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Abstract”

Suppose that there are two congestible modes of travel from A to B — road and rail for
concreteness — which are imperfect substitutes in demand. Road congestion from A toB is
underpriced; thisis an unalterable distortion. Compared to the first best, should the
transportation planner choose awider or narrower road, raise or lower therail fare, and expand
or contract rail capacity? This paper provides a synthetic review of the literature on the problem,
presents some new results, and discusses directions for future research on this and related

second-best problems.
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The Two-mode Problem: Second-best Pricing and Capacity

Introduction

This paper returnsto a classic problem in urban transportation economics. Suppose there
are two congestible modes of travel from A to B — road and rail for concreteness— which are
imperfect substitutesin demand. Thereisasingle distortion in the economy: congestion on the
road is unalterably underpriced. How does the underpricing of road travel affect the optimal road
width, the optimal rail capacity, and the optimal rail fare?

While considerable progress has been made in understanding the economics of the
problem, we are still along way from being able to provide precise quantitative answersto this
guestion. This paper provides a synthetic review of the literature, explains why the problem has
been such atough nut to crack, presents a couple of new perspectives on the problem, and
discusses promising directions for future research on this and related second-best problems.

Though it has not provided a complete analysis, the existing literature has examined a
number of facets of the problem. First, Wheaton (1978), Wilson (1983) and d’ Ouville and
McDonald (1990) have addressed the question: If there isasingle road connecting A and B on
which congestion is unalterably underpriced, should the road be wider or narrower than when
congestion is efficiently priced? Put aternatively: How does the second-best road width compare
to the first-best? Wheaton found that reducing the toll infinitesimally below the first-best level
resultsin an increase in optimal road width. Wilson provided a general local analysis, indicating
how aninfinitesimal change in the toll from any suboptimal level aters optimal width. He also
derived global conditions, which he argued are likely to be satisfied empirically, under which
second-best road width exceeds the first-best level. d’ Ouville and McDonald (1990) provided an
explanation of Wilson’s main result and generalized it somewhat. Second, a number of
researchers, including Lévy-Lambert (1968), Marchand (1968), Mohring (1979), Verhoef,
Nijkamp and Reitfeld (1996) and Liu and McDonald (1998, 1999), have considered the short-run,



two-mode problem for the case in which the two modes are perfect substitutes in demand':
Holding capacities fixed, is the second-best rail fare higher or lower than the first-best? The basic
result illustrates a genera principle in the theory of the second best, that an offsetting distortion is
desirable or that two small Harberger triangles are better than one large one: Therail fare should be
lowered from itsfirst-best level to the point where the marginal decrease in deadweight loss from
an inefficient modal split equals the marginal increase in deadweight loss from excessive travel.
Sherman (1971), Bertrand (1977), and Doi (1986) extended the analysis to the situation where the
two modes are imperfect substitutes or even complements in demand. The same genera principle
applies, but now with the optimal degree of underpricing of rail being positively related to the
substitutability in demand between road and rail. Finaly, Kanemoto (1996, 1999) has written a
pedagogical paper outlining the principles underlying the determination of second-best optimal
capacity for two specia cases of the two-mode problem. Inthefirst, (using our terminology) road
travel is congestible and underpriced, whilerail travel is uncongestible with trip cost depending
only on capacity; how does the underpricing of road travel affect optimal rail capacity? In the
second, under the same assumptions on congestion, the first-best toll is charged on the road, but
rail travel isunderpriced; how does the underpricing of rail travel affect optima rail capacity?
While we shall continue to refer to the two modes from A to B as road and rail, it should be
clear that the pair of modes has various interpretations. In the context of inter-city travel, the pair
of modes can be any two of freeway, highway, air, and rail travel; and in the context of intra-city
travel, the pair of modes can be any two of city street, urban freeway, LRT, subway, and
commuter train. The analysis does not, however, apply to situations in which there is congestion
interaction between the two modes, such as bus and car travel on the same city streets, though
modification of the analysisto treat this class of situations would not be conceptualy difficult (see

Sherman (1971) for an analysis of the corresponding second-best pricing problem, capacities

! Some papers adopted a partial equilibrium approach, others a general equilibrium approach. The results are similar
for the two approaches, apart from the presence of income effectsin the general equilibrium model, and the insights
gained are the same. Braid (1996) also examined these issues but in the context of Vickrey's (1969) bottleneck
model, and hence focused on the time variation of the second-best fare over the rush hour. Our paper focuses on a



fixed). And aswe shall comment on subsequently, our interpretation of the second mode asrail is
inexact since the description of the rail technology is over-simplified. In some contexts, the
relevant policy issues concern the interaction between more than two modes; for example, Pickerell
(1992) has undertaken retrospective cost-benefit analysis of several light rail transit (LRT) systems
in U.S. cities, accounting for both bus and car travel as aternative modes. The extension of our
analysis to such situationsis conceptually straightforward but algebraically non-trivial (see
Bertrand (1977) for the corresponding second-best pricing problem, capacities fixed).

Our analysis follows most of the previous literature in employing partial equilibrium
analysis. Doing so smplifiesthe analysis and aids intuition by permitting the application of
consumer surplus analysis. Also, in common with all the previous literature, we ignore other
distortions in the rest of the economy.?

We shall proceed in steps. In section 11, we shall describe the general model, introduce
notations, and present the first-best solution as a benchmark. In section I11, we analyzefirst the
Wheaton-Wilson problem and then the Doi problem. Then in section IV, we indicate the nature of

the general problem and discuss directions for future research. Section V concludes.

I. The Model

INSERT FIGURE 1

Figure 1: Diagrammiatic depiction of the problem

There are two modes of travel between asingle origin A and asingle destination B. Mode

lisinterpreted asroad or car travel, mode 2 asrail (ageneric term for any form of mass transit that

static problem, which can be interpreted either as ignoring time variation in congestion or as treating a reduced-form
representation of the dynamic problem (see Arnott, de Palma, and Lindsey (1993)).

2|t should not be surprising that interaction between distortions are potentially important. This has recently been
highlighted in the literature on the double-dividend hypothesis. The earlier partial equilibrium literature on the
Pigouvian taxation of pollution argued that such taxation has a double dividend; not only does it internalize the
pollution externality but it also raises revenue which permits a reduction in income tax rates, leading to afall in the
labor-leisure distortion. Subsequent general equilibrium analysis (e.g. Bovenberg and Goulder (1998), and Parry and



has an exclusive right of way), though as noted earlier the pair of modes has other interpretations

aswell.

