
Coalition Formation as a Dynamic Process*

Hideo Konishi

Department of Economics, Boston College, Chestnut Hill, MA 02467, USA
E-mail: hideo.konishi@bc.edu

and

Debraj Ray

Department of Economics, New York University, 269 Mercer Street, New York, NY
10003, USA, and Instituto de Análisis Económico (CSIC)

E-mail: debraj.ray@nyu.edu

We study coalition formation as an ongoing, dynamic process, with payoffs
generated as coalitions form, disintegrate, or regroup. A process of coalition
formation (PCF) is an equilibrium if a coalitional move to some other state
can be “justified” by the expectation of higher future value, compared to in-
action. This future value, in turn, is endogenous: it depends on coalitional
movements at each node. We study existence of equilibrium PCFs. We con-
nect deterministic equilibrium PCFs with unique absorbing state to the core,
and equilibrium PCFs with multiple absorbing states to the largest consistent
set. In addition, we study cyclical as well as stochastic equilibrium PCFs.
Journal of Economic Literature Classification Numbers: C71, C73.

Key Words: coalition formation, farsightedness, dynamic equilibrium

* Initial research on this project was conducted when Konishi was a visiting scholar
at Boston University, and Ray was a faculty member at Boston University. Konishi
thanks KIER at Kyoto University for hospitality and financial support. Ray gratefully
acknowledges a fellowship from the John Simon Guggenheim Foundation. We thank
Michael Chwe, Bhaskar Dutta, Aki Matsui, Shigeo Muto, Yves Sprumont, Rajiv Vohra,
Peyton Young and especially Hsueh-Ling Huynh for helpful comments at various stages
of this research. We also thank an associate editor and an anonymous referee whose
comments shaped the current version of this paper. This paper is dedicated to the
memory of Bob Rosenthal.

1



2 KONISHI AND RAY

1. INTRODUCTION
1.1. A Process of Coalition Formation

Let N be a set of players and X a set of states. Suppose that for each
state in X and each coalition S (a nonempty subset of N), a possible set of
“coalitional moves” (by S) to some subset of states is given. A map from
the current state to a probability distribution over the set of all coalitional
moves feasible at that state induces a dynamic process on X. Noting that
moves are associated with actions taken by coalitions, we call this a process
of coalition formation.

Under such a process players receive (additive discounted) utility from
the entire path of states. This induces a value for each player in the stan-
dard way, as a function of the going state.

A process of coalition formation is an equilibrium if at any date and at
any going state, a coalitional move to some other state can be “justified”
by the very same scheme applied in future: the coalition that moves must
have higher present value (starting from the state it moves to) for each of
its members, compared to (one-period) inaction under the going state. In
the most general form that we study it, a process of coalition formation pre-
cipitates a Markov process on X, the uncertainty reflecting both the choice
of the deviating coalition at some state (there may be several potential
deviants) and the choice of state that the coalition deviates to (there may
be several potential moves). At the same time, we do restrict the class of
moves by requiring that for each coalition, moves must be Pareto-efficient
for members of that coalition, under the value functions induced by the
overall process of coalition formation.

The use of value functions induced by the scheme itself implies perfect
foresight on the part of all coalitions: players expect and understand that
coalitions may move in the future, and form (common) beliefs about the
likelihood of such events.

A model of real-time moves demands a proper interpretation of the time
period. Our interpretation is that each time period is an interval for which
a coalition structure (and the associated actions and payoffs) remains a
binding agreement. At the beginning of each new period, a fresh agreement
can be written, with the going state a historical (but not legal) status quo.

1.2. Potential Contribution
The theory of coalition formation has traditionally belonged to the realm

of cooperative game theory (see, for instance, notions of the core, the bar-
gaining set, or the stable set of von Neumann and Morgenstern). Recent
literature takes this theory in three important methodological directions.
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First, characteristic functions are dispensed with.1 A theory can be devel-
oped for situations with widespread externalities, thereby bringing strategic
games directly into the picture. Second — and quite unlike notions of the
core or the bargaining set — the theory seeks “consistent” formulations,
in the sense that considerations of “credibility” are imposed on the block-
ing coalition in just the same way as they are on the original situation.2

Finally, the theory models players as being farsighted, in the sense that
they care about the “ultimate” payoff from a move, and not its immediate
consequences.3

The static version of the framework we use embodies several of the mod-
els in the literature. But the explicitly dynamic nature of our definition
possesses at least three advantages relative to existing formulations.

First, by allowing all moves to take place in real time, as it were, the
definition allows us to bridge the gap between myopic notions of stability
(such as those implicit in the core or the bargaining set) and the more re-
cent definitions based on farsightedness (such as those in [2], [6], [11], [23],
[27], [28] and [34]) by simply changing the discount factor of agents. Ex-
treme myopia would correspond to a discount factor of zero, while extreme
farsightedness would be approximated as the discount factor converges to
unity. [It should be added that we are particularly interested in the latter
case.]

The point is that the static concepts based on farsightedness are really
attempting to capture a fundamentally dynamic process, in which an action
may generate a long chain of reactions. In the current paper, we take this
dynamic story seriously instead of writing down a shorthand for it.

Second, the theory of blocking and coalitional deviations has been com-
plicated (if not hindered) by the issue of multiple continuations following
a single deviation. For instance, Greenberg’s approach [17] distinguishes
between optimistic and conservative “standards of behavior”, in which cur-
rently deviating coalitions evaluate the future multiplicity of other devia-
tions in hopeful or pessimistic ways (see also [11], [26], and [34], which
all suffer from this selection problem). This Knightian approach to the
treatment of multiplicity can be avoided by borrowing more freely from
the language of repeated or dynamic games, which we do. Future paths
(perhaps probabilistic in nature) are evaluated using common beliefs (as
embodied in the transition probability) and expected payoffs are calculated
using these beliefs.

1See, for example, [5], [6], [7], [10], [13], [20], [27], [28] and [35]. An early concern with
the limitations imposed by characteristic functions is to be found in [29] and [33].

2In contexts where binding agreements can be written, see, for example, [12]. [14],
[17] and [26].

3See, for instance, [2], [11], [23] and [34].
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Third, several solution concepts, especially those that concern themselves
with farsighted agents, inevitably run into the problem of cycles (for an
early discussion of this, see [31]). Chains of coalitions may appear and
reappear in the blocking process.4 In the present approach, recurrent cycles
of moves pose no problem at all. Payoffs from such cycles are simply to be
evaluated as any sequence of payoffs is evaluated: by adding up discounted
one-period returns over time.

A particularly relevant interpretation of cyclical outcomes arises from
the possibility of constant renegotiation. Agreements may be torn up and
rewritten, especially if the environment external to a particular coalition is
altered by the formation of other coalitions (note that this would be irrel-
evant for characteristic functions, but especially important when there are
widespread externalities). Is the possibility of such ongoing renegotiation
to be ignored, as they will be if cyclical possibilities are somehow closed
off?

To be sure, an explicit dynamic model also raises critical questions. Par-
ticularly relevant is the assumption of a Markov strategy for all coalitions.
The extent of cutting power our model retains if all history-dependent
strategies are allowed is an interesting and difficult open question. It should
be added, however, that this sort of criticism also applies to the static mod-
els of farsightedness, in that the move at some node is taken to be invariant
with respect to the mode of arrival at that node.

1.3. Summary of the Results
We begin with a formal description of intertemporal coalition formation

(Section 2). Our main limiting assumption is that the state space X is
finite. The extent to which our results can be extended to infinite state
spaces remains an open question. In Theorem 3.1, we show that an equi-
librium process of coalition formation exists (we use finiteness of the state
space but otherwise the model is perfectly general).

We then proceed to “benchmark” our solution, using familiar concepts
from existing literature. To do this, we study the class of deterministic pro-
cess of coalition formations. We show that in all models of coalition forma-
tion that are derived from an underlying characteristic function, the class
of deterministic process of coalition formations with unique limit states
(essentially) characterizes the core (Theorems 4.1 and 4.2), provided that
discount factors are close enough to unity. Apart from benchmarking our
solution concept, this result is of independent interest because it reveals

4One approach is to exclude cycles explicitly by assuming the nestedness of coalitional
moves ([4], [14], [26] or [27]). Alternatively, one might exclude cycles by implicitly
assuming that such cycles gives the worst payoffs ([23], [34]). Finally, one might study
coalition formation in a bargaining context, in which infinite bargaining delays result in
zero payoff ([6], [9], [24] and [28]).
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an interesting consistency property of the core (which goes beyond the
“internal consistency” of the core established in [26].5

Next, we consider deterministic schemes that do not necessarily have a
unique limit (but nevertheless do not display cycles). We show by means of
an example that non-core limits might now emerge. However, it turns out
that such schemes yields absorbing states that always lie within the “largest
consistent set” ([11]), provided that discount factors are close enough to
unity. This result (Theorem 4.3) is valid without any restrictions on the
underlying model of coalition formation.

However, the inclusion result of Theorem 4.3 is generally strict. Ex-
ample 7, which shows this, brings out the fact that our solution concept
imposes more restrictions on the final outcomes than the largest consistent
set does. But this does not mean that the outcomes selected by our solu-
tion are necessarily the “more efficient” ones; Example 8 is devoted to an
understanding of this point.

Next, we make some observations on cyclical solutions. These typically
exist in situations in which core-like restrictions lead to an empty outcome.
But there are examples in which no cyclical solution (and indeed, no deter-
ministic solution) exists. This motivates a study of probabilistic solutions,
which is the final section of the paper.

Uncertainty enters a process of coalition formation in two possible ways.
First, a particular coalition may be able to induce two or more states
which are not payoff-comparable, and might randomize (or be perceived as
randomizing). Second, it is possible that at some state several coalitions
have access to profitable moves, and that these are chosen randomly.

It turns out that such forms of randomization occur naturally in strategic
form games, in the sense that randomization is often necessary for existence
of an equilibrium process (contrast this with characteristic functions). Ac-
cordingly, we focus in the section on games in strategic form. The simplest
(though by no means trivial) starting point is games with common payoffs.
We show that for such games, every equilibrium must lead to the efficient
outcome, provided that discount factors are close to unity (Theorem 5.1).

But this result fails when we depart from common payoffs. For instance,
we show (Example 11) that a 2 × 2 symmetric coordination game may
generate equilibria that hone in on the “bad” equilibrium. The stochastic

5In [16] and [30], it is shown that starting from an arbitrary state, a sequence of
profitable coalitional deviations lead to a core state in exchange economies and in TU
games, respectively. There is a fundamental difference between these results and the one
established here. They assume that players are myopic, so that members of a moving
coalition do not foresee what happens after their immediate deviation takes place. In
the model described here, individuals are farsighted and will need to forecast future
deviations or moves.
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nature of the equilibrium is explained in detail; indeed, we argue that such
an equilibrium must be stochastic.

