
be written more compactly as

yt:Ct"‘%(%_l)Qyt: (1)

In(a;) = p, In(as 1) + €at, (2)

In(e;) = (1 — p.)In(e) + p,In(e; 1) + €y, (3)

ayu (e, my/e) = BriEyfaaun (Copn, Mt/ e) /el (6)
rius(ce, mefer) = (re — 1)esus (e, me/ey), (7)

In(z) = (1 — p,)In(2) + p, In(21—1) + €2, (9)

b-1 =9 lztul(c:mt/et)} (717 (1)
oon { [l () () (22

My by = T Ty, (12)

and

In(r/r) = p, In(re—1/7) + py In(31-1/y) + pr (i1 /70) 4+ py (py_1 /1) +€re. (13)

These 9 equations determine equilibrium values for the 9 variables y;, 7, my, 4,
Cty Hyy Aty €,y and 2t



1.7. The Steady State

In the absence of shocks, the economy converges to a steady state, in which y; = ,
T =T, My =M, Ty =T, C =C, [l =W, a; = a, ¢ = e, and z; = z. The steady-
state values a, e, and z are determined by (2), (3), and (9). The steady-state
value 7 is determined by (13).

The steady-state value r is determined by (6) as

r=mx/p.
The steady-state value u is determined by (12) as
p=T.
The steady-state value ¢ is determined by (1) as
c=y.

The steady-state values y and m are determined by (7) and (11):

rug(y,m/e) = (r — Leu(y, m/e)

= (52) 2

1.8. The Linearized System

The system consisting of (1)-(3), (6), (7), (9), and (11)-(13) can be log-linearized
around the steady state in order to describe how the economy responds to shocks.
Let 9, = In(y:/y), 71 = In(m/7), My = In(my/m), 7, = In(r,/r), & = In(ct/c),
f, = In(p,/p), a; = In(a¢/a), é; = In(e;/e), and 2, = In(z;/z). The first-order
Taylor approximations yield

and

?jt - ét7 (1)

Ay = Poi—1 + Eat, (2)

€1 = P€i—1 + Eet, (3)

U = B —wi(f — Eytig) +wa(my — Eyiggy) (6)

—wa(é — Erér1) +wi(ar — Erdypsq),
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My = Y19t — Yot + V3, (7)
Zr = P 2i—1 + Eu, 9)
R T R 1N wWa\ . wa . R
e (2 B e[ (2o (2 (i) w
r w1 w1 w1
My—1 + fly = My + 7, (12)
and
Fr = ppfic1 + pyi—1 + prfti—1 + puily—y + €, (13)
where
o U1<y7 m/e)
wy = ———,
yui1(y, m/e)
_ (m/e)uia(y,m/e)
Wy = —
?JU11(?J> m/e)
yrws r—1
Y1 = < + > V25
mwi w1
- r us(y, m/e)
27 (r=1)(m/e) | (r — Deurn(y,m/e) — rus(y,m/e) |’
Vs =1—(r—1)7,
and 91
="
¢

Equation (6) is the IS curve, equation (7) is the LM curve, equation (11) is
the Phillips curve, and equation (13) is the policy rule. Use (1) to eliminate ¢,
and rewrite the system as

ay = PaQi—1 + Eat, (2)

€1 = Po€i—1 + Eet, (3)

U = B —wi(ty — Eyften) + wo(1y — Eyigas) (6)
_w2(1 - pe)ét + wl(l - pa)dtv

My = Y1 — Yaolt + '73ét7 (7)

2?75 - pzétfl + Ezxty (9)

R T . 1N . w . w2\ . R
T = <—> B+ [<—> Yr — <—2> my + <—2> e — Zt] ; (11)
T w1 w1 w1

8



My—1 + [l = My + Ty,

and

ft = prf‘t71 + pygtfl + pﬂﬁtfl + pul&’tfl + Ept.