The demand for travel on mode 1 is given by m(py, p,) and on mode 2 by n(p,, p,), where
p, isthefull price of travel on mode i. This specification alows the two modes to be imperfect
substitutes or even complements, places no restriction on the aggregate demand for travel, and
abstracts from income effects. Individuals are assumed identical, so that the analysis can be cast in
terms of arepresentative traveler.® The full price of travel on mode i equals the user cost on that
mode, ¢, which includes both the money and time costs of travel, plusthetoll on that mode, T;.
Thus,

p=c+T, =12 1)

Both modes are subject to congestion, and there is no congestion interaction between
modes. To simplify somewhat, it is assumed, asis normally donein this literature, that the user
cost for mode i depends on the volume-capacity ratio (“width” and “capacity” will be used

interchangeably) for that mode:*

Bento (2000)) has shown the argument to be fallacious since it neglects that the Pigouvian tax raises the price of
consumer goods, lowering the real wage.
% The representative traveler’ s utility maximization problem can be written as
max U(mn)+c  st. y=c+pm+p,n,

c,mn
where U([)} is the strictly concave utility function, ¢ other goodsand y income. On the realistic assumption that
theindividual never choosesto spend all hisincome on m and n, the demand functions m(p,, p,) and n(p,, p,) are
independent of income, so that the consumer surplus functionis
B(p., p,) = U(m(pl, p,).n(p.. pz)) +y-pm(p., p.) - p.n(py, p,). Comparative static analysis yields:
am/op, <0; an/dp, <0O; sign(dMyadp,) = —sign(d°U/andm) is positive if m and n are substitutes and negative if
they are complements; and (Jmyap, )(n/dp, ) - (6mydp, )(an/dp,) > 0 by concavity of the utility function.

There are two rationales for ignoring income effects. Thefirst isto isolate substitution effects. The second
derives from the Slutsky relation in elasticity form:

EX:p = E;:(:p - B%XEEX:Y’
where E,, denotesthe elasticity of a with respectto b, X agood, p the price of that good, E® acompensated
elagticity and Y income. Theincome effect is of second-order importance if the product of the expenditure share on
the good (pX/Y) and the income elasticity of demand for the good is small, which is a reasonabl e assumption for
urban transportation.
* This assumption rules out the situation considered in Kanemoto (1999) where travel on one mode is uncongestible
and expansion of its capacity lowers its user costs, i.e., ¢, = CZ(WZ) . We shall consider this situation in section V.
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where w; isthe capacity of mode i, with ¢(0)=0, ¢ >0 and ¢'>0 for i =1,2.
Capacity construction costsare given by K; = K( ) with K;(0) =0 and K/ > 0 but no
restrictionson K", i =1,2.

Thefirst-best planning problem, including the choice of decentralizing tolls, can be written

max  B(py, ) + m(py, )T+ NPy, )T, — Ky(w) — Ky(wy)

P, B2, Wy, W5
1,7,
st. P~ QEME 1, =0 €)
(. p2) 0 1, =0.

POy H

The maximand equal's consumer surplus, B( Py pz) (see footnote 3), plus government surplus
which equalstoll revenue minus capacity construction costs. Thisismaximized w.r.t. p, w, and
1, 1 =1,2, and subject to the constraints (1). The planner has direct control over w;, w,, T,, and
T,, but only indirect control over p, and p,, as characterized by the constraints (1). Itis
assumed, asis empirically reasonable, that this problem has a unique maximum which isinterior;
we write the solution as { oW LT, m, n*} where " indicates the first-best optimum. The
characteristics of the first-best optimum, including decentralizing tolls, are well-known. For each

mode, optimal capacity should be such that the marginal socia benefit of capacity,

o o DmDjand _ 9 = respectivel ual the corresponding marginal cost;
awlgml%v% aw H‘Cz%;%%p Y, €q € g g

thus

® Or in other words, we assume that the second-best conditions are everywhere satisfied.
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Also, for each mode, the toll should be set equal to the corresponding congestion externality,

e = mq and e, = 1c’z, evaluated at the optimum — the standard Pigouvian prescription; thus,
h W

T -e =0, i =1,2. (4b)
The second-best problem can now be posed precisely. Append the constraint that
T, = T1(<TZ) to (3), and denote variables evaluated at the second-best optimum by . Many

papers simply write down and interpret the corresponding first-order conditions. Those papers

that dig deeper adopt one of two approaches. The "local” approach isto determine dx Afl via

comparative static analysis, where '~ = (p1 P, WL W r;*,m”,n**). The "global" approach is

to determine X - X, using non-local arguments.

IIl. Components of the Problem
In the section, we analyze components of the problem. In the first subsection we analyze

the Wheaton-Wilson problem, and in the second subsection the Doi problem.

[11.1 The Wheaton-Wilson problem
Wheaton (1978) and Wilson (1983) considered the situation where thereisonly asingle

mode of transport from A to B — which they interpreted as car travel — and asked the question: If

congestion on the road is underpriced (T < t*), how does this affect optimal road width? Locally®,

what is dW*%f? And globally, what determines w~ —w ? We shall concentrate on the local

approach, though we shall also comment on the global approach.

% Since there is only one mode, we shall drop the modal subscript for this subsection only.



The planner’ s problem analogous to (3) with the constraint that travel is underpriced,

= f(<r*), iswritten as

_ Oom(p)0 -
B L= S0 A K)o oo 2
: - . _ Om(p)g - _
where A isthe Lagrange multiplier on the constraint that p CETE T=0.

Intuition suggests that dW*%T isambiguousin sign. Start at the first-best optimum and

then lower the toll a discrete amount. This reduces the price of atrip, which in turn causes the
number of tripsto increase. Too many trips are taken and associated with thisis a deadweight
loss. Theaimisto adjust road width, relative to the first-best level, to maximize social surplus.
Expanding the road reduces the severity of congestion and hence the deadweight loss per traveler
(e—-T) but causes the excessive number of travelers to increase; narrowing the road has the
opposite effects.

There are two alternative ways of conceptualizing the problem. Thefirst isastandard one
in the theory of the second best. Altering road width from its first-best level can be viewed as

another distortion. Then road width should be chosen to minimize the sum of the deadweight

losses associated with the two distortions: T <1 and w # w . From this point of view, adjusting
road width entails an offsetting distortion. The second way of conceptualizing the problemis
perhaps more intuitive in this context, and entails decomposing the marginal socia benefit (MSB)
from expanding the road. The direct effect isthe immediate benefit, holding the number of drivers
fixed. Theindirect effect isthe change caused by the road expansion in the deadweight loss from
the underpricing of congestion, deriving from the induced increase in the number of driverson the
road.

Sincethe pricing of car travel does not affect the (construction) cost function of road

expansion, raising the toll infinitessmally causes optimal road width to rise if and only if it causes



the marginal social benefit (MSB) of road width to increase. Accordingly, the way we shall

proceed isto examine the effect of raising the toll on the marginal social benefit of road width.’

» First-order conditions. anew decomposition

Let us now turn to the algebra. The first-order conditions are®

Ple éliwp)%: 0 (6a)

p: B(p) T+)\E1

ke m(p) ., Cm(p)0_
: —K A—24 =0.
w (W)+ W2 Cc %TE 0 (6b)
Noting that B'(p) = —m(p) (by an argument analogous to that in fn. 3) and substituting out A
yields

0 O
Oom-mTome’ _

Ql v @W (7)

where the arguments of functions are suppressed to simplify notation. Now, K' isthe margina

-K'" +

socia cost of road expansion, and so the other termin (7) isthe marginal social benefit. To obtain

amore illuminating expression, note that differentiation of the constraint with respect to w yields
dp/dw = —(c’m/wz) +(1-c'm’/w) so that dmydw = —(m’ c’m/wz) +(1-c'ml/w), and recall that

!

e= %isthe congestion externality. Then the marginal social benefit from the road expansion

may be rewritten as

" We cast the analysis in terms of how a change in the toll affects MSB, holding w fixed. This entails viewing
MSB as a function of wand T, MSB(w,T). Defining elasticities relative to this function, from the optimal road
width condition MSB(w, T) = K'(w):
— EMSB:?
MSB:w 7
Since the denominator is positive from the second-order conditions, the sign of E,; is determined by the sign of
dMSB
at
8 We shall not record second-order conditions since we are examining local maxima. 1t should be noted, however
that if the second-order conditions are not everywhere satisfied, there may be multiple local maxima so that a small
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using G%W = —C’% , . Thefirst term on the RHS of (8) is the direct marginal benefit from the

road expansion; the second is the indirect marginal cost, which equals the induced increasein the
number of travelers times the deadweight |oss associated with each traveler.® Sincethe literature
refers to the induced increase in demand from aroad expansion as latent demand, we may say that
the indirect cost equals the increase in the deadweight loss due to the latent demand generated by

the road expansion.