We turn finally to a detailed analysis of the Prisoners’ Dilemma. Our
solution concept applied here yield a rich variety of outcomes (though, to
be sure, not everything is possible). The main points are: (1) cooperation
can be sustained using deterministic schemes, while defection can never be
sustained in this way (provided that discount factors are close to unity);
(2) in contrast, stochastic schemes can support defection as an absorbing
state, and can also generate cycles of movement with possibly some inertia
at the cooperative outcomes; and (3) cardinalities do matter in pinning
down equilibria — Example 12, which concludes the paper, makes this
amply clear.

2. COALITION FORMATION
2.1. Basic Ingredients

We consider a dynamic model of coalition formation. Let N be a finite
set of players and X a finite set of states.6 Using the language of cooper-
ative game theory, one might interpret a state to be the description of a
coalition structure, as well as a vector of payoffs accruing to each player. In
noncooperative games in strategic form, a state would represent a profile
of actions taken in the stage game.

A coalition is a nonempty subset S of N . For each state x in X and each
coalition S, define FS(x) to be the set of states achievable by a one-step
coalitional move (by S) from x. A coalition always has the option to do
nothing, so we include x in this set.

Let F (x) be the set of all moves from x; that is, F (x) = ∪SFS(x).
For each player, there is a vN-M payoff function ui : X → IR and a

discount factor δi. Thus player i’s payoff from a sequence of states {xt}
may be written as

∞∑
t=0

δt
iui(xt).

This is easily extended to probabilistic paths. Let ∆(X) be the space of
all probabilities σ on X. Then for any sequence σ ≡ {σt} in ∆(X), player

6The restriction to a finite set of states is for technical convenience. At present, we do
not know whether results such as Theorem 3.1 extend to the infinite case. For instance,
Theorem 3.1 uses a fixed point argument that will need to be extended to spaces of
infinite-dimensional transition probabilities.
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i’s payoff is given by the expression

Ui(σ) =
∞∑

t=0

δt

(∑
x∈X

σt(x)ui(x)

)
.

2.2. Examples
Notice that the static, deterministic version of this model embodies sev-

eral standard models, such as characteristic functions and games in strate-
gic form. But it can also encompass games in partition function form ([27],
[29], [33]) or networks ([13], [20]). Our more abstract description has been
used by several authors (in its static deterministic version): [11], [17] and
[34] represent some recent instances.

As concrete examples, consider the following:

Example 1. A Characteristic Function. Consider the simplest two-
person NTU characteristic function, in which there are simply two coalition
structures with a single payoff vector in each. Let x1 be the state with
structure {12}, and x2 the state with singleton structure. Then for x ∈
{x1, x2}, ui is just the payoff to player i under the corresponding structure.

It is easy to describe FS as the formalization of what each coalition can
do at each state. For example, the singletons can both move at x1 —
precipitating x2 — while the grand coalition of two players can move at
x2, precipitating x1. Whether the grand coalition can move or not at x1
to precipitate x2 is a matter of interpretation. We are comfortable with
either.

Example 2. A Partition Function. Suppose that there are three
players. If all three stand together, the payoff vector is (a, a, a). If all
stand alone, the payoff vector is (0, 0, 0). If i is alone and jk are together,
the payoff is b to i and c each to the other two. These determine the
functions ui(x) for each player i and and each state x.

Once again, much of the description of FS is obvious, espcially if we
have adopted an interpretative convention as suggested in Example 1. But
partition functions pose new issues. Suppose that i moves from the grand
coalition. Is the resulting structure {i}, {jk} or {i, j, k}? This time it is
more than a mere question of interpretation, and the dynamic model of
coalition formation just described forces us to take a stand on the matter.
So far as the formal theory is concerned, this is not an issue as long as
FS(x) is fully specified for all coalitions S and states x.

Example 3. A Game in Strategic Form. A situation in which a
normal form game is played at every date is particularly easy to embed.
Let N be a set of players, and let Ai be the (finite) action set of player i.
A state is simply an action profile a = (ai)i∈N . Starting from some action
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profile a a coalition S can induce any action profile of the form (a′
S , a−S),

where a−S is that part of the profile not chosen by members of S, and a′
S

is any vector of actions on the part of S.7

2.3. Equilibrium
A process of coalition formation (PCF) is a transition probability p :

X × X → [0, 1] (so that
∑

y∈X p(x, y) = 1 for each x ∈ X).
We interpret p as capturing the (possibly stochastic) transitions from

one state to another. These transitions will be induced by coalitions who
stand to benefit from them (see below).8

A PCF p induces a value function vi for each player i. This value function
captures the infinite horizon payoff to a player starting from any state x,
under the Markov process p. Standard observations tell us that the value
function for i must be the unique solution to the functional equation

vi(x, p) = ui(x) + δi

∑
y∈X

p(x, y)vi(y, p). (1)

We are now in a position to define profitable moves. These will be used
to impose restrictions on the process of coalition formation. Fix a PCF p, a
state x, and a coalition S. Say that S has a (weakly) profitable move from x
(under p) if there is y ∈ FS(x) (with y �= x) such that vi(y, p) ≥ vi(x, p) for
all i ∈ S. S has a strictly profitable move from x if there is y ∈ FS(x) such
that vi(y, p) > vi(x, p) for all i ∈ S. Finally, say that a move y is efficient
for S if there is no other move for S, say z, such that vi(z, p) > vi(y, p) for
all i ∈ S.

A PCF is an equilibrium process of coalition formation (EPCF) if (i)
whenever p(x, y) > 0 for some y �= x, then there is S such that y is a
(weakly) profitable and efficient move for S from x, and (ii) if there is a
strictly profitable move from x, then p(x, x) = 0 and there is a strictly
profitable and efficient move y with p(x, y) > 0.

Thus a going state is allowed to move to another state only if there is
a coalition whose members all agree to move to the new state and cannot
find any strictly better alternative state (under the going value functions).
Moreover, if there is a strictly profitable move, then the state must change,

7To be sure, dynamic situations of coalition formation derived from strategic form
games are not devoid of conceptual issues. Why is a−S fixed when S moves? One
interpretation is that an action profile constitutes a temporarily binding agreement, and
at every date some coalition receives the opportunity to costlessly renege on such an
agreement.

8Notice that the stationarity implicit in the definition of a PCF rules out moves that
are history-dependent. Thus we are implictly restricting our attention to schemes that
have the Markov property.



COALITION FORMATION 9

and there must be at least one move to a state which is interpretable as a
strictly profitable and efficient move for some coalition.

Notice that this definition allows for (but does not insist on) possible
changes in state in which the initiating coalition is indifferent to the change.
At the same time, the definition does not insist that every strictly profitable
move (under the equilibrium PCF) be given positive probability. This is
true in a particularly stark way of “deterministic” PCFs — to be introduced
in Section 4 — in which only one coalition is selected to act at each state
which admits some profitable move (even though, in principle, there may
be several such moves).9

Some further remarks on “efficient moves” are to be found in Appendix
1.

3. EXISTENCE

Theorem 3.1. An equilibrium process of coalition formation exists.

Remark. The current theorem extends to state spaces that are countable.
Whether existence holds in more general cases remains an open question.

Proof. Denote by P the set of all possible PCF’s. We construct a mapping
φ : P ⇒ P, show that a fixed point exists, and observe that a fixed point
of φ must be an EPCF.

We begin by observing that for every p ∈ P, a unique value function
vi(x, p) exists for each player i, satisfying (1). Let vi(p) denote the vec-
tor of payoffs {vi(x, p)}x∈X , ui the vector of current payoffs {ui(x)}x∈X ,
and P the matrix of transition probabilities (under p). Then (1) may be
immediately rewritten as

(I − δiP )vi(p) = ui.

Since δi ∈ (0, 1), I − δiP has a dominant diagonal. This guarantees the
unique solvability and continuity of vi(p) in p.

To construct φ, first consider (x, p) such that strictly profitable moves
exist; let Y (x, p) be the set of all strictly profitable and efficient moves.
For each y ∈ Y (x, p) there is a coalition S such that y is strictly prof-
itable and efficient for S from x (under p). Call such a coalition allow-
able (given (y, x, p)), and for each allowable coalition S define σS(y, x, p) ≡
mini∈S [vi(y, p)−vi(x, p)]. Having done so, let σ(y, x, p) ≡ maxS σS(y, x, p),
where the maximum is taken over allowable coalitions S. Now define a

9We allude to this restriction again in footnote 14, in the context of Example 4.
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probability measure over Y (x, p) — call it q(x, p) — by

q(x, p)[y] ≡ σ(y, x, p)∑
y′∈Y (x,p) σ(y′, x, p)

, (2)

Define a correspondence ∆(x, p) as follows: when strictly profitable moves
exist, ∆(x, p) = {q(x, p)}. Otherwise, ∆(x, p) be the collection of all prob-
ability measures with support contained in the union of {x} and the col-
lection of weakly profitable and efficient moves from x (under p).

Obviously, ∆(x, p) is nonempty and convex-valued for each (x, p). Now
we claim that it is uhc in p for given x. To this end, let pk be some sequence
in P converging to p. Study a corresponding sequence qk ∈ ∆(x, pk) and
extract a convergent subsequence converging to some q (retain original
sequence notation). We claim that q ∈ ∆(x, p).

This claim is obviously true if no strictly profitable move exists at (x, p).10

So suppose that a strictly profitable move does exist at (x, p). We note that
for any y ∈ Y (x, p), σ(y, x, pk) → σ(y, x, p) as k → ∞. [This is very easy
to verify, using the fact that vi(x, p) is continuous in p for every i and x.]

In particular, this means that for k large enough, ∆(x, pk) is a singleton
containing the probability measure q(x, pk) defined by (2). It also means
that q(x, pk) → q(x, p).

We have therefore shown that ∆(x, p) is nonempty, convex-valued and
uhc in p for each x. Define φ : P ⇒ P by φ(p) =

∏
x∈X ∆(x, p) for

every p ∈ P. Then, by the arguments above, all the conditions for the
Kakutani fixed point theorem are satisfied, and there exists p∗ ∈ P such
that p∗ ∈ φ(p∗). It is easy to see that p∗ satisfies all the conditions of an
EPCF.

4. DETERMINISTIC EQUILIBRIUM PROCESSES

In this section, we narrow our definition considerably. We then compare
this narrow definition with existing concepts, as a way of situating our
proposed solution in the perspective of existing literature. To this end,
introduce the following definitions. A PCF is deterministic if p(x, y) ∈
{0, 1} for all states x and y. A state x is absorbing if p(x, x) = 1. An
absorbing PCF is one in which for each state y, there is some absorbing
state x with p(k)(y, x) > 0 (for some k ≥ 1), where the notation p(k)

describes the k-step transition probability derived from p in the usual way.
Finally, a PCF has unique limit if it is absorbing and possesses a single
absorbing state.

10All we need to observe is that if y is strictly profitable for the sequence (x, pk), then
it must be weakly profitable for (x, p).
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4.1. Deterministic PCF’s with Unique Limit, and the Core
A classical solution concept is the core. At first sight, the core appears to

be an extremely myopic notion, requiring the stability of a proposed allo-
cation to deviations or blocks by coalitions, but not examining the stability
of the deviations themselves. However, it is well known that an extended
definition that tests the deviations of coalitions by requiring immunity to
further deviations by subcoalitions gives back the core once again [26]. This
means that the core automatically embodies a certain degree of farsight-
edness (insofar as chains of deviations by nested coalitions are concerned).
We now show that each element of the core in an arbitrary characteristic
function game can be “supported” (in a sense to be made precise below) as
the outcome of a deterministic EPCF with unique limit. In other words, the
core passes a further consistency test where nested deviations are dispensed
with.