2. Solving the Model

Let
0 . N 1
ft = [ my Ty g } )
0 __ ~ ~ ~ ~
Sy = { Y1 My1 Tg1 Te1 My

and )
vt:[at €t Zt 67‘1&}-

Then (7), (12), and (13) can be written as
Af) = Bs? + Cuy,

where A is 3 x 3, Bis 3 x 7, and C'is 3 x 4.
Equation (7) implies

a1 =1

12 = 72
bie =7
C12 =73

Equation (12) implies

asy; =1
asg = —1
byy =1
by = —1

Equation (13) implies

Ys

My

/

Y

(12)

(13)

(14)



CL32:1

b3 = Py
bss = P
by = p,
bss = py
ey =1

Equations (6) and (11) can be written as
DEsY | + FE f). = Gs? + HfY + Ju,

where D and G are 7 x 7, F and H are 7 x 3, and J is 7 x 4.
Equation (6) implies

dig =1
dir = ws
Ji1 = w2
g16 =1
hir = —ws
his = wy

Jin = —wi(l —p,)
Ji2 = wa(l—p,)

Equation (11) implies

d27 :71'/7’
G26 = —¢/w1
gar =1
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hoy = ¢(w2/w1)
Jo2 = —p(wa/wr)

Jos =

The presence of lagged values m;_; in s implies

ds; =1
g3 = 1
dyp =1
hy =1
dss =1
gsr =1
dgs =1
hea =1
dris =1
hs =1

Equations (2), (3), and (9) can be written as

where

and

Rewrite (14) as

V¢ = Pvt,1 + Et, (16)

S OO
Oomb [a]
o O O O

0
0
Pz
0
/

5t:[€at Eet €zt Ert

fo=AT'Bs) + A7 Cu,
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When substituted into (15), this last result yields
(D+ FA'B)E;s),, + FAT'CPv, = (G+ HA'B)s) + (J + HA™'C)v,

or, more simply,
Es) = Ks) + Lu, (17)

where

K=(D+FA'B)™ G+ HA™'B)

and
L=(D+FA'B)"Y(J+ HA™'C - FA™'CP).

If the 7 x 7 matrix K has five eigenvalues inside the unit circle and two eigenvalues
outside the unit circle, then the system has a unique solution. If K has more than
two eigenvalues outside the unit circle, then the system has no solution. If K has
less than two eigenvalues outside the unit circle, then the system has multiple
solutions. For details, see Blanchard and Kahn (1980).

Assuming from now on that there are exactly two eigenvalues outside the unit
circle, write K as

K=M"'NM,
where
[ No
Y
and
Mll M12
M = .
[MQI MQZ]

The diagonal elements of N are the eigenvalues of K, with those in the 5 x 5
matrix N7 inside the unit circle and those in the 2 x 2 matrix N, outside the unit
circle. The columns of M~ are the eigenvectors of K; My, is 5 x 5, My is 5 X 2,
My is 2 x 5, and My, is 2 x 2. In addition, let

_ | I
=0

where L is 5 x 4 and Ly is 2 x 4.
Now (17) can be rewritten as

Mll M12 ESO — Nl 0 Mll M12 80—|— Mll M12 Ll v
M21 M22 e 0 N2 M21 M22 K M21 M22 !
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or

Eistpsq = Nisyy + Quvg (18)
and
Ets%t—l—l = NQS%t + Qavy, (19)
where o
Yt—1
M1 N
S}t = My 7?15_1 + Mo [ Z_i ] , (20)
Tt
| g
[ i1
mt_l N
S%t = My 7:Tt—1 + Moo [ ?rtt 1 ) (21)
Tt—1
Mt 1]
Q1= MLy + MioLo,
and

Q2 = Mo Ly + Moo Lo.
Since the eigenvalues in N, lie outside the unit circle, (19) can be solved
forward to obtain
sy, = —Ny ' Ruy,
where the 2 x 4 matrix R is given by
vec(R) = wec) N;7Q.P7 = > vec(Ny?QyP?)