INSERT FIGURE 2

Figure 2: The margina social benefit of aroad expansion from w' to w" :
First-best and no-toll equilibria

The decomposition in (8) is particularly useful because it has aneat geometric

interpretation. Figure 2 portrays the effects of adight road expansion from w' to w" for both the

first-best equilibrium and the no-toll equilibrium. msc denotes marginal social cost %Q‘mg’%%

and uc user cost C%E with e = msc —uc. Consider initialy the first-best equilibrium (labeled

E° in Figure 2) at which the full price equals marginal social cost. From (8), the benefit from the

changein 1 can cause ajump from one local maximum to another. We also ignore corner maxima since they are of
only secondary interest in this context.

® What is the interpretation of A ? Comparing (6b) and (8), we have that % equals theratio of the marginal socia

benefit to the direct marginal benefit. Thus, (m - )\)/n gives the proportion of the direct marginal benefit from the
road expansion that is dissipated through the combination of distorted pricing and latent demand.



road expansion is approximately m(—a%w)(w" - W’) , evaluated at the first-best equilibrium,

which equalsthe areaabcd. Now consider the no-toll equilibrium (labeled g in Figure 2) at which

the full price equalsthe user cost. From (8), the benefit from the road expansion has two
components. The direct benefit is approximately m(— a%W)(W" - W’) , evaluated at the no-toll
equilibrium, which equals the area efgh. The indirect cost is approximately

e(d%w)(w" -w') = (msc - uc)(dr%lw)(w" —w') since the toll equalss zero, which is given by the

areagijk. Thus, the benefit from the road expansion is greater in the no-toll equilibrium than in the
first-best equilibrium if and only if area efgh — area gijk exceeds area abcd. On one hand, the direct
benefit from the road expansion is larger in the no-toll equilibrium than in the first-best equilibrium
(area efgh exceeds area abcd), for two reasons: first, because congestion is unpriced, more people
travel on the road in the no-toll equilibrium; and second, because the road is more congested in the
no-toll equilibrium, each traveler derives greater benefit from a given road expansion. On the other
hand, expansion of the road generates indirect costs due to latent demand in the no-toll equilibrium
but not in the first-best equilibrium. The figure suggests that which of these two effects dominates
isapriori ambiguous, so that the margina socia benefit from aroad expansion may be either
higher or lower in the no-toll equilibrium than in the first-best equilibrium. And such isindeed the

case, asis shown below.
» Comparative statics and informational requirements

Write the expression derived earlier for d%w in terms of the congestion externaity and
the price elasticity of demand for travel, € = —-m’' p/m:

dm_mQd e O

== 9a
dw WBp+esEL (%)
Then (8) can be rewritten as
_me mQ es _
MSB=—-— e-1) (9b)

w  wip+ee

10



so that (holding w fixed)

dvSB _ meep(l+y) . _\ d odmQ
@ wpre) © Ddrhann 59

where y =c” vrc/d isthe daticity™ of ¢’ with respect to r%v With an increase in the toll, the

road should be expanded if dMSB/dT > 0 and narrowed when the inequality isreversed. Three

points are worthy of note.

dM

dt

1.

<0 for € >0 and finite (from (9c)). Thus, lowering the toll incrementally from
T=e

its optimal level causes optimal capacity to increase. Thisisthe result obtained by Wheaton. It can
be explained with reference to Figure 2. Because deadweight loss is a second-order term when the
toll is set incrementally below the first-best level, the analog to area gijk disappears, and only the
analog to area abcd exists.

2. When demand is perfectly elastic, so that road expansion results in an equiproportional

dm

increaseindrivers =— = mD, (9¢) reducesto
Cow  wl
_mQg _10
- Wa el

dMSB
whichis positivefor T < e. In this case, when the road is underpriced, lowering the toll marginally

dt

£=00

lowers second-best capacity.

3. Egs. (9a) and (9c) together indicate that the sign of aMsB depends not only on the

magnitude of the demand elasticity and of the excess burden from an additional traveler, but also
on the rate at which these change with price, and hence on second derivatives of the demand and
user cost functions. The demand for tripsis not a primitive of tastes, and the demand el asticity

varies over time and place, depending among other things on the flexibility of work hours and the

11



configuration of the road and rail networks. Therefore in a specific situation the demand elasticity
isknown only imprecisely. The rate at which the demand elasticity varieswith priceis known

much less precisaly, so imprecisely in fact that we doubt whether it is feasible to determine even

the sign of aMsB

with any confidence. We have therefore come to the view that attempting to

determine second-best road width through strictly local analysisisfutile; the approach is simply too

informationally demanding.

e Globa analysis

The“broad” or global shape of the demand curve may be known reasonably well, even
when the shapes of small segments of the demand curve are not. In these circumstances, the
empirical application of globa analysis may be informationally feasible even when the
informational requirements for the empirical application of local analysis are excessive. Let us

explorethisidea

INSERT FIGURE 3 HERE

Figure3: w  asafunction of T

Figure 3 plots two possible ways in which second-best road width may vary with the toll —

indicated by locus () and locus (b). Wheaton’ s result that % <0, indicates that both loci

=T

are negatively-sloped in the neighborhood of the first-best optimum.** Locus () illustrates that,

because of this, it is quite possible for second-best road width to exceed first-best road width for

all suboptimal levels of thetoll (T 0[0,T")) even when second-best road width is increasing in the

level of thetoll over part of thisrange. This demonstrates the obvious but important point that

1°The most commonly-used congestion cost function is the so-called Vickrey congestion cost function:
omo_ omf - ion. v = B
CD\WD_ hy +thWD . Interms of this function, y = 3-1.

1 Wheaton’s result also implies that it is not possible for w™ (T) <w’ for al T 0[0,T").

12



w (T)>w forall TO[O,T") isaweaker condition than ddif <O foral TO[0,T). Locus(b)

illustrates that, despite Wheaton’ s result, second-best road width may be less than first-best road

width over an interval of suboptimal tolls. A final observation isthat since w (T) - w'is (minus)

**k **k

theintegral of d\‘;v_r from Ttot , and since d\év—f depends on derivatives of demand elagticities,

the properties of the demand function which affect w™ (T) - w’ are arc elasticities or average
slopes.
These observations prompted Wilson to enquire into sufficient global conditions on the

demand function and the form of the congestion cost function such that the underpricing of
congestion causes second-best road width to exceed first-best road width for all T D[O,t*). He

established the following result (rewritten according to our terminology and notation):

If: i) cg\%gzhomg\%g, h,, hy, B constants, hy 20, h, >0, B=1
iy %59
dp

P
c-hy

then w™ (T)>w .

iii) €<

These are all primitive or structural conditions on tastes and technology, and are much simpler than

*k

the conditions which would be required to establish that dw

dt

<Oforal T D[O,T*).