We also establish a converse that yields an almost-complete characteri-
zation of deterministic EPCF’s with unique limit.

Fix a finite set N of players. A (finite) characteristic function is a map V
that associates with each coalition S a nonempty finite set of payoff vectors
in IRS . Normalize so that all payoffs are nonnegative.

A state of a characteristic function is a pair x = (a, π), where π is some
partition of the player set into coalitions, and a is a payoff vector such that
aS ∈ V (S) for any coalition S ∈ π.

A strong core state is a state x = (a, π) such that there is no coalition
S and payoff b ∈ V (S) with b ≥ aS and b �= aS . A weak core state is a
state x = (a, π) such that there is no coalition S and payoff b ∈ V (S) with
b 	 aS . Obviously, a strong core state is a weak core state.

We now embed a characteristic function into an intertemporal model of
coalition formation. Let X be the collection of all states of the characteristic
function. For each partition π of N and each coalition S, let W denote
the set of left-behind players {i ∈ T\S : T ∈ π, T ∩ S �= ∅}. Now let
πS = {S} ∪ {T ′ ∈ π : T ′ ∩ S = ∅} ∪ π(W ), where π(W ) is some arbitrary
partition of W . [Clearly, πS = π if (and only if) S ∈ π.] Now define FS(x)
as any collection of states y = (a′, π′) such that (a) π′ = πS , (b) a′

S ∈ V (S),
and indeed, ∪(a′,π′)∈FS(x)a

′
S = V (S), (c) a′

T = aT for all coalitions T ∈ π
such that T ∩ S = ∅, and (d) if a1, a2 satisfy (ai, π′) ∈ FS(x) for i = 1, 2,
then a1

−S = a2
−S .

This unwieldy formalism is easily interpreted in words: a move is avail-
able to S if the payoff vector (restricted to S) is feasible for S, if the re-
maining coalition structure consists of the coalitions that S left untouched
and some arbitrary partition of players that S left behind,11 if the result-

11[19] considers two formulations of coalition formation games. A ∆-game considers
a situation that players who are left behind by a coalitional deviation S are dissolved
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ing payoff vector to all non-deviant players is independent of the particular
payoff vector chosen by the deviating coalition, and moreover, if the re-
sulting payoffs to coalitions in π which have an empty intersection with S
remain the same as before.12

We may now state the following proposition.

Theorem 4.1. Let x∗ be a strong core state of a characteristic function.
Then there is δ∗ ∈ (0, 1) such that for any collection of discount factors all
in (δ∗, 1) and any associated intertemporal model of coalition formation,
there exists a deterministic EPCF defined on that model with x∗ as its
unique limit.

Proof. We will construct a PCF p as a deterministic mapping from state to
state, ultimately leading to x∗. Let x∗ = (a∗, π∗), where π∗ is the coalition
structure {S∗

1 , . . . S∗
K}. Let x be any state.

Case 1. x = x∗. Set p(x, x) = 1.

Case 2. Case 1 does not hold, and there exists a player i such that
{i} �∈ π, and a∗

i > ai. Pick the smallest index i with this property, and set
p(x, y) = 1, where y = (b, π′) ∈ Fi(x) with bi = max V ({i}).

Case 3. Cases 1 and 2 do not hold, and there exists a coalition S ∈ π∗

such that a∗
i > ai for all i ∈ S. Pick the smallest index k such that S∗

k

has this property, and set p(x, y) = 1, where y = (b, π′) ∈ FS∗
k
(x) with

bS∗
k

= a∗
S∗

k
.

Case 4. Cases 1, 2 and 3 do not hold, and there exists a coalition S ∈ π∗

such that a∗
i ≥ ai for all i ∈ S, and either S �∈ π, or S ∈ π and a∗

S �= aS .
Pick the smallest index k such that S∗

k has this property, and set p(x, y) = 1,
where y = (b, π′) ∈ FS∗

k
(x) with bS∗

k
= a∗

S∗
k
.

For this construction to be sensible, at least one of the situations de-
scribed must obtain. To see this, assume that Cases 1–3 do not hold. We
show that Case 4 must hold. To this end, pick any coalition T in π. If it
is a singleton, we must have ai ≤ a∗

i (because a∗ is a core allocation). We
claim the same is true of all i ∈ T even if T is not a singleton.

For if this is false, then aj > a∗
j for some j ∈ T . But then, because a∗

is a strong core allocation, there exists i ∈ T such that ai < a∗
i . Clearly

and each player becomes a singleton. On the other hand, a Γ-game considers a situation
that each of the complementary pieces that S left behind stays together. Since we allow
any regrouping of players who are left behind by S, our setting allows for both ∆- and
Γ-games.

12Note that, in principle, several correspondences of the form FS(x) may be written
down that satisfy this “independence property”: our results hold for each one of them.
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{i} �∈ π (because T ∈ π and T is not a singleton). But this means that
Case 2 holds, a contradiction.

So we have shown that a∗ ≥ a. In particular, for any S ∈ π∗, we have
a∗

S ≥ aS . To complete the argument, suppose that for all S ∈ π, we have
a∗

S = aS . Then π cannot equal π∗ (otherwise we would be in Case 1). This
means that there must exist S ∈ π∗ (with a∗

S ≥ aS , as already shown) such
that S �∈ π. So Case 4 holds whenever Cases 1–3 do not.

Therefore the (deterministic) transition from x to y is well-defined in all
cases. It is also easy to see that apart from x∗, x �= y for every other state,
and that there are no cycles. It follows that x∗ is the unique absorbing
limit of this PCF.

To complete the proof, we must show that all the conditions of an EPCF
are satisfied by this PCF. To assure this, we first choose the threshold value
of δ∗. For any individual i, let mi be the maximal payoff that he enjoys
over all states in which he receives less than his core payoff a∗

i . Define δ∗
i by

δ∗
i

Ca∗
i = mi, where C is the total number of states, and δ∗ ≡ maxi∈N δ∗

i .
We take it that the discount factor of every player strictly exceeds this
threshold.

Begin with the state x∗, and consider any move by any coalition S to
x = (a, π). Let L be the members of S who are no better off in the “static
sense” by doing so: L = {j ∈ S|aj ≤ a∗

j}. Observe that L is nonempty.
Now apply our constructed PCF thereafter. Notice that the payoff to any
member of S can only change if some member of L initiates a future move
(and indeed, this must happen under the PCF). Let i ∈ L be one of the
first movers from S after the initial move by S. Given the PCF, i cannot
enjoy any more than his core payoff a∗

i after this move is made. The same
is also true for the intervening period between the first move by S and
the later move by i. We may conclude that i cannot be strictly better off
(relative to the core payoff) by participating in the move by S. It follows
that at x∗, no strictly profitable move exists, so we are justified in placing
p(x∗, x∗) = 1.

Now consider some state x �= x∗. Suppose that we are in case 2. By our
condition (d) in the definition of the move correspondence FS , and given
the definition of our PCF, it only needs to be shown that the stipulated
move is profitable. Notice that

vi(x, p) = ai + δivi(y, p)

while

vi(y, p) ≥ δC
i

1 − δi
a∗

i ,

by the normalization that all payoffs are nonnegative and the fact that
the strong core allocation is reached under the PCF in at most C periods.
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Combining these last two expressions, it is easy to see that

vi(y, p) − vi(x, p) ≥ δC
i a∗

i − ai > δ∗Ca∗
i − ai ≥ mi − ai ≥ 0,

where the very last inequality follows from the fact that a∗
i > ai, and the

definition of mi.
Now suppose that we are in cases 3 or 4. Then there is some coalition

S∗
k which is required to move directly to its segment of the strong core

allocation, creating the state y. Moreover, by condition (c) in the definition
of the move correspondence FS , and given our PCF, S∗

k will receive this
payoff for ever after. Clearly this move is weakly profitable. To see that
it is efficient, consider any other state z = (b, π′) ∈ FS∗

k
(x). Following

the same line of reasoning as in case 1, let L be the subset of people
in S∗

k who are no better off (relative to their core payoff) by doing so:
L = {j ∈ S|aj ≤ a∗

j}. Observe that L is nonempty. Now follow a parallel
argument to see that there exists i ∈ S∗

k who cannot derive a higher payoff
from the route precipitated by this alternative move by S∗

k . In other words,
the prescribed move for S∗

k is efficient.
Finally, notice that our ordering of the cases guarantees that some strictly

profitable (and efficient) move is always made whenever one exists.

The following proposition describes an almost-complete converse to The-
orem 4.1.

Theorem 4.2. Fix some characteristic function. There is δ∗ ∈ (0, 1)
such that for any collection of discount factors all in (δ∗, 1), and for any
deterministic EPCF defined on any associated intertemporal model of coali-
tion formation with x∗ as its unique limit, x∗ must be a weak core state.

Proof. Our first task is to fix δ∗. For any x = (a, π) that is not a weak
core state, there is some coalition S and b ∈ V (S) such that b 	 aS . Pick
ε > 0 such that b ≥ ε + aS . Because there are only a finite number of
states, we may choose ε so that this inequality holds uniformly across all
noncore states, all coalitions S, and all allocations of the form b that do
better for S. Next, denote by M the maximal (one-period) payoff accruing
to any player under the characteristic function. Finally, define δ∗ so that
(1 − δ∗C)M < ε, where C is the total number of states.

Consider any associated intertemporal model of coalition formation, with
δi > δ∗ for all i ∈ N . Suppose, contrary to the statement of the theorem,
that there exists a deterministic EPCF p with unique limit x, where x
is not a weak core state. Then there is some coalition S and b ∈ V (S)
such that b 	 aS . Let S induce the state y = (a′, π′) ∈ FS(x) such that
a′

S = b. Given the EPCF, starting from y, the system must attain x again
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in at most C periods and stay there. Moreover, for this to happen, some
member i of S must participate in some profitable move z from y (for if
not, all members of S must receive b for ever after, a contradiction to the
fact that x is the unique limit). This means that

vi(z, p) ≥ vi(y, p). (3)

Now observe that

vi(y, p) = bi + δivi(z, p),

so that

vi(z, p) − vi(y, p) = (1 − δi)vi(z, p) − bi

≤ (1 − δC
i )M + δC

i ai − bi

< ε + ai − bi

≤ 0.

But this inequality contradicts (3).

Theorems 4.1 and 4.2, taken together, show that in the context of charac-
teristic functions, the concept of the core and that of a deterministic EPCF
with unique limit are (essentially) equivalent, as long as discount factors
are taken close enough to unity. Of course, the core does not exist for all
games while a deterministic EPCF may exist (see, for instance, Example
7), and a general EPCF certainly does. Moreover, as already noted, there
are models of coalition formation which do not come from characteristic
functions. In both these cases the concept of an EPCF may provide new
insights, as we argue in the later sections of this paper.