§=0 §=0

[P7® (N1 vec(Qq) = i P ® Ny 'Vvec(Qs)

I
M2

.
Il
=

I
M2

[isxs) — P ® N{l]’lvec(Qg)

.
Il
=

Use this result, along with (21), to solve for

Ui
. M1

l 7?{: ] =51 | M1 | + S, (22)
! Ti_1
1



where
S; = — My My,

and
Sy = —My' N, ' R.

Equation (20) now provides a solution for s};:

Ui
M1
S%t = (My1 + M15S)) | o1 | + MiaSov,.
Ti_1
1
Substitute this result into (18) to obtain
| |
my Mi_1
7y | =S3 | T | + S,
T Teo1
L /:lt ] L [Lt—l ]
where
Sy = (M + M1251)71N1(M11 + M;2S1)
and

Sy = (M + M1251)71(Q1 + N1 Mi5Ss — M35 P).
Finally, return to
£ = ATBY 4 AT O,
Yr—1
] My

1

I

- —1 (5x5)

~an[le] |
Ti—1

-1

which can be written more simply as

fto = Ssniy_1 + Sgvx,

14

1 | +AT'B [ gfﬂl) 1 v + A Cy,

(23)

(24)



where

_21-1 I(5><5)
Ss=A""B l 3

and

SB _ A—IB [ (;(25><4) ] +A_1C.

Equations (16) and (22)-(24) provide the model’s solution:

Sty1 = HSt + W€t+1 (25)
and

ft = USt, (26)

where

/

St:[ytfl my—1 M1 Te—1 Mg Gt € 2t ERt | ,

!

ft:[mt Ty My Ui Wt}v
!

Et:[&zt Eet &zt 57«1&},

S3 Sy
H p—
[ 0(4><5) P ] ’

W — l 0(5><4) ‘| 7
T(axa)

and
S5 Sg

v-15 8

3. Estimating the Model

Suppose that data are available on output ¥, real balances m;, inflation m;, and
the interest rate r;. These data can be used to construct a series {d;}/_,, where

i In(y,) — In(y)
d, — my | _ | In(my) —In(m)

’ﬁ't hl(ﬂ't) — 1n(7r)

T In(ry) — In(r)
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Equations (25) and (26) then given rise to an empirical model of the form
St41 = ASt + B€t+1 (27)

and
dt = CSt, (28)

where A =11, B =W, C is formed from the rows of U as

Uy
U,
Us |’
Us

and the vector of serially uncorrelated innovations

/
Et+1 = | €at+1 Eet+1 Ezt+1 Ert+1

is assumed to be normally distributed with zero mean and diagonal covariance

matrix )

o2 0 0 0
0 020 0
V=FEenea=|o o 52 o

z

0 0 0 o2

r

The model defined by (27) and (28) is in state-space form; hence, the likelihood
function for the sample {d;}!_, can be constructed as outlined by Hamilton (1994,
Ch.13). For t =1,2,...,T and j = 0,1, let

<§t\t—j = E<8t|dt,j, dt,jfl, ceey d1>,

E75|th' = E(St - <§t|tfj>(5t - §t\t—j)/7

and R
dt\tfj = E(dt|dt—j7 dt—j—b ) dl)

Then, in particular, (27) implies that
S110 = E's1 = 0gx1) (29)

and
vec(Syp) = vec(Esis)) = [[sixs1) — A @ A 'vec(BV B'). (30)
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Now suppose that 5;;_; and ¥;;_; are in hand and consider the problem of
calculating 8,1, and ;. Note first from (28) that

dt|t71 = Cst\tfl-

Hence
up = dp — dt|t71 = C<8t - <§t\t71)

is such that
Eutu; = Czﬂt_lcl.

Next, using Hamilton’s (p.379, eq.13.2.13) formula for updating a linear projec-
tion,

§t|t = §t|t—1 + [E(St - §t|t—1)(dt - Czt\t—l)l] [E(dt - Czt\t—l)(dt - Cztlt—l)l]_lut
= <§t|t—1 —|— Eﬂt_lCI(CEtﬁ_lC/)ilut.