Using global analysis, it may be possible to establish upper and lower bounds relating w™

to w and T. Thisline of investigation holds more promise for practical policy application than the
aternative local, comparative-static approach with its unreasonably demanding empirical

requirements for implementation. Appendix 1 describes one such approach. Given the congestion

cost function, the demand function for which w~ =w’ is solved for; we term thisthe “ w -demand

13



function”. Then anecessary condition for w~ >w' for all suboptimal levels of thetoll is derived

based on aglobal comparison of the w' -demand function and the actual demand function.

d Ouville and McDonald (1990) have undertaken an analysis along these lines. They model
congestion using a production function rather than a cost function; in particular, they assume that
trips are produced under constant returns to scale with aggregate travel time and capacity as inputs.

They establish the following sufficient conditions (using our notation unless indicated otherwise)
for w~ >w’ with asuboptimal toll: i) € <1+ TTm , Where L is aggregate travel timeand T the toll

expressed in units of time; and i) 0 <1, where o isthe easticity of substitution between aggregate
travel time and capacity in the trip production function. They also provide a nice geometric

interpretation of this result.*

* Analternative perspective: volume-capacity ratio as policy instrument

Often additional insight into a problem may be achieved by looking at it from adifferent

perspective. Consider the transformation of variables 8 = —; 0 isthe volume-capacity ratio, a
w

standard measure of the degree of congestion. We suppose that the planner chooses 6 rather than
w; she adjusts road width to achieve adesired level of congestion. Then the planning problem
may be written as
O -
max  B(p)+m( KEm(p) st. p=c(0)+T.
0.6 (p) p)T Ho H p=c(6)
Substituting out p yields the unconstrained maximization problem

max  B(c(8) + T) + m(c(8) + T)T - K Cm(c(8) +T)00

; 5 (10)

Thefirst-order conditionis

2 Unfortunately, this result is not as general asit at first appearsto be. The standard approach to modelling
congestion assumes that user cost is afunction of the ratio of volume to capacity, which accords very well with
empirical observation. d Ouville and McDonad make the quite different assumption that number of tripsisa
function of the ratio of aggregate travel time to capacity. The two assumptions are equivelent when the money cost

14



m'c

B +meT-K o+ Kk D=,
S S
which may be rewritten as
_ DK' =0_
m% eZD Mg~ T=0. (11)

It is straightforward to demonstrate that at the optimum with underpriced congestion and € > 0,

c - K >0and£ T>0.
9% 0

Consider adding an extratraveler to the road, holding 0 fixed. Doing so generatestoll

dw dgj 1
revenue of T. Also, to hold 6 fixed, the road must be expanded by —| = =99 - =, which
dm 5] dm 0

]
I !

has a cost of ﬁ. Thus, I% —T may beinterpreted as the long-run marginal deadweight loss—

the increase in deadweight loss from adding an extra traveler to the road, holding constant the
volume-capacity ratio rather than, as in the standard measure, road width.

Now consider marginally increasing the road's volume-capacity ratio. Decompose the
resulting expression into two effects: the direct effect or the effect holding m constant, and the
indirect effect dueto latent demand. The first term on the LHS of (11) isthe direct effect and the
second term theindirect effect. Observe that the indirect effect is the marginal (as 6 increases)
deadweight loss from the underpricing of congestion, while the direct effect is the marginal
deadweight loss from setting the volume-capacity ratio above itsfirst-best level. Thus, this
formulation nicely relates the two alternative ways of looking at the second-best problem —
direct/indirect effects and offsetting distortions.

This formulation generates the additional insight that, with congestion underpriced, the

second-best volume-capacity ratio should exceed the first-best volume-capacity ratio, which we

of travel isignored and the fixed component of trip cost is zero. Thus, d Ouville and McDonald' s specification
essentially ignores the fixed component of trip cost.

15



term “overcrowding”. Thus, even though it is not possible to say in general whether second-best
road width isless than or greater than first-best road width, it is always the case with underpriced
congestion that the road should be more congested than in the first-best optimum. This result was
first intimated by Mohring (1970) but seems to have been overlooked in most of the subsequent

literature.

INSERT FIGURE 4 HERE

Figure 4: The second-best optimum: Constant marginal construction costs and no toll

Figure 4 provides a diagrammatic depiction of (11) for the case of constant marginal

construction costs (K' = k so that —mg:' - e—kzg— c'm E% - TB:

0) and no toll. At the second-

best optimum, the marginal deadweight loss from underpricing congestion, given by area A,
equals the margina deadweight loss from overcrowding, given by areaB.

» Modern respecifications

The “Wheaton-Wilson problem” is a particular specification of the problem of determining
the second-best capacity of a congestible facility given that it is underpriced. Its specification
reflects the state of the second-best/optimal-tax literature in the early seventies. A modern
formulation of the problem would take into account that the government’ s deficit related to the road
must be financed by distortionary taxation for reasons related to asymmetric information.
Following Vickrey (1954), this can be done by assuming an exogenous “margina deadweight loss
of public funds’: @; for example, ¢ =.8 indicates that the marginal dollar of revenue raised by the
government generates a deadweight loss of eighty cents. Taking thisinto account, the first-best

problem we have considered would become a second-best problem, and the second-best problem a
third-best problem. Let us consider the latter. Since the magnitude of the deficit is K(w) - m( p)r ,

theanalogto (5) is
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max L =B(p)+(1+ (p)(m(p)‘T— K(W)) + )\Ep —cé'iv\:o)%— T% (5)

p.w

The marginal social cost of capacity risesfrom K'(w) to (1+ @)K'(w) and the marginal social
benefit is given by (8) plus an extraterm :—Vn;(p‘r, which incorporates the reduction in the

deadweight loss due to distortionary taxation from the toll revenue raised from the “latent
demanders’. The modern formulation might aso: account for the adverse incentive effects from
automatically covering the road authority’ s deficit, ala Laffont-Tirole (1993); replace the
underpricing constraint by a political economy constraint incorporating those political
considerations that preclude efficient tolling; and include distributional considerations'® by
maximizing socia welfare instead of social surplus and perhaps by incorporating constraints on the

redistribution possible through the tax system.

* Naive cost-benefit analysis

Thusfar, we have followed Wheaton and Wilson in comparing the first- and second-best
road widths. Another comparison, which is perhaps more relevant, is between second-best road
width and the road width chosen by transportation planners using “naive” cost-benefit analysis,
under which the benefits of aroad expansion are measured as the direct benefits — the planners
ignore the indirect costs associated with the combination of underpricing and latent demand. It

seems that naive cost-benefit analysisis still widely employed by transportation planners.