At the same time, our core characterization isn’t exactly old wine in a
new bottle. To appreciate this, notice that Theorems 4.1 and 4.2 would also
have gone through if we were to take δ very close to zero rather than unity.
The reason is simple: when δ = 0 we have the purely myopic case in which
the short-sighted blocking intuitions of the core apply straightforwardly.
But — as stated more than once — the novelty of the present case is the
results hold when discounting vanishes. It is therefore not surprising to
find that a deterministic EPCF (with δ close to 1) may rule out non-core
allocations in ways that are strikingly different from those suggested by
the standard definition of the core does. To appreciate this, consider the
following example.13

13Recall that we have used a general way of transforming characteristic functions
to FS-correspondences. In all the examples, we use the particular specification that
when a new coalition forms, the induced coalition structure (that immediately results)
corresponds to the Γ formulation in [19]; see our footnote 11 for a definition.
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Example 4. The following characteristic function is related to the coalition
formation game studied in [3] and [8]. N = {1, 2, 3}, V (1, 2, 3) = {(2, 2, 2)},
V (1, 2) = {(3, 3)}, V (2, 3) = {(4, 1)}, and V (S) contains only the zero
payoff vector for all other coalitions S. It is easy to see that this game has
a unique core state (coalition structure) {{1}, {2, 3}}.

We now describe a deterministic EPCF with unique limit. Because each
coalition structure has only one payoff vector, we may equate states with
(the five) coalition structures and schematically write down the PCF as
follows:

x1 = {{1, 2, 3}} →{2} x4
x2 = {{1, 2}, {3}} →{2,3} x3
x3= {{1}, {2,3}} → x3
x4 = {{1, 3}, {2}} →{2,3} x3
x5 = {{1}, {2}, {3}} →{2,3} x3

It is easy to check that if player 2’s discount factor exceeds 1/2, this
scheme is indeed an EPCF. Now focus on x1. This coalition structure is
not a core state. The only blocking coalition is formed by players 1 and 2.
However, if player 1 is farsighted enough, she would not join such a move
since she expects that player 2 would “betray” her by forming a move with
player 3 to achieve x3. That is, she would be better off by not deviating
from x1 from the first place. The point is that our EPCF does eliminate
the non-core state x1, but cannot do so by the argument that underlies the
definition of the core.

The reason that x1 is not stable in the PCF is that player 2 deviates
alone, expecting to create a further subsequent move with player 3. Ac-
tually, player 2 suffers from a low payoff for one period right after the
unilateral deviation, and enjoys higher payoffs for ever from the next pe-
riod. Thus, player 2’s motive for deviating from x1 is really based on her
farsightedness. Thus the reason why x1 is unstable comes from farsighted-
ness, while under the standard definition, x1 is eliminated for an immediate
(myopic) gain. These are very different arguments, yet they arrive at the
same conclusion.14

14Notice that under our deterministic EPCF, there may be several profitable moves
at a particular state. For instance, it is true that at state x1, both players 1 and 2 may
jointly wish to move if they are given the chance to do so. The reason why 1 also wants to
move, in contrast with the argument in the main text, is that if he does not, he foresees
disaster coming in the shape of 2 moving anyway, as prescribed by the EPCF. But the
point is that the coalition {12} is not given the opportunity to move. If we do insist on
going all the way with this argument while restraining ourselves to deterministic PCFs,
we must allow only {12} to move — not just today, but tomorrow as well — but as
the text argues, this cannot give rise to an EPCF. [To be sure, there may be stochastic



COALITION FORMATION 17

We end this section by addressing an obvious gap in our characterization.
Theorem 4.1 cannot be strengthened to include all weak core states, as the
following example shows.

Example 5. Consider the following characteristic function: N = {1, 2, 3},
V (1, 2, 3) = {(5, 5, 5)}, V (1, 2) = {(5, 6)}, V (1) = V (2) = V (3) = {1},
and V (S) contains only the zero payoff vector for all other coalitions S.
The coalition structure {1, 2, 3} and its associated payoff vector (5, 5, 5)
represents a weak core state (it is not a strong core state because of the
coalition {1, 2}). But this cannot be supported as the unique limit of a
deterministic EPCF (for any discount factor less than one). For to move
from the structure {1, 2}, {3} to the weak core, player 1 must participate
in the first move (player 2 does not want to deviate, and player 3 can only
do so with the help of players 1 and 2). But it is easy to see that if player
1 participates in any move, he must temporarily receive strictly less than
his weak core payoff of 5 and later, no more than 5. Therefore it does not
pay him to deviate for any discount factor less than one.

On the other hand, Theorem 4.2 cannot be strengthened to exclude all
states that are not in the strong core, as the following variation on Example
5 shows.

Example 6. N = {1, 2, 3}, V (1, 2, 3) = {(5, 5, 5)}, V (1, 2) = {(5, 6)},
V (1) = {5}, and V (S) contains only the zero payoff vector for all other
coalitions S. It is easy to see that the coalition structure {1, 2, 3} and its
associated payoff vector (5, 5, 5) represents a weak core state (it is not a
strong core state because of the coalition {1, 2}). Consider the deterministic
PCF in which the grand coalition structure is the unique limit, and all states
map directly to this structure, except for the structure {1, 2}, {3}, which is
mapped to the structure of singletons. It is easy to check that this is an
EPCF.

4.2. Deterministic Absorbing PCF’s and Consistency
We have seen that the narrowest restrictions imposed so far — deter-

ministic PCF’s with unique limit — provide an almost-complete character-
ization of the core. Now let us loosen the restrictions slightly by dropping
the requirement of a unique limit, but nevertheless not permitting any cy-
cles. This gives us the broader class of absorbing deterministic processes
of coalition formation (recall the formal definition stated earlier).

We first show that this relaxation permits absorbing states that are dis-
joint from core states, irrespective of whether or not the core itself is empty.

EPCFs where both coalitions {12} and {2} obtain the chance to move.] This example
therefore also illustrates the conceptual restrictions mentioned at the end of Section 2.3.
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Example 7. Consider the following two characteristic function games.
Game 1 is as follows: N = {1, 2, 3, 4}, V (1, 2, 3, 4) = {(4, 3, 2, 2)}, V (2, 3, 4) =
{(4, 3, 5)}, V (1, 3) = {(2, 4)}, V (1, 4) = {(3, 4)}, V (2, 4) = {(2, 3)}, V (i) =
1 for any other i ∈ N , and V (S) contains only zero payoffs for all other coali-
tion S. Game 2 retains all the features of Game 1, but changes V (2, 3, 4)
to {(4, 3, 4)} and V (1, 4) to {(3, 5)}. Game 1 does not have any core state
(weak or strong), and Game 2 has a unique (weak and strong) core alloca-
tion {{1, 4}, {2}, {3}}.

There are fifteen states in each of these two games, since each coalition
structure has only one payoff vector. Define an absorbing deterministic
PCF in the following schematic way:

x1 = {{1,2,3,4}} → x1
x2 = {{1, 2, 3}, {4}} →{1,2,3,4} x1
x3 = {{1, 2, 4}, {3}} →{1,2,3,4} x1
x4 = {{1, 3, 4}, {2}} →{2,4} x8
x5 = {{2, 3, 4}, {1}} →{1,3} x8
x6 = {{1, 2}, {3, 4}} →{1,2,3,4} x1
x7 = {{1, 2}, {3}, {4}} →{1,3} x9 →{2,4} x8
x8 = {{1,3}, {2,4}} → x8
x9 = {{1, 3}, {2}, {4}} →{2,4} x8
x10 = {{1, 4}, {2, 3}} →{1} x12 →{1,2,3,4} x1
x11 = {{1, 4}, {2}, {3}} →{1} x15 →{1,2,3,4} x1
x12 = {{2, 3}, {1}, {4}} →{1,2,3,4} x1
x13 = {{2, 4}, {1}, {3}} →{1,3} x8
x14 = {{3, 4}, {1}, {2}} →{1,2,3,4} x1
x15 = {{1}, {2}, {3}, {4}} →{1,2,3,4} x1

The absorbing states under this PCF are x1 and x8. We claim that if the
common discount factor δ satisfies δ ≥ 3

4 , then this is actually an EPCF.
States x10 and x11 (involving a coalition {1, 4}) are not an absorbing state,
since player 1 wants to break off to generate state x1 if δ ≥ 3

4 . Now,
between the two absorbing states, players 1 and 2 prefer x1 to x8, and
players 3 and 4 prefer x8 to x1. However, starting from x1, players 3
and/or 4 can move only to x2, x3, and x6. All of these states will come
back to x1. Thus, players 3 and 4 cannot move the state to x8 without
the help of players 1 and/or 2. A parallel argument applies to players 1
and 2 at x8, if they try to go to x1. There is no temporal gain from those
moves, either (given δ ≥ 2

3 ). We have therefore shown that there may be an
absorbing deterministic EPCF with no core elements among its absorbing
states, and this is true regardless of whether the core is empty or not.

Is this a counterexample to our earlier theorems on core equivalence?
No, it is not, for this EPCF has multiple absorbing states. Example 7 tells
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us it is possible to “support” a non-core state as an absorbing state, by
knocking out possible blocks or deviations by further moves to some other
absorbing state.

Combining this observation with the results of the previous section,
we see that the core does possess a nice consistency property in a “self-
referential” sense: a deterministic EPCF with a unique limit picks out a
core point. But when the self-referential nature of the process is dropped
(by admitting more than one absorbing state), then the possibilities widen
beyond the core.

It turns out, however, that all absorbing deterministic EPCF’s have ab-
sorbing states that lie within the largest consistent set. This notion is
due to Chwe [11]. Consider any model of intertemporal coalition forma-
tion (not necessarily one derived from a characteristic function) Follow-
ing Chwe, say that a state y indirectly dominates some other state x,
if there exist x0, x1, . . . , xm in X with x0 = x and xm = y, and coali-
tions S0, S1, . . . , Sm−1 such that for j = 0, ..., m − 1, xj+1 ∈ FSj (x

j) and
ui(y) ≥ ui(xj) for all i ∈ Sj .15

Notice how the concept of indirect domination makes reference to payoff
comparisons between each intermediate state in the “domination chain”
and the final outcome y. It is in this sense that the concept of indirect
domination incorporates farsightedness.

Now say that a collection Y of states is consistent if the following holds:
x ∈ Y if and only if for every coalition S and for any state z ∈ FS(x), there
exists y ∈ Y , where either y = z or y indirectly dominates z, such that the
inequality ui(x) ≥ ui(y) holds for at least one player i ∈ S.

In other words, a collection of states is consistent if every coalitional
move from any element of that collection leads to a “domination chain”
(starting with the move and ending within the given collection of states)
such that at the “end” of that chain, there is some member of the original
deviating coalition who feels that the move was not worthwhile.