Hence, from (27),
Sea1pp = A1 + ADy1C'(CZg1C) My
Using this last result, along with (27) again,
Stp1 — Spa1)e = A(st — Syje—1) + Begga — AZt\t_lC’(C’Zﬂt_lC')’lut.
Hence,
Si1pp = BVB 4+ ASy 1 A — A8y, 1C'(CEyy—1C) 1Oy A
These results can be summarized as follows. Let

8t = §t|t—1 = E(Stldtfbdtf% ceey dl)

and
Y= Zt\t—1 = E(St - §t|t—1)(3t - §t|t—1)/-
Then
§t+1 = A§t + Ktut
and

dt = Cg’t + Uy,

17



where

uy = dy — E<dt|dt—1; dt727 ) d1)7
Eutu; = CZtC, = Qt,
the sequences for K; and Y; can be generated recursively using

Kt - AZtCI(CZtCI)il

and
Y1 = BVB + AY A — AEtC”(C’ZtC')*C’ZtA’,

and initial conditions §; and ¥; are provided by (29) and (30).
The innovations {u; }/_; can then be used to form the log likelihood function
for {d,}I_, as

1z 1z .
InL = —-2T1n(27) — 3 > In |y — 3 > w .
t=1 t=1

4. Variance Decompositions
Begin by considering (27), which can be rewritten as
s = Asi_1 + Bey,

or
(I — AL)St = Béft,
or

St — Z AjB(ft_j.

=0

This last equation implies that

o0
St+k = Z AJB@t+k—j7

7=0
0 .
Etst—i-k = ZAJBEt_;'_]C,]’,
j=k
k=1
Sipk — Eisipn = Z AJB€t+k—j,
=0

18



and hence

ZZ = E(3t+kz - Et3t+k:)(3t+k - Et3t+k)/
BVB + ABVB'A' + A2BVB'A? + ...+ A 1BV B’ AV,

In addition, (27) implies that
¥ = lim ¥j

k—o0
is given by
vee(S®) = [Igixs1) — A ® Al 'vec(BVB').

Next, consider (26) and (28), which imply that
Z£ = E(ft+k: - Etft+k)(ft+k: - Etft+k), = UZiU’,
o = lim > =UsU,
Sp = E(dysr, — Eidysr) (dii — Evdii) = CE3C,

and
» = Jim Y =C¥iC.

Let © denote the vector of estimated parameters, and let H denote the covari-
ance matrix of these estimated parameters, so that asymptotically,

O~ N(6° H).

Note that the elements of X, ¥¢, ©f 5/ 24 and 2¢ can all be expressed as
nonlinear functions of O:

¥ =g(©),

so that asymptotic standard errors for these elements can be found by calculating
VgHV{'.

In practice, the gradient Vg can be evaluated numerically, as suggested by Runkle
(1987).
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5. Vector Autocorrelations

5.1. Model
Note first that (27) implies

k-1

St = AkSt_k + Z AJB€t_j.

=0

Hence,
Ess,_, = A"Es;_ps,_, = APY®,
where
vec(X*) = [Ig1xs1) — A ® Al 'vec(BVB').

Equation (28) then implies
I'w = Edid,_, = CA*Y*C'.

Thus, the autocorrelations can be computed as
[Co(d, 1)]'/*[Ta (4, )]/

5.2. Data
Consider the using the data
G In(y;) — In(y)
4 — me | | In(my) —In(m)
T A || In(m) — In(n)
T In(r;) — In(r)

to estimate the autoregression
d; = Ad,_1 + Bey,

where more than one lag of d; can be accommodated by writing the system in

companion form.
Then, as above,
k-1

dt = Akdt_k + Z AjBEt_j.

J=0
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Hence,
I = Edyd,_, = A*Ed,_d,_, = A*%?,

where

vee(X%) = [Iupxap) — A ® A) tvec(BV B')

and p + 1 is the total number of lags in the autoregression.
Thus, the autocorrelations can be computed as

L'x(4,79)
[To(i, )] /2[To (g, 5)]/*
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