Let MSB and MSB' be the marginal social benefit of road capacity computed correctly and
computed incorrectly according to naive cost-benefit analysis. Adapting (8) and applying (9b):

Jc
MSB' m aw@ ) 1
MSB m@_c’)c —d—m(e—‘) 1-—° (e—T)-
owd dw p+ee

3 The argument against including distributional considerations is that they are best dealt with through the income
tax. It isnoteworthy that Vickrey, a champion of the poor and underprivileged, did not incorporate distributional
considerations into most of his discussions of urban transport policy.
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Thus, with underpricing of congestion, the procedure employed in naive cost-benefit analysis
consistently overestimates the marginal socia benefit of road capacity. Intermsof Figure 3, naive
cost-benefit analysis measures marginal social benefit as area efgh whereas the true marginal social
benefit is area efgh — area gijk.

Let us consider anumerical example. Suppose that the elasticity of demand for road travel

is % that the congestion cost function has the Vickrey form c%g: hy + hl%g with hy =1,
h, =1, and B =3. Suppose furthermore that the toll is zero, that average construction costs are
constant, and that the level of demand and construction costs are such that road capacity chosen
(incorrectly) according to naive cost-benefit analysisis 1.0, and that the volume-capacity ratio at
thislevel of capacity is 1.0 (so that in the corresponding equilibrium user cost is double free-flow
user cost). Simple calculation yields that the corresponding second-best optimal capacity is .64,
implying a volume-capacity ratio of 1.23, and an equilibrium user cost 2.87 times free-flow user

cost. Table 1 below presents these and other variables of interest for the first-best optimum, the

second-best optimum, and the naive optimum.

Table 1 : Numerical example of the naive cost-benefit analysis

p m w 0 C e T DWL
First-best 5 .54 .54 1 2 3 3 0
Second-best 2.87 .79 .64 1.23 2.87 5.61 0 54
Naive 2 1 1 1 2 3 0 .86
o ong_, ot _ _3iap %
Note: CDWD_ 1+ il K(w) =3w, m=%/4p

The deadweight loss is calculated as the loss in surplus relative to the first-best optimum.
Three results are of particular interest. First, in the naive optimum the deadweight |oss per traveler

is43% of the full price, which is substantial; second, the deadweight lossin the naive optimum is
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1.6 times that in the second-best optimum; and third, the naive w is 56% larger than the second-
best w, which suggests that the inappropriate use of the naive cost-benefit rule may be more

important in the context of policy analysis than the earlier question of second-best vs. first-best

capacity.

[11.2 The Doi problem

» Statement of problem, first-order conditions, and interpretation

Consider two modesin paralel. The capacities of both modes are fixed. One mode — car
travel — is unaterably underpriced (rl =1, <TZ). How should the other mode be priced? As

noted earlier, numerous papers have studied this problem. Most of these papers make the
empirically unrealistic assumption that the two modes are perfect substitutes. Doi (1986) gave a
very comprehensive analysis, providing agenera treatment of demand and considering a variety of
transit authority objective functions. Hisalgebraic analysis is accompanied by an insightful
geometric analysis. We shall follow Doi (1986) in providing a general treatment of demand, so
that the two modes may be imperfect substitutes or even complements.

The planner’ s problem anal ogous to (3) but with the constraints that capacities are fixed and

car travel underpriced is

m om(py, p,) D
przagz B(p1, p2) plszn QE&%

e R A I

The corresponding first-order conditions are

— _ _mU e Yene %_ ,m U

p: —m+my(p q)ﬂﬂ% clwlgw(pz c) nczwzﬂ % 0 (13q)
I In D I —

D -n+ﬁb(p1-cl)-m%+nz(pz-cz)+n§-czi5-m%—0 (13b)
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where the subscripts on the m's and n's denote partial derivatives, e.g., m, = gT: Substituting

out A from thispair of equations, employing p, —¢ —-T1; =0, i =1,2, and then smplifying the
resulting equations using the expressions for %Tz and %Tz obtained from totd differentiation

of p—-c¢ -1, =0,i =12, yields

dm _ dn _
E(el T1)+E(92 1,)=0 (149)
or
&1, _ m,
To . (14b)
&7 2 (nm - nmy) -1,

Eq. (14a) demonstrates clearly that the choice of 1, entails offsetting distortions. T,
should be above or below the rail congestion externality so as to offset the distortion associated
with underpriced car travel. But this causes distortion in the market for rail travel. T, should be set
at the level which minimizes the sum of the two deadweight losses. Put alternatively, t, should be
set such that the increase in deadweight loss for one mode from raising or lowering T, an
incremental amount isjust offset by the decrease in deadweight loss for the other mode.

Eq. (14a), whileinsightful, does not indicate whether 1, should be set above or below the
level of the congestion externality inrail travel. Thisisindicated by (14b). Notethat m =n, <0

(substitution effects) and n,m, —nym, >0 (strict concavity of the utility function). Thus, if road

and rail are substitutesin demand (n1 =m, > O), with underpriced road congestion therail fare
should be set bel ow the congestion externadlity for rail; in the lesslikely event that they are
complements, the rail fare should be set above the corresponding congestion externality. The
intuition isasfollows. Start at the situation where therail fareis set equal to therail congestion
externality. Adjust the fare infinitesmally so asto reduce the level of car travel; if car and subway
are subgtitutes, therail fare should be lowered, and if they are complements the fare should be

raised. Thisreduces the deadweight loss associated with car travel but by the Envelope Theorem
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causes only a second-order welfare lossfor rail travel. Then continue adjusting the rail fare in the

same direction until condition (144) is satisfied.

INSERT FIGURE 5

Figure 5: Diagrammatic depiction of (14a) when road and rail are substitutes in demand

Eq. (14a) has an easy geometric interpretation. Lower T, from 15, to 1, —A,. The
immediate effect isto lower the price of rail travel and increase both the number of rail travelers and
the deadweight loss from underpriced rail travel. Assuming that road and rail are substitutesin
demand, the decrease in the price of rail travel causes the demand curve for car travel to shift
down, which resultsin afall in the number of car travelers and hence in the deadweight loss from
underpriced car travel. The price of car travel falls aswell, which causes the demand curve for rail
travel to shift down dlightly, and so on. Thefinal result is as shown in the Figure 5, for the
situation where (144) is satisfied, so that the marginal reduction in therail fare causes afall in the
deadweight loss for car travel (the heavily shaded areain the left-hand diagram) just equal to the
risein the deadweight lossfor rail travel (the heavily shaded areain the right-hand diagram).

: Cm(p,, p,)0, -
Eq.(14a) can be expressed in other ways. From p, = ¢, +T, and
i w o

[h O
p, = CZEMEJr 1,,the p's, and henceall other variables may be expressed as functions of
2

T, and 1,, eg., m=M(T,,T1,) and n=i(T,,1,). Not only does this change of variables simplify
the algebra, but also empirical work measures demand el asticities with respect to measurable
components of trip prices, including fares and tolls (Oum et al. (1992)), and not with respect to the

full prices which are unobservable. Thus,
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o8 _ _Dd‘[2 D]pl ] . o _ .
e, — Edﬁ %E (usingg — T, =msg, — p;, i =1,2 and (14a))
P Odt, O (14c)
_UEg,, HopmO

which indicates that, when rail and road are substitutes in demand, the proportiona underpricing of

. Umsc, - p, 0. » : . Cmsc, — p, U
rail is positively related to the proportional underpricing of road I
ETE p y prop p 9] ETE

Op,n0
inversaly related to the ratio of consumer “expenditure” on rail relative to road BME, inversely
pm

related to therail easticity of demand with respect to therail fare, and positively related to the

cross-price elagticity of demand for road travel with respect to the rail fare.*

* Respecification of therail technology

In discussing an earlier draft of this paper, Small argued that the two-mode problem as
specified by usand in the previous literature is more appropriately interpreted as “ streets and
freeways’ than as“road and rail” sinceit provides a poor description of the technology of rail
travel. We now consider this criticism in the context of the Doi problem, with capacities fixed, in
which case our treatment is deficient in ignoring the service frequency of rail.