Proposition 1 in [11] establishes that there is a largest consistent set
among all consistent sets: a set which is itself consistent and which con-
tains every consistent set.16 The following proposition links (at least in

15Our definition of indirect domination requires that all players be weakly better off.
Chwe’s definition requires that they all be strictly better off. Given our insistence on
efficient moves, this will not turn out to be a major issue. In any case, notice that there
is no inconsistency between the use of weak inequalities both as a potential force for
movement by coalitions, as well as its use as a deterrent for movement. Indifference may
be resolved in either direction.

16As noted in footnote 15, we use the weak domination ordering, but Chwe’s propo-
sition extends to this case with no changes.
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one direction) the largest consistent set to the limit states of absorbing
deterministic EPCF’s.17

Theorem 4.3. There exists δ∗ ∈ (0, 1) such that for any collection of
discount factors all in (δ∗, 1), and for any absorbing deterministic EPCF,
the set of all absorbing states is contained within the largest consistent set.

Proof. Let C be the total number of states. Let M and W be the maximal
and minimal (one-period) payoffs to any player. Pick δ∗ ∈ (0, 1) such that
for any two states x and y in X and any index i with ui(x) > ui(y), we
have (i) ui(x) > (1 − δ∗C)M + δ∗Cui(y), and (ii)(1 − δ∗C)W + δ∗Cui(x) >
ui(y). Consider any collection of discount factors all in (δ∗, 1), and fix some
absorbing deterministic EPCF. Let Z ⊆ X be its set of absorbing states.

Let z ∈ Z be some absorbing state. Fix any coalition S and consider any
x ∈ FS(z). Use the notation x0, x1, . . . , xm to describe the subsequent path
prescribed by the PCF starting from x = x0 and ending at the absorbing
state xm = y ∈ Z. Because the PCF is an equilibrium, we also know
that there are coalitions S0, S1, . . . , Sm−1 such that for j = 0, . . . , m − 1,
xj+1 ∈ FSj

(xj) and

vi(xj+1) ≥ vi(xj) (4)

for all i ∈ Sj . Now observe that vi(xj) = ui(xj) + δivi(xj+1), so that by
(4),

(1 − δi)vi(xj+1) ≥ ui(xj) (5)

for each Sj and i ∈ Sj . Next, note that

(1 − δi)vi(xj+1) ≤ (1 − δC
i )M + δC

i ui(y)

(because the PCF from xj+1 leads to the absorbing state y in at most C
steps), and combining this with (5), we may conclude that

(1 − δC
i )M + δC

i ui(y) ≥ ui(xj).

But this means (by (i) in our definition of δ∗) that

ui(y) ≥ ui(xj) (6)

17We thank an anonymous referee for pointing out an error in an earlier version of
this theorem.
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for all Sj and all i ∈ Sj . (6) proves that y, apart from being in Z, is an
indirect objection to x.

Moreover, since x is a possible move (by S) from z and z is an absorbing
state, vi(x) ≤ vi(z) for some i ∈ S. Because z is absorbing, it follows that

(1 − δi)vi(x) ≤ ui(z). (7)

Now observe that

(1 − δi)vi(x) ≥ (1 − δC
i )W + δC

i ui(y)

(because the PCF from x leads to the absorbing state y in at most C steps),
and combining this with (7) we may conclude that

ui(z) ≥ (1 − δC
i )W + δC

i ui(y)

By part (ii) in the definition of δ∗, we deduce that

ui(z) ≥ ui(y) (8)

for some i ∈ S.
Now (6) and (8) together prove that f(Z) ⊇ Z, where f(Z) is the set

of all states x such that for every coalition S and for any state y ∈ FS(x),
there exists z ∈ Z, where either y = z or z indirectly dominates y, such
that the inequality ui(x) ≥ ui(z) holds for some i ∈ S. Using the same
argument in the proof of Proposition 1 in [11], we may conclude that Z is
contained in the largest consistent set.

It is worth noting that the largest consistent set may be “large” but
is certainly not exhaustive. For instance, in the Prisoners’ Dilemma —
transformed into a dynamic model of coalition formation along the lines of
Example 3 — the largest consistent set is a singleton consisting of the coop-
erative outcome. Nevertheless, there are reasons to believe that the largest
consistent set may be too inclusive in some situations (see, for example,
the discussion in [34]). The notion of an EPCF highlights one reason for
this, as elaborated in the following example.

Example 8. N = (1, 2, 3). There are four states, represented by the
payoffs they provide to each of the three players: x1 = (2, 2, 2), x2 =
(0, 0, 0), x3 = (6, 6, 0) and x4 = (1, 0, 6). We describe the correspondence
FS as follows. At x1, the coalition {12} or player 3 are the only coalitions
that can move, and the only move (in either case) is to x2. At x2, only
coalitions {2} and {13} can move, and in both case either x3 or x4 may be
induced at will. From no other state is any move possible, and no other
coalition is capable of any other move.
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It is easy to see that the largest consistent set consists of the three states
(x1, x3, x4). In particular, the state x1 is a member of this set for the fol-
lowing reason: the coalition {12} avoids inducing x2 because it anticipates
the continuation by {13} to x4, and player 3 similarly negates a move to
x2 because she fears the subsequent creation of state x3 (by player 2).

However, there is no deterministic absorbing EPCF — and indeed, no
EPCF at all — with x1 as an absorbing state (provided that discount
factors are close enough to unity). To see this, let p be the probability that
some EPCF assigns to {2} moving at x2 (so that 1 − p is asigned to {13}).
Neglecting discounting for a moment, note that if p > 1/3, then {12} will
want to move from x1, whereas if p < 2/3 player 3 will want to move from
x1. It is now trivial to see that the for discount factors close enough to 1,
x1 cannot be an absorbing state.

This example shows quite starkly why the notion of consistency is less
restrictive than that of an EPCF. Two domination chains along two indirect
objections may have different moves attached to them starting from the
same state. Thus, as seen above, in the largest consistent set, coalition
{12} entertains one sort of conjecture about what will happen at x2 and
player 3 entertains another. If all players have common beliefs (as they must
in an EPCF), then this possibility cannot arise. This is one reason why
the set of all absorbing states (under all deterministic absorbing EPCFs)
is typically a strict subset of the largest consistent set.18

4.3. Deterministic Schemes: Absorption, Cycles and Efficiency
Example 8 in the previous section makes the point that the set of absorb-

ing states (under deterministic absorbing EPCFs) can be a strict subset of
the largest consistent set. It does so by pruning inefficient outcomes from
that set. This suggests that our dynamic structure may be generally adept
at taking out inefficient outcomes. Certainly, this is true of absorbing
schemes that have unique limit (and discount factors close to unity), at
least in the space of characteristic functions, by virtue of Theorem 4.2. For
schemes with multiple absorbing states, this is not true.

Insert Figure 1 approximately here.

Example 9. N = {1, 2}, X = {a, b, c, d}, and F is described in Figure
1. In the class of absorbing deterministic schemes there is exactly one
equilibrium, provided the discount factor of each player exceeds 2/3. This
equilibrium has absorbing states {a, c}. Notice that the payoffs from these
states are inefficient.19

18Another reason has to do with the efficiency of coalitional moves, something we do
not stress here. But see [34], in which similar concerns are raised in the context of a
static model of coalitional moves.

19{a, c} is also the largest consistent set.
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To see why, first note that in any absorbing deterministic equilibrium,
neither b nor d can be absorbing states. For suppose, on the contrary,
that b is absorbing. Then notice that a cannot be absorbing; indeed, that
a → b. This means that a move from b to c, engineered by player 2, has
the following possible payoff continuations for player 2: the constant payoff
(2, 2, . . .), the path (2, 6, 6, . . .), and the path (2, 6, 0, 1, 1 . . .). In each of
these cases 2 earns a (normalized) discounted payoff that exceeds 1, which
contradicts the presumption that b is absorbing. The argument that d
cannot be absorbing is an exact parallel.

So a or c (or both) must be absorbing, and there are no other absorbing
states.

Next, observe that both a and c must simultaneously be absorbing. For
say only a were absorbing. Then it must be the case that d → a. Now
consider a move from a to b, engineered by {1, 2}. It is obvious that player
2 must earn positive payoff from this move. Moreover, for any δ1 < 1,
player 1’s (normalized) discounted payoff must strictly exceed 2 (we use
here the observation that d → a). This contradicts the assumption that
only a is absorbing. A parallel argument holds for c. Therefore both a and
c are absorbing.

This leaves us with only one possible absorbing deterministic EPCF, in
which d → a and b → c. Indeed, such a PCF is an equilibrium, pro-
vided that the discount factor of each player exceeds 2/3. The outcome is
inefficient.

Readers interested in understanding better the source of this efficiency
failure are referred to Appendix 1, item 5.

To conclude this section, consider the following PCF which, while deter-
ministic, has no absorbing states: a → b → c → d → a. Provided that
discount factors are close to unity, it is easy to check that each move pre-
scribed by the scheme is strictly profitable (and efficient in the class of all
profitable moves). Therefore this cyclical scheme is an EPCF. For discount
factors close to one, the (normalized) discounted payoff to each player is
approximately 2.25. This payoff vector is efficient. In what follows, we
move on to a closer investigation of cyclical and stochastic schemes.

5. STOCHASTIC EQUILIBRIUM PROCESSES

In the remainder of the paper, we concentrate on stochastic processes
of coalition formation. Uncertainty enters the story in two distinct ways.
First, at any stage, several coalitions may have profitable moves. Which
coalition gets to move may well be probabilistically chosen. Second, it is
possible that a particular coalition has more than one efficient move, and
that it might randomize among them. The discussion that follows shows
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that in many typical situations one or more of these randomizations may
be necessary in order to generate an equilibrium.

The uncertain nature of the process may or may not be intertwined with
cycles — possibly stochastic reversions of the state of the game to some
given state. Formally, a (nonsingleton) collection of states (x1, . . . , xk)
under a PCF forms a (stochastic) cycle if p(xi, xi+1) > 0 for all 1 ≤ i < k
and p(xk, x1) > 0. A PCF that exhibits a cycle will be called cyclical.

The purpose of the analysis that follows is to understand these phenom-
ena, largely through the use of examples. A large part of our discussion
will take place explicitly in the context of strategic form games.

5.1. Randomization and Cycles: An Example
The purpose of this section is to illustrate the “need” for cycles and/or

randomization in certain situations. We do this by considering the follow-
ing restatement of the “roommate problem”. This is a situation with three
players, any of two of whom can share a room. In each case, the player left
out obtains zero. Moreover, for each pair of roommates, there is one who
obtains a payoff of 1, while the other obtains a payoff of a (to be paramet-
rically varied in the example). Details follow, couched in the language of a
model of coalition formation.

Example 10. Let N = {1, 2, 3}, X = {x, y, z}, F{2,3}(x) = {x, y},
F{1,3}(y) = {y, z}, F{1,2}(z) = {z, x}, and FS(x′) = {x′} for all other
combinations of (x′, S). Players have a common discount factor δ. Payoffs
for each state x′ are described in the following array:

ui(x′) x y z

1 1 0 a

2 a 1 0
3 0 a 1

Note that it is easy to rewrite this example in the more familiar char-
acteristic function form.20 Appendix 2 contains a demonstration of the
following

Observation 1. The game in Example 10 admits the following unique
EPCF that is symmetric for any a and δ: For a ≤ 1

1+δ , p(x, y) = p(y, z) =

p(z, x) = 1, and for a > 1
1+δ , p(x, y) = p(y, z) = p(z, x) = (1−a)(1−δ)

δ(2a−1) .