We suppose that the trackage and the number of rail carriages are fixed, but that service
frequency is variable, more frequent service therefore entailing fewer carriages per train.*®

Increasing service frequency increases costs because more operators have to be employed, etc. Let

f denote the service frequency of rail, apolicy variable, s( f) the variable costs associated with

service frequency (s’ > 0), and é(n, f;Qz) the user cost associated with rail travel (where Q,

% The amount by which the rail fare should be raised in response to a unit rise in the road toll can be calculated. We
do not present the result since it is arather unenlightening mess of demand elasticities, rates of change of demand
eladticities, etc.

!5 This specification draws on Kraus and Y oshida (2000). We have in mind an LRT or subway system where each
carriage has an engine. For train travel, increasing service frequency requires increasing the number of engines.
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incorporates the rail capacity variables) which captures both crowding and the schedule delay

associated with infrequency of service

e 0°C ac 0°C 0°C
9%%n>0. 9% 2 >0, 964 <o, Afz >0, 905 57
The planner’ s problem analogous to (12) is

max ( (pl pz

o, f p1p2+mp1szp1 01%7%
y Mo

+n(p11 pz)(pz _6(n(p11 pz)a f;Qz))_S(f)'l')\lEpl _CLEME E (12’)

It is straightforward to demonstrate that (14a) continuesto hold. Indeed, this can be seen by
inspection. Set service frequency at its second-best optimal level, conditional on T,. Then the
maximization problem (12°) reduces to the maximization problem (12). Thus, consideration of the
service frequency of rail, while practically important, does not substantially alter the economics of

rail pricing.

V. The Full Problem

The stage is now set to consider the full second-best problem in which the rail fare, rail
capacity, and road capacity are all adjusted in response to the underpricing of car travel.
IV.1 Paradoxes'®

An interesting place to start is the Pigou-Knight-Downs (PKD) Paradox restated in the
context of the paper. Suppose that road and rail are perfect substitutesin demand, that congestion
inrail travel isinsignificant, that rail operating costs are independent of the number of rail
passengers, and that both road and rail are untolled. The PKD Paradox states that with total
demand for travel fixed (m+ n = constant) an expansion of the road generates zero gross benefits,
aslong as some travelers use the rail after the expansion. Travelers divide themselves across the

two modes so as to equalize the full price of travel. Since an expansion of the road does not alter

23



the full price of rail travel, it does not ater the equilibrium full price of travel and therefore confers
no benefit, nor does it generate any reduction in rail operating costs. All it doesisto divert traffic

fromrail toroad. The Paradox disappears when congestion pricing is applied to the road. Thus,

Vickrey (1963) captures the Paradox aptly in stating: The road is worthless precisely becauseit is

free.

It is not difficult to modify the model so that the road is worse than worthless.*” First, if
thereisarail fare, the diversion of traffic to the road causes areduction in fare revenue collected,
and thisloss of revenue is pure deadweight loss. Second, suppose that, in response to the
reduction inrail traffic, the rail authority reduces train frequency while holding the fare constant.
This raises average waiting time and hence the full price of atrain trip, which causesthe
equilibrium full price of travel torise. If, in deciding on train frequency, the rail authority failsto
take the effects of its decision on road travel fully into account, as seemsrealistic, theincreasein
total travel costswill exceed the cost savings from reducing train frequency. In this paradoxical
world, areduction in therail fareis very effective, so effectivein fact that set at the right level it can
completely neutralize the deadweight |oss associated with the underpricing of auto travel.

These paradoxes are much aluded to by environmentalists who use them to support their
opposition to new highway projects. But paradoxes are often paradoxical because they derive
from unrealistic assumptions. The above paradoxes are due, at least in part, to the unrealistic
assumption that road and rail are perfect substitutesin demand. Let us examine how robust the
PKD Paradox, extended to incorporate tolls, isto a more general specification of demand.

The marginal socia benefit from aroad expansion is given by

M) = o(B(P Pe) (o) + (o)),

'8 These paradoxes are discussed at greater length in Arnott and Small (1994).
¥ The paradox is then labeled the Downs-Thomson Paradox.
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where dpy and dp, are obtained from total differentiation of the pricing constraints

h dw

Cm(p, p,) 0

- -T,=0and p,—C, - T, =0, where C, isthe constant user cost for rail. Thus,
Py Cl%TlE 1 P, =G, 2 G,

_ _d _ _\d
MSBl(Wl) = (_m tmT, +nitz)ﬁ+(_n +mr, +n;t 2)%
1 1
D_ 'mg
> w O D'nce%:OD (15)
"m U ? dw, H
5% wH

O

_LOime, Dpl+slrl N TZD
Ewl% P teg, @

where g, = —%, Ny = nl—npl and e = cl' Wm Thisisidentical to (9b), except for the addition
1

= (-m+mT, +nT,)5

of the cross-price e asticity term, which captures the fare revenue effect noted above. Since e
Wy

isthe direct marginal socia benefit of the road expansion,
- n_
(el - Tl)sl TNy T,
D= m (16)
Pt &g
isthe proportion of the direct benefit dissipated through distortion. Suppose, for example, that

3

T, =0sothat p, =c, %—3 g =.5 N, =1, ——2 and T, = p;; then D =.68. With this set

of parameters, the latent demand generated by the road widening, which derives from both traffic
creation and traffic diversion from rail to road, does not completely neutralize the direct benefits,
but does eliminate a considerable proportion of them. With other sets of parameter values, it is
possible that D> 1, implying that the marginal social benefit of the road expansion is negative.
Now, let us consider the optimal second-best rail fare. Since thereis no congestion on the

railway, the first-best fareis zero. With T, = 0 the optimal second-best fareis
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1,/6 = / <0, which issimply the particularization of (14a) with e, =0. Therefore,

the second-best fare 7, should be set such that the marginal gainin social surplus due to traffic
diversion from the underpriced and congestible road to the uncongestible rail equalsthe increasein
the budgetary cost of subsidizing rail travel deriving from increased rail traffic.

Having sampled some of its economics, let us now turn to analysis of the full problem.

V.2 Second-best optimality conditions
The problem is the same as the first-best planning problem described in (3) except that the
road toll isfixed:

max B(p,p,)+mip,p,)T +nlp,p, )T, — Ki(wy) = K, (w.
P, Doy Wy, W, (P2, 2) + My, P )T+ NPy, P )Tz =~ Ka(Wa) ~ Ko(ws)
T

Om 0 _
st. pl—q#%— T,=0 A (17)
1

Thefirst-order conditions are

P -m+mT; +nT, +)\1%~_q E Azcénl =0 (18a)
W W,
. T !rnZ r n2 D_
p,: -n+m,T, +n,T, —A,C—= —02—5—0 (18b)
Wy W,
T,: n-A,=0 (18c)
W - K1'+A1qﬂ2 =0 (18d)
n
W, —K§+)\20'2F:O. (18e)

2
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Theinterpretation of the first-order conditionsis straightforward. Their only remarkable
featureisthat A, = n; thus, at the second-best optimum, none of the direct benefits from rail
capacity expansion are dissipated through the combination of distorted pricing and latent demand.
We shall explain thisresult shortly.

After some manipulation, the first-order conditions can be rewritten as

) dm,  _ dn )=

T,: _drz (el T1)+—OITZ (e2 T2) 0 (19a)
_ 0 oc, D_ dm, _y dn e VK=

s Hale dw, (el Tl) dw, (ez TZ) Ki=0 (19b)
_ O dc, D_ dm, _, dn e Yk =

o ng— GWZE dw, (el Tl) aw, (ez TZ) K2=0. (19¢)

Eg. (19a) has the same explanation as (14a) in section I11.2. Therail fare should be set so asto
minimize the sum of the deadweight |osses associated with, first, the road toll not equaling the road
congestion externality and, second, the rail fare not equaling the rail congestion externality. Egs.
(19b) and (19c) are the generalizations one would expect on the basis of the intuition given for (8)
— the analogous result for the Wheaton-Wilson problem.

Comparing (19c) and (18e) with A, = n, it follows that at the second-best optimum

dn
dw,

dm
dw,

(e -7)+—(e-1,)=0; (20)

the indirect cost of expanding rail capacity, resulting from distortion and latent demand, equals
zero. Why? Since achangein both 1, and w, operate through the same “channel”*® — the full

price of rail travel — their effectson m and n are identical up to a constant of proportionality, so

that . Sincethelevel of therail fareis chosen to neutralize indirect costs

dm / dn :dm dn
dw,/ dw, drt,

2

(eg. (19a)), the indirect cost of an expansion of rail capacity isalso neutralized. The sameis not
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true of an expansion of road capacity, viz. dm / dn % dm / dn , and hence the indirect cost of
dw,/ dw; dt,/ drt,

road expansion is not neutralized by therail fare and indeed looms large in the analysis.

Egs. (19) are simple and intuitive. However, since they implicitly incorporate the
dependence of the full prices on the policy variablesand on 7,, their total differentiation resultsin
considerable agebraic complexity. Furthermore, since there are now three policy variables rather

than one, the problem is no longer amenable to smple geometric analysis.

V.3 Discussion

e Analytical issues

How then to proceed? In unpublished notes, we have derived expressions for % %
1 1

% by applying comparative static analysisto (17) and (18). Even though we wrote the results
1

in terms of dimensionless shares and el asticities to improve comprehensibility, the results are still
too complex to be helpful. Possible approaches include transformation of variables, analysis of
specia cases, non-local analysis, and combinations thereof.

An earlier draft of this paper (Arnott and Y an (1999)) contained a section which made the

unrealistic smplifying assumption that rail capacity construction is characterized by constant

returns to scale. With this assumption, (19a) reduces to —ngvcz = 630’2(62) =k,, where k, isthe
2

unit rail capacity construction cost, which implies that the second-best volume-capacity ratio of rail
equalsitsfirst-best level, independent of demand conditions, w;, T, and T,, and depends only on
therail technology, specifically k, and the form of ¢, (1. Thus, under the assumption of constant

unit cost of rail construction, the second-best rail volume-capacity ratio can be treated asa

18 From the two full price equations, 4 _ E% thus dm _ ~gn dm dn _-gn dn

> > 2 , SO that
dw, w, drt, dw, w, drt, dw, w, drt,
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parameter. We showed earlier that the Wheaton-Wilson problem can be analyzed replacing road
capacity by the road volume-capacity ratio. The full problem too can be rewritten with the volume-
capacity ratios of road and rail replacing road and rail capacities. With this transformation of
variables, the constancy of the second-best rail volume-capacity ratio resultsin areduction in the
dimensionality of the problem, which facilitates the analysis considerably. Even so, the general
case is discouragingly complex. We did however succeed in getting interpretable results for three
specia cases: constant demand elagticities', linear demand, and small deviationsin the road toll
away from the first-best optimum.

Other simplifications are possible too. One obvious line of attack isto analyze the problem,
holding one of the policy variablesfixed. For example, with the secular decline in transit ridership
inthe U.S,, it may not be unrealistic to assume that existing rail capacity is excessive and, since it
islargely irreversible, essentially fixed. Alternatively, one might assume, for the same reason, that
congestion on therail is unimportant, returning us to the world of the paradoxes discussed earlier.
These ssimplifications ignore service frequency, however, which is potentially important.

All such analyses will be insightful, permitting the identification of operative effects and
how they interact. When it comes to quantification for policy purposes, however, no local analysis
can avoid the "elasticities-of-demand-elasticities" problem. Econometricians have enough
difficulty estimating traffic demand elasticities with any precision, particularly since those
elagticities vary from place to place, depending on the income distribution, the configuration of
road and public transit networksin relation to residences, etc. It isunrealistic to suppose that in the
near future we will be able to obtain useful estimates of elasticities of demand elasticities. But
ascertaining whether an incremental change in road capacity, rail fare, or rail capacity is beneficia
requires knowing these elasticities.

It seems therefore that policy prescription will have to rest on non-local analysis and on

econometric estimation of the parameters of such analysis. Suppose, for example, that it can be

dw, / dw, dT )
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established with acceptable confidence that over the range of policy interest the arc elasticity of road
demand lies between .4 and .6. Using non-local analysis, thisinformation and other available
parameters (for instance, related to the construction technology) may be enough to establish that a
major expansion of transit capacity isdesirable. Asevidenced by Wilson (1983) and d’ Ouville and
McDonald (1990), non-local analysiswill not be easy, but for theory that serves urban
transportation policy analysis we judge it necessary.

Since our aim in this paper has been to elucidate the basic economics of capacity and
pricing decisionsin urban transportation when auto congestion is underpriced, we have been
content to follow the literature in its specification of the congestion and construction technologies.
We should point out, however, that for policy analysis purposes, those specifications are over-
simplified in a number of respects.

First, some capacity variables do not enter the congestion cost functions only viathe
volume-capacity ratios. For example, improving the surface of aroad or the rail-bed increases
travel speed for any volume-capacity ratio. This has potentially important implications for
transportation policy. Consider, for instance, the Pigou-Knight-Downs Paradox discussed in
section 1V.1, with congested auto travel and uncongested rail travel. The standard policy
implication taken from the Paradox is that, with underpriced auto congestion, the benefits of road
expansion may be almost completely neutralized by latent demand, in which case the traffic
congestion problem seems well nigh intractable. But the standard specification of the Paradox
ignores the possibility of reducing rail travel costs, since it assumes that increasing capacity affects
only the cost of congested travel. However, even if rail travel isuncongested, rail travel costs can
be reduced by improving the quality of the rail-bed and of the signal system, since these
improvements permit an increase in speed. Such improvements are doubly beneficial. Not only
do they confer direct benefits on rail travelers, but the traffic diversion from road to rail induced by

the rail improvements reduces the deadweight |oss from underpriced auto congestion as well.