20Let N = {1, 2, 3} with V ({1, 2, 3}) = {(0, 0, 0)}, V ({1, 2}) = {(1, a)}, V ({2, 3}) =
{(1, a)}, V ({3, 1}) = {(1, a)}, and V ({i}) = {0} for any i ∈ N . Then the relevant part
of the game is described as the game in Example 9. We can construct a strategic form
representation of essentially the same game.
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This example (and the accompanying Observation) is designed to illus-
trate several points.

First, there is no hope of a general existence result for deterministic
schemes. This is true of characteristic functions for which the core is empty
(as the example demonstrates). While it is also true of strategic form
games, we will also see situations in which stochastic EPCF’s coexist with
their deterministic counterparts, leading to new insights.

Second, observe that once cycles and randomization make an appearance,
the cardinality of payoffs really matters in the determination of a particular
equilibrium. In the example, if a is small enough (that is, a ≤ 1

1+δ ), then
the equilibrium cycle is deterministic, and there is no chance of remaining
in the same state in any period. However, as a goes up from a = 1

1+δ ,
the probability of moving to the next state comes down. The cycles turn
stochastic. As a increases, each coalition structure becomes relatively more
stable since the cyclical movement becomes slower in the stochastic sense,
although no state ever becomes an absorbing state. On the other hand,
given a > 1

1+δ , p goes down as δ increases. If δ is very close to unity, p
is very close to zero. Notice that p never becomes zero — the tension of a
possible move is needed to sustain the scheme.21 Nevertheless, we still can
say that if δ goes to unity, each coalition structure becomes more stable in
a stochastic sense.

Third, the example illustrates one of the two sources of stochastic behav-
ior discussed earlier. At each state, there is only one potential deviating
coalition. Yet an EPCF can (and sometimes, as in the example, must)
be stochastic. Randomization occurs not over multiple deviating coali-
tions, but over whether a single coalition moves or stays. This type of
randomization can occur only when at least one member of the deviating
coalition needs to be indifferent between moving and staying. Note that in
such a case, the payoff of a player who is indifferent between these options
has a very simple form. For instance, suppose that player 1 is indiffer-
ent between deviating and staying at state z in the EPCF when a > 1

1+δ

(p(z, x) = (1−a)(1−δ)
δ(2a−1) ). Then it must be the case that22

v1(z, p) = v1(x, p) =
a

1 − δ
.

This property is not specific to the roommate problem. As long as (i)
there is only one possible coalitional deviation, and (ii) that coalitional

21It should be noted, however, that asymmetric roommate problems (in which the car-
dinalities of vNM utility functions or the values of discount factors differ across agents)
may have well absorbing states.

22The claim to be made follows from the fact that v1(z, p) = a +
δ [p(z, x)v1(x, p) + (1 − p(z, x))v1(z, p)] = a + δv1(z, p) (we have v1(x, p) = v1(z, p) by
indifference).
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move is randomized, the indifferent player’s payoff is exactly the same as
the discounted sum of atemporal payoffs from the current state.

In the next section, we will see several examples of the second source of
uncertainty: that stemming from randomization over multiple coalitional
deviations.

5.2. Games in Strategic Form
In this section, we apply our solution concept to strategic form games.

Such games are usually employed to describe purely noncooperative situ-
ations, but there is no reason why this should necessarily be the case. It
is possible that subgroups (or even the entire set) of players can come to-
gether to write temporarily binding agreements. Under this interpretation,
the period length is the duration for which a binding agreement can be
written.

We assume that every member in a coalition needs to agree on a tem-
porary binding agreement. This unanimity postulate is natural in defining
a coalitional move (recall, for instance, the definitions of strong Nash and
coalition-proof Nash equilibria). Models of binding agreements also use the
unanimity principle very widely (see, for instance, the survey [7] and the
many references contained therein).

The objective of our analysis is to show how the possibly stochastic
nature of coalition formation affects efficiency in strategic-form games.

5.2.1. Games with Common Payoffs

It will be useful to begin with a situation in which efficiency is not im-
paired, and this will serve as a benchmark for the more interesting cases
to follow. To this end, consider the class of all strategic games with com-
mon payoffs, which yield similar payoffs to all players for any action profile.
To be sure, such games are not without genuine strategic significance; for
instance, the following well-known pure coordination game (with a and b

negative) is a special case:

L R

T 1, 1 b, b

B a, a 0, 0

Formally, consider a strategic game with finite player set N . Player i

has finite action set Ai. Let A ≡∏i∈N Ai. Player i has payoff function ui

defined on A. We assume that for each action profile a ∈ A, and for all i

and j, ui(a) = uj(a). For simplicity of notation, we assume that there is
a unique action profile a∗ at which all players’ payoffs are maximized. We
call this game a game of common payoffs.
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It is easy enough (as in Example 3) to embed this game into an intertem-
poral model of coalition formation. A state will simply describe the ongoing
action profile, and FS(x) is the set of all states a′ such a′

S ∈∏i∈S Ai, and
a′

i = ai for all i �∈ S.
In words: an action vector is available to S if it is feasible for its members

and if the remaining players leave their actions unchanged.23

To complete the description, assume each player i has a common discount
factor δ ∈ (0, 1).

Theorem 5.1. Every EPCF for the game of common payoffs with a
common discount factor δ involves p(a∗, a∗) = 1 and has a∗ as the unique
absorbing limit starting from any a ∈ A.

Remark. That at least one such EPCF exists with the claimed property
is trivially true. The extra bite of this result lies in its assertion for every
EPCF.

Proof. First we prove that p(a∗, a∗) = 1. Suppose not. Then there is
some coalition S and a move to a state a such that vi(a, p) ≥ vi(a∗, p)
for all i ∈ S. Choose a′ to be some state having the lowest value of vi

among all states satisfying the requirement of the previous sentence. [By
the assumption of common payoffs and a common discount factor, the same
state can achieve this for every player.] By not moving, each member i of
coalition S gets a payoff of

ui(a∗) + δ
∑
a∈A

p(a∗, a)vi(a, p)

which is obviously larger than vi(a′, p), a contradiction.
Next, we show that a∗ is the unique absorbing limit. To this end, we

first note that if a′ �= a∗, then there exists a′′ �= a′ such that p(a′, a′′) > 0.
Suppose not; then p(a′, a′) = 1. In particular, vi(a′, p) = 1

1−δ ui(a′), while
vi(a∗, p) = 1

1−δ ui(a∗). However, since ui(a∗) > ui(a′), we have vi(a∗, p) >

vi(a′, p) for any i ∈ N . So there is a strictly profitable move from a′, which
contradicts requirement (ii) of an EPCF.

Now, if a∗ is not the unique absorbing limit, then the set C(p) ≡ {a ∈
A : for any k ≥ 1, p(k)(a, a∗) = 0} is nonempty. By the common payoff
assumption, there exists a′ ∈ C(p) such that vi(a′, p) ≥ vi(a, p) for any

23Note that we are economizing on the definition of a state here. We could record
the coalition structure that is implicitly in place at every situation. It would make no
difference to the results that follow, but the statement would be more cumbersome.
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a ∈ C(p). By the argument of the previous paragraph, there is a state a′′

such that p(a′, a′′) > 0.
In order to satisfy requirement (i) of an EPCF, it must be (recalling

common payoffs) that vi(a′, p) ≤ vi(a′′, p) for all i. But it is obvious that
a′′ ∈ C(p). Consequently, from the definition of a′ it follows that vi(a′, p) =
vi(a′′, p), and indeed, this is true for any state a′′ such that p(a′, a′′) > 0.

At the same time, we know that vi(a∗, p) = 1
1−δ ui(a∗) > vi(a′, p). There-

fore, we conclude that although vi(a∗, p) > vi(a′, p) for any i ∈ N (common
payoffs), p(a′, a′′) > 0 occurs only for a′′ with vi(a′′, p) = vi(a′, p). This
violates requirement (ii) of an EPCF, a contradiction.

Although games with common payoffs are special, this result provides
a strong base for our later remarks. In addition, these results may be
of intrinsic interest for coordination games. For instance, [22] contains
a related result (see also Corollary 2 in [21]). [22] studies repeated pure
coordination games in which only one player can change her action in each
period, and show that for δ close to unity there is a unique subgame perfect
equilibrium in which the action profile converges to the Pareto efficient one.
To be sure, there are important differences, not the least of which is that
our approach permits the writing of temporarily binding agreements.

Binding agreements notwithstanding, the finding of ubiquitous cooper-
ation in common-payoff situations does not extend, even to coordination
games with non-common payoffs. The following example describes a 2 × 2
game in which there is an EPCF with an inefficient absorbing limit.24

Example 11. Consider the following 2 × 2 strategic form game:

L R

T 1, 1 −5, −1
B −1, −5 0, 0

Denote (T, L), (B, L), (T, R), (B, R) by x, y, z, and w, respectively.
Assume a common discount factor δ for both players. Then the game
induced by this strategic form game has a EPCF with its unique absorbing
limit w if δ ≥ 2

3 .

24Equilibrium selection in [21] is related to the risk-dominance of an action profile [18],
and in the example, something similar plays an important role. Indeed, in the example,
the Pareto superior Nash equilibrium is a risk dominated equilibrium (1 − (−1) < 0 −
(−5)). However, in general, the conditions for a breakdown in cooperation are different
even in coordination games.
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To see this, consider the following PCF: p(x, y) = p(x, z) = 1
2 , p(y, w) =

p(z, w) = p(w, w) = 1. Then, we have:

v1(x, p) = v2(x, p) = 1 + δ

(−1 − 5
2

)
= 1 − 3δ,

v1(y, p) = v2(z, p) = −1,

v1(z, p) = v2(y, p) = −5,

v1(w, p) = v2(w, z) = 0.

As we can easily see from these expressions, there is an incentive for either
player to deviate from x as long as 1 − 3δ ≤ −1, which is equivalent to
δ ≥ 2

3 . So the PCF is an EPCF under this condition.
The striking feature of this EPCF is that although x is the highest payoff

state for every player, it is not stable. The temporary agreement x is upset
by unilateral deviations, in which each deviation is bolstered by the fear of
the other player’s deviation. Notice that this sort of “meta coordination
failure” relies intimately on the failure of common payoffs.

Note, moreover, that this EPCF represents an example of the second type
of uncertainty and its effects. Randomization among profitably deviating
coalitions may cause inefficiency in the resulting outcome.25

5.2.2. The Prisoners’ Dilemma

The prisoners’ dilemma represents a leading example of intrinsic interest.
We therefore study the EPCFs of this game in some detail. Consider the
following 2 × 2 strategic form game:

L R

T 1, 1 b, a

B a, b 0, 0

where a > 1 and b < 0. As in Example 11, denote (T, L), (B, L), (T, R),
(B, R) by x, y, z, and w respectively.