1 Account must of course be taken of relationships between elasticities.
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Second, as was discussed in section 111.1, the technology of rail is not adequately captured
by a user cost function which depends only on the volume-capacity ratio and a capacity
construction cost function. An alternative specification can be constructed which includes the
quality of the rail-bed (which incorporates other elements of capacity affecting free-flow travel

speed) and separates construction costs into capital costs and operating costs.”

» Policy issues

Following the literature, our analysis focused on comparing the first- and second-best
allocations, where the second-best allocation is the best alocation subject to the road toll being
given exogenoudy. Analysis of this problem is certainly useful in developing the economics of the
second best in the context of transportation. But its policy relevanceis open to question. If indeed
the road toll is given exogenoudly and if the planner implements the second-best all ocation, what
does it matter how the second-best allocation compares to the first-best allocation?' What is of
policy interest is solving for the optimal alocation subject to the full set of constraints on policy,
and investigating how that constrained optimal allocation should be implemented.

Our analysis considered only one constraint — that the road toll is specified exogenously.
But there are many other possibly relevant constraints, and a correspondingly rich set of second-
best policy problemsthat fit the two-mode model. We mention only afew.
1. Each mode may be operated by a different transportation agency, with either or both agencies

subject to adeficit constraint.

% et g bethe quality of therail-bed, I therolling stock (measured in passenger capacity), K(J! capital costs, and
V([ operating costs. Then the user cost function can be specified as c, (62, S, q), and the train authority’s long-run
cost as K(q, r) +V(s,r). Servicefrequency and the train’s volume-capacity ratio arein turn functionsof ¢ and r.
The duration of atrain runis t(q,ez). Then assuming that the rolling stock is fully utilized, we have that flow

nt(q,0 . :
capacity is _ ' sothatthe volume-capacity ratio is 8, = M which can be solved to give 8, = 8,(n,q,r).

t(a,6,)
2 Perhaps this is too negative an assessment. Throughout the paper we have employed static analysis. In fact, of
course, because travel demand changes over time and because transportation infrastructure is durable, capacity
decisions are intertemporal. If, therefore, the transportation planner has reason to believe that road pricing will be
less distorted in the future, he should choose optimal capacity taking into account this movement towards first-best
pricing.
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2. Each mode may be operated by adifferent transportation agency. Suppose that one agency
employs naive cost-benefit analysis, while the other is sophisticated. How should the
sophisticated agency respond to the overcapacity in the other mode caused by that mode's
agency using naive cost-benefit analysis?

3. Extend the model to treat peak and off-peak periods, and suppose that even though congestion
tolls cannot be applied to auto travel, gasoline taxes can. At what level should the gasoline tax
be set?

4. Recent experience®® suggests that congestion pricing of roads may be politically acceptable if
thetoll revenue raised is dedicated to improvementsin masstransit. What is the optimal policy
subject to thisform of political constraint?

5. Advocates of urban masstranst in the U.S. argue that transit ridership has fallen due to the
infrequency (aswell as unreliability and poor quality) of service, and that alarge expansion of
capacity would remedy the problem. Quantitatively, does this argument have merit?

6. Pickrell (1992) has undertaken retrospective cost-benefit analysis of the LRT (light rail transit)
systems constructed recently in several U.S. cities, and found that most have negative gross
benefits through their effect of diverting traffic from buses thereby reducing their quality of
service. Does this discouraging result still hold when account is taken of the full set of policy

instruments?

V. Conclusion

In this paper we returned to a classic problem in urban transportation. How does the
underpricing of car travel affect the (second-best) optimal choices of road capacity, "rail” capacity
and rail pricing? This problem received considerabl e attention in the academic literature in the

1970's, but has since been relatively neglected. We started with a synthetic exposition of the

2 This policy was prominent in the platform of the recently-elected mayor of the City of London. It also featured in
the debate over the conversion of the underutilized high-occupancy vehicle (HOV) lanes on Interstate 15 in the
northern suburbs of San Diego into HOT lanes (lanes admitting both untolled high-occupancy and tolled, low-
occupancy vehicles). The opposition to these “Lexus-lanes’ (so-called because only wealthy, low-occupancy vehicle
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earlier literature which tended to provide separate treatments of the pricing and capacity problems,
and extended it in severa directions. We then investigated some aspects of an integrated treatment
and discussed directions for future research taking into account modern developments in second-
best theory and current policy issues. The “two-mode problem” remains the centerpiece of second-
best urban transport economic theory. While its study over more than thirty years has yielded

many important insights, itslodeis still far from exhausted.

drivers can afford the tolls) was reduced by dedicating the toll revenues collected to improving the suburban bus
service.
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Appendix 1
An lllustrative Global Result

This Appendix illustrates the style of reasoning that will be needed to establish global

results. Part A derivesthe" w’ -demand function" — the demand function for which second-best

road width equals first-best road width for all levels of the toll. Part B demonstrates that if the
actual demand function intersects the w' -demand function from below at some p< p’, then at the
point of intersection w~ <w . Thus, anecessary conditionfor w~ >w’ for all suboptimal levels
of thetoll isthat the actual demand function not intersect the w' -demand function from below for
p<p.

A.  Derivation of the demand function for which w™~ =w’ for all T given the congestion cost
and capacity cost functions.

If w" =w foral T,then MSB isconstant for al m; that is, from (9b):

MPrEe_ v foral m. (A1)
p+ee
: omQ omQ - _ompg
By assumption, we know the forms of CWD and eEW I Furthermore, T = p(m) C[W 0

Thus, suppressing the dependence of ¢((land e(Jlon w™ we may rewrite (A.1) as

m{p(m) + e(m)(p(m) ~ c(m)))e{m) = (p(m) + e(m)e(m))m'e

or
p(m){me{m) - e’ ) = () {2 {m)m+ e(m)ie i e(m)p(myme(m) =0, (A2
Now g(m) = - p’Fz(mn;)m' Hence, suppressing the arguments of the functions, (A.2) may be
rewritten as
—p'm(me—m*e*)—e(cm+m*e*)+ pme =0. (A.3)



Thisisafirst-order, non-linear differential equation in m. Imposing the boundary condition

m( p*) =m , the solution gives the unique demand function for which w™~ =w' foral T. We

term thisthe w' -demand function.

B. A necessary condition for w~ >w" whenever congestion is underpriced.

Any demand function which cuts the w -demand function from below for some T D[O,T*)
hasw <w atthe point of intersection. Let | denote the intersection point, @ the actual demand
function, and w' the w"-demand function. At theintersection point, (p,m,e)? = (p,m, e)‘l’v*. If the
actual demand function cuts the w' -demand function from below, then at the intersection point

(-p) < (—p’)W* 0 (g)°> ()" . Since congestion is underpriced at |

(5)?>(5)\|N* 0 Dp+arETp<Dp+arE(V
p+ee p+ee

0 MSB? liesbelow MSB" [ (w)‘f<(w)f” =w'.

Note that only two points of the actual demand function may be enough to establish that the

function cuts the w’ -demand function from below. Thus, this global condition may be applied

with very little information about the actual demand function.
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