Unlike coordination games, x no longer attains the highest possible pay-
off, and it is well-known that w is the unique dominant strategy Nash
equilibrium of this game. Our model of coalition formation yields a more
varied set of results, which we attempt to characterize in the following

25Of course, there are other EPCFs: for instance, a “cooperative” EPCF with
p(x, x) = p(y, x) = p(z, x) = p(w, x) = 1 exists for any value of δ. What Example
11 says is that there can be another EPCF that attains a Pareto inferior state as the
unique absorbing state even in a coordination game unless we have common payoffs.
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Observation 2. The Prisoners’ Dilemma admits various EPCFs depend-
ing on specific parameter values:

1. Deterministic EPCFs

(i) there is a deterministic EPCF with its unique absorbing limit at x

(p(x, x) = p(y, w) = p(z, w) = p(w, x) = 1), iff a ≤ 1 + δ,

(ii) there is a deterministic EPCF with its unique limit at w (p(x, y) =
p(y, w) = p(z, w) = p(w, w) = 1), iff a ≥ 1

1−δ and b ≤ − 1
δ ,

(iii) there is a deterministic cyclical EPCF (p(x, y) = p(y, w) = p(z, w) =
p(w, x) = 1), iff a ≥ 1 + δ and b ≥ − 1

δ .

2. Stochastic and symmetric EPCFs

(i) there is a stochastic (symmetric) EPCF with its unique limit at w

(p(x, y) = p(x, z) = 1
2 , p(y, w) = p(z, w) = p(w, w) = 1), iff b ≤ −a − 2

δ ,

(ii) there is a stochastic (symmetric) cyclical EPCF (p(x, y) = p(x, z) =
p, p(y, w) = p(z, w) = p(w, x) = 1), iff −a− 2

δ ≤ b ≤
(

1+δ+δ2

δ+δ2

)
a− 2

δ . More-

over, if a ≥ 1 + δ (resp. a < 1 + δ), then p = 1
2 (resp. p < 1

2 ).

Insert Figure 2 approximately here.

Observation 2 outlines a rich array of possible outcomes. In what follows
we discuss the outcomes thoroughly. As a pictorial summary, Figure 2
depicts the various regions — in the space of parameters describing the
defection and “sucker” payoffs — for which different outcomes obtain. For
simplicity, the diagram has only been constructed for the limit case as
δ → 1.

Now for a verbal account. Begin with deterministic equilibrium pro-
cesses. Case 1(a) permits cooperation to be sustained as the unique limit
of a deterministic EPCF as long as (and only if ) a is not too large. Al-
though this finding is not unintuitive, it provides a different perspective
on the relationship between our solution concept and the largest consistent
set (LCS) in [11]. It is easy to see that the LCS is simply the singleton {x}
no matter what values a and b take (provided, of course, that a > 1 and
b < 0). However, no EPCF supports x if a is too large even when δ is close
to unity.

This observation does not contradict Theorem 4.3, in which a determin-
istic EPCF with absorbing limit was shown to lie within the LCS. The
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point is that once a is large enough, such EPCFs fail to exist. Cycles occur
(as Case 1(c) illustrates), but Theorem 4.3 is silent on cyclical EPCFs.26

Another seeming contradiction to Theorem 4.3 is Case 1(b), which asserts
that a deterministic EPCF may support w as a unique absorbing limit.
Notice, however, that the existence of such a scheme is conditional on δ

not being too large, whereas Theorem 4.3 only applies for discount factors
sufficiently close to unity.

Taken together, Cases 1(a) and 1(b) reveal two things. For discount
factors large enough, if a deterministic EPCF with unique absorbing limit
exists, then it can only sustain cooperation rather than defection. If, in
addition, a is too large then the existence of such EPCFs is jeopardized:
Case 1(c) shows that in such cases one typically cycles between cooperation
and defection.

The remarks so far pertain to deterministic schemes. Stochastic EPCFs
tell a different story. Case 2(a) tells us that in contrast to the deterministic
case, it is possible (even when δ � 1) to construct stochastic schemes
with unique absorbing limit at mutual defection. The condition for this
to happen can be interpreted in the form of a low enough value of b, the
so-called “sucker payoff”. That b matters is not surprising, as this payoff
(induced by the other agent’s departure from cooperation) is what creates
the “meta-coordination failure” discussed in the context of Example 11.

Finally, Case 2(b) identifies (necessary and sufficient) conditions for the
presence of stochastic EPCFs that exhibit cycles. Notice that if a is not
too large then the cooperative outcome must exhibit some inertia along
this cycle (p(x, x) > 0).

It may be worth pointing out that the conditions identified in cases 1(c)
and 2(b) apply for the entire range of values for a and b. In particular,
we can use these conditions to conclude that no (symmetric) coordination
game can exhibit a cycle.

The preceding discussion should make clear that cardinalities do matter
in determining the sort of EPCF that drives any given Prisoners’ Dilemma.
To emphasize this and to focus on the leading case in which δ is close to
unity, we end this section (and the paper) with three examples.

Example 12-1. (Prisoners’ Dilemma 1): No EPCF supports the unique
dominant strategy Nash equilibrium (and the unique coalition proof Nash

26The reader might think that cycles are efficient anyway when a is large enough. But
this is not generally true, as no restriction is placed on the absolute size of b.
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equilibrium) as its absorbing state, but cooperation can be supported as
the unique absorbing state of a deterministic EPCF for δ close to unity.27

L R

T 1, 1 − 1
2 , 3

2

B 3
2 , − 1

2 0, 0

Example 12-2. (Prisoners’ Dilemma 2): No EPCF supports cooperation,
but the Nash equilibrium can be supported as the unique absorbing state
of a stochastic EPCF for δ close to unity.

L R

T 1, 1 −6, 3
B 3, −6 0, 0

Example 12-3. (Prisoners’ Dilemma 3): Both cooperation and noncoop-
eration states may be supported as the unique absorbing state of EPCFs
(deterministic and stochastic, respectively) for δ close to unity.

L R

T 1, 1 −4, 3
2

B 3
2 , −4 0, 0

APPENDIX A
Remarks on Efficient Moves

We make some brief remarks on the notion of efficient moves in the
definition of an EPCF. As observed in the main text, one might weaken
the definition of an EPCF to allow for all profitable moves, not just the
efficient ones. Call such an EPCF a weak EPCF.

1. The existence of weak EPCFs is obviously not an issue, because an
EPCF is clearly a weak EPCF.

27This game also has a stochastic cyclical EPCF with p(x, x) ∈ (0, 1).
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2. Weak EPCFs might lead to outcomes that appear unreasonable. Con-
sider the following example with two players — 1 and 2 — and three states,
x, y and z. Payoffs are as follows:

ui(x′) x y z

1 0 1 100
2 1 0 100

Suppose further that individual 1 can induce y and z from x, while 2
can induce x and z from y, and that no other coalition/state combination
permits nontrivial moves.

Now it is easy to construct a weak EPCF (for all discount factors, in fact)
in which, starting from either x or y, the system endlessly oscillates between
x and y, even though either player could induce z and make both players
much better off. An EPCF would negate this possibility by permitting —
indeed, demanding — that each player make an efficient move.

3. At the same time, it is worth noting that our core characterization
theorems may be strengthened by taking note of the distinction between
EPCFs and weak EPCFs. This is true in the following sense. In Theorem
4.1, a (strong) core outcome is “implemented” by an EPCF (satisfying the
efficient moves principle). At the same time, a cursory glance at the proof
of Theorem 4.2 will reveal that every weak deterministic EPCF with unique
absorbing limit must pick out a (weak) core allocation. That is, Theorem
4.2 applies to the broader class of weak EPCFs.

4. It hardly needs to be mentioned that the “efficient moves” requirement
need not lead to efficiency overall, for exactly the same reason that Nash
equilibria need not be Pareto optimal. For instance, Observation 2 tells us
that an EPCF may lead to mutual defection as its unique absorbing limit
in the case of the Prisoners’ Dilemma.

5. However, there is an important sense in which our equilibrium concept
fails to capture certain aspects of “efficient moves”. We have proceeded
entirely in the spirit of dynamic games, in which the one-shot deviation
principle is applied: players take not only the strategies of other players as
given, they take as given their own strategies in the future. By the well
known principle of Blackwell that “unimprovability implies optimality” in
discounted situations, there is seemingly no loss of generality in doing this.1

1The equivalence between the unimprovability of a single-step move, and optimality,
lies at the heart of modern theories of repeated games (see, for example, [1] or [15]).
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But the principle fails when “players” are coalitions (and also if players
have vector-valued objectives). To create a profitable deviation for the
coalition as a whole (or for every component of the vector payoff function),
several moves may be needed. Indeed, this is behind the efficiency failure
in Example 9. There, the coalition {1, 2} can engineer, if it so wishes, a
move from one of the inefficient absorbing states a or c. However, a move
from a only ends at c, and vice versa, so that both players cannot find
it simultaneously worthwhile to participate in the proposed move. At the
same time, if players {1, 2} were to simultaneously deviate at both a and c,
the “double deviation” would indeed be worthwhile.

This raises a conceptual issue. The principle of one-step deviations is
built into our solution concept: individuals and coalitions at different dates
are regarded as different individuals and coalitions. Therefore coalitions
are as involved (in this conceptualization) in a game against themselves as
against other coalitions. It is unclear whether this formulation should be
dropped (compare this, for instance, with the literature on changing pref-
erences, e.g., [25] and [32]). We tentatively retain it, despite the disturbing
feature of Example 9.

6. Finally — while accepting the efficient moves principle — one might
question the particular formulation adopted in our definition. For instance,
one could rule out an efficient move for S (as described by us) if there is
some strict subset of S, say T , which can generate another change that
makes its members still better off relative to the payoff under the efficient
move (by S). In this case one might want to assign probability zero to
the move by S (and positive probability to the move by T ). However,
this refinement raises other issues. One interpretation of the probabilistic
nature of a move is that Nature chooses a coalition randomly and permits
it to enjoy a profitable deviation. In that case, the subset T might be
bound by the decisions of the entire coalition S. On the other hand, if this
interpretation is rejected, then other problems arise. For instance, why
restrict the search for better moves to subsets of S and not other sets T

which share a common intersection with S (where the intersecting members
are allowed to go with the coalition that has the better move)? But this
further refinement leads to possible circularities, rendering a conceptually
satisfactory definition impossible. At the same time, it should be noted
that such potential circularities in defining efficient moves — which we
avoid by assumption — do not in any way preclude the study of cycles
over time, which are allowed for in the definition.
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APPENDIX B
Proofs Omitted in the Main Text

Proof of Observation 1. The value functions of this game can be rewrit-
ten as follows:

vi(x′, p) = ui(x′) + δ{p(x′, y′)vi(y′, p) + (1 − p(x′, y′))vi(x′, p)},

or

(1 − δ + δp(x′, y′))vi(x′, p) − δp(x′, y′)vi(y′, p) = ui(x′),

for any i ∈ N , and any (x′, y′) ∈ {(x, y), (y, z), (z, x)}. The incentive to
move from x′ to y′ is captured as follows:

vi(y′, p) − vi(x′, p) =
(1 − δ)vi(y′, p)

1 − δ + δp(x′, y′)
− ui(x′)

1 − δ + δp(x′, y′)
.

First, we find a symmetric equilibrium. Since the game is symmetric, we
can describe a symmetric equilibrium in the following way:


 1 − δ + δp 0 −δp

−δp 1 − δ + δp 0
0 −δp 1 − δ + δp




 vH

vM

vL


 =


 1

a
0




where 
 vH

vM

vL


 =


 v1(x, p)

v1(z, p)
v1(y, p)


 =


 v2(y, p)

v2(x, p)
v2(z, p)


 =


 v3(z, p)

v3(y, p)
v3(x, p)


 .

By solving this equation we see that

vH =
1
D

{(1 − δ + δp)2 + a(δp)2}

vM =
1
D

{a(1 − δ + δp)2 + δp(1 − δ + δp)}

vL =
1
D

{(δp)2 + aδp(1 − δ + δp)},

where D = (1 − δ + δp)3 − (δp)3 > 0, and p denotes the probability of
moving to the next state.

Note first that vM −vL = (1− δ){δp+a(1− δ + δp)} > 0. Thus, a player
who is currently getting 0 surely joins a coalitional move. The question is
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whether a player who is currently getting a would also do so. This can be
checked by comparing vH and vM :

vH − vM =
1
D

{(1 − δ + δp)(1 − δ) + a(δp)2 − a(1 − δ + δp)2

=
1
D

(1 − δ){(1 − δ + δp) − a(1 − δ + 2δp)}.

Hence, we obtain

vH ≥ (<)vM ⇐⇒ a ≤ (>)
1 − δ + δp

1 − δ + 2δp
.

Note that p = 1 if vH > vM , and p ∈ (0, 1) can occur only if vH = vM .
Thus, when a < 1

1+δ , vH > vM holds for any p, and we must conclude that
p = 1. Similarly, when a = 1

1+δ , the only possibility is, again, p = 1.
When a > 1

1+δ , p can no longer be 1, since p = 1 implies vH < vM .
Since a < 1, neither can it be that p = 0 (vH > vM ). Thus, the only
possibility left is the case where vH = vM so that p ∈ (0, 1) holds. Hence,
when a > 1

1+δ , p = (1−a)(1−δ)
δ(2a−1) is the unique symmetric EPCF.

The rest of the proof shows that no other EPCF exists. To do that,
we need to investigate a few possibilities. We first show that this game
does not possess an EPCF that has an absorbing state for any δ and a.
Suppose, to the contrary, that p(x, x) = 1 (i.e., x is an absorbing state).
Then, vi(x, p) = ui(x)

1−δ . Given this, the incentives for players 1 and 2 to
move from z to x can be described by the difference between vi(x, p) and
vi(z, p):

v1(x, p) − v1(z, p) =

[
(1 − δ) 1

1−δ

(1 − δ + δp(z, x))
+

a

(1 − δ + δp(z, x))

]

=
1 − a

(1 − δ + δp(z, x))
> 0,

and

v2(x, p) − v2(z, p) =
(1 − δ) a

1−δ

(1 − δ + δp(z, x))

=
a

(1 − δ + δp(z, x))
> 0.

Hence, given that x is an absorbing state, it must be that p(z, x) = 1.
Consequently, the discounted payoffs at z are

vi(z, p) = ui(z) +
δ

1 − δ
ui(x).



COALITION FORMATION 37

Now, we can check the incentives for players 1 and 3 to move from y to z:

v1(z, p) − v1(y, p) =
(1 − δ)v1(z, p)
1 − δ + δp(y, z)

> 0,

and

v3(z, p) − v3(y, p) =
(1 − δ)v2(z, p)
1 − δ + δp(y, z)

− a

1 − δ + δp(y, z)

=
1 − δ − a

1 − δ + δp(y, z)
.

Suppose that 1− δ < a. Then it must be that p(y, z) = 0. However, if this
is so, y is also an absorbing state, and by repeating the same argument as
before, players 2 and 3 would move from x with probability 1 (p(x, y) = 1).
This is a contradiction. Next suppose that 1 − δ ≥ a. Then, by the
argument above, we must have p(y, z) ∈ (0, 1]. We check if there is any
p(y, z) ∈ (0, 1] that can support p(x, y) = 0. The discounted sum of payoffs
at y can be written as

(1 − δ + δp(y, z))vi(y, p) = ui(y) + δp(y, z)vi(z, p).

Therefore, we obtain

vi(y, p) =
1

1 − δ + δp(y, z)
[ui(y) + δp(y, z){ui(z) +

ui(x)
1 − δ

}].

Now, at state x, we check if p(x, y) = 0 is supportable. Player i’s incentive
to move from x to y is given by

vi(y, p) − vi(x, p) =
ui(y) + δp(y, z)ui(z) + δp(y, z)ui(x)

1−δ

1 − δ + δp(y, z)
− ui(x)

1 − δ

=
ui(y) + δp(y, z)ui(z) − (1 + δ)ui(x)

1 − δ + δp(y, z)
.

Obviously, v3(y, p) − v3(x, p) > 0. For player 2, we can utilize 1 − δ ≥ a

to show v2(y, p) − v2(x, p) > 0.

v2(y, p) − v2(x, p) =
1

1 − δ + δp(y, z)
[1 − (1 + δ)a]

≥ 1
1 − δ + δp(y, z)

[1 − (1 + δ)(1 − δ)] > 0.
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This is a contradiction to p(x, y) = 0. As a result, we conclude that for
any a and δ, this game does not possess an absorbing EPCF.

So far, we know that p(x′, y′) ∈ (0, 1] must hold for any (x′, y′) ∈
{(x, y), (y, z), (z, x)}. Now, we will show that p(x′, y′) ∈ (0, 1) for any
(x′, y′) ∈ {(x, y), (y, z), (z, x)} unless p(x, y) = p(y, z) = p(z, x) = 1. Two
sub-cases need to be investigated. The first one is the case with only one
deterministic move. Without loss of generality, we assume p(y, z) = 1.
Since p(x, y) ∈ (0, 1), we have

v2(y, p) = 1 + δv2(z, p) =
a

1 − δ

and

v2(z, p) =
δp(z, x)

1 − δ + δp(z, x)
v2(x, p) =

δp(z, x)
1 − δ + δp(z, x)

a

1 − δ
.

These two equations together imply

1 +
δ2p(z, x)

1 − δ + δp(z, x)
a

1 − δ
=

a

1 − δ
,

which is equivalent to

p(z, x) =
a − (1 − δ)
δ(1 − a)

.

Since p(z, x) ≤ 1, we must have 1
1+δ ≥ a. Now, consider player 1. Since

p(z, x) ∈ (0, 1), we have v1(z, p) = v1(x, p) = a
1−δ . Because we have that

(1 − δ + δp(x, y))v1(x, p) = 1 + δp(x, y)v1(y, p) and v1(y, p) = δv1(z, p), it
follows that

(1 − δ + δp(x, y) − δ2p(x, y))
a

1 − δ
= 1,

or

p(x, y) =
1 − a

a
.

Since p(x, y) ≤ 1, we have 1
2 ≤ a. Together with the previous result, this

implies 1
2 ≤ a ≤ 1

1+δ . But this contradicts the fact that δ < 1.
Next, we consider the remaining subcase in which two moves are de-

terministic. Suppose, without loss of generality, that p(x, y) ∈ (0, 1) and
p(y, z) = p(z, x) = 1. In this case, player 2 has to be indifferent between x

and y. Thus, v2(x, p) = v2(y, p) = a
1−δ . Since v2(y, p) = 1+δ ·0+δ2v2(x, p),



COALITION FORMATION 39

we have (1 − δ2)v2(x, p) = 1. By equation these two equations, we obtain
a = 1

1+δ . Now, we focus on player 3’s incentive to move from y to z. We
have:

v3(x, p) =
δp(x, y)

1 − δ + δp(x, y)
v3(y, p),

v3(y, p) = a + δ + δ2v3(x, p)

v3(z, p) = 1 + δv3(x, p).

From the first two equations, we obtain:

v3(x, p) =
δp(x, y)

1 − δ + δp(x, y)
(a + δ + δ2v3(x, p)).

Substituting a = 1
1+δ into this equation, we obtain,

(1 − δ)(1 + δ(1 + δ)p(x, y))v3(x, p) = δp(x, y)
1 + δ + δ2

1 + δ
.

Thus, we have a formula for v3(x, p),

v3(x, p) =
δ(1 + δ + δ2)p(x, y)

(1 − δ)(1 + δ)(1 + δ(1 + δ)p(x, y))
.

Now, to check the incentive to move from y to z, we calculate v3(z, p) −
v3(y, p). This is given by

v3(z, p) − v3(y, p) = 1 − a − δ + δ(1 − δ)v3(x, p)

= − δ2

1 + δ
+

δ2(1 + δ + δ2)p(x, y)
(1 + δ)(1 + (δ + δ2)p(x, y))

≤ − δ2

1 + δ
+

δ2(1 + δ + δ2)
(1 + δ)(1 + δ + δ2)

= 0.

Equality holds only when p(x, y) = 1. But this contradicts our supposition
that p(x, y) ∈ (0, 1). Therefore, we may conclude that p(x′, y′) = 1 cannot
hold for any (x′, y′) ∈ {(x, y), (y, z), (z, x)}.

Finally, we check if there is an asymmetric EPCF when p(x′, y′) ∈ (0, 1)
for any (x′, y′) ∈ {(x, y), (y, z), (z, x)}. Since p(x′, y′) is strictly mixed,
there must be player i in S with y′ ∈ FS(x′) who is indifferent between
staying at x′ and moving to y′ : that is,

vi(y′, p) − vi(x′, p) =
(1 − δ)vi(y′, p)

1 − δ + δp(x′, y′)
− ui(x′)

1 − δ + δp(x′, y′)
= 0,
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so that

vi(x′, p) = vi(y′, p) =
ui(x′)
1 − δ

.

Note that the indifferent players are players 2, 3, and 1 for (x′, y′) = (x, y),
(y, z), and (z, x), respectively. Since everything is symmetric, we focus on
the case of (x′, y′) = (x, y). In this case, player 2 is indifferent between
x and y. Since v2(z, p) = 0 + δ(p(z, x)v2(x, p) + (1 − p(z, x))v2(z, p)), we
obtain

v2(z, p) =
δp(z, x)

1 − δ + δp(z, x)
v2(x, p).

Similarly, we know v2(y, p) = 1 + δ(p(y, z)v2(z, p) + (1 − p(y, z))v2(y, p)).
Substituting the above equation and v2(x, p) = v2(y, p) = a

1−δ into this
equation, we obtain,

a

1 − δ
= 1 +

a

1 − δ
{ δp(y, z)δp(z, x)
1 − δ + δp(z, x)

+ δ(1 − p(y, z))}.

This is equivalent to

1 − δ + δp(z, x)
1 − δ + δp(z, x) + δp(y, z)

= a.

Repeating the same argument for players 1 and 3, we obtain

1 − δ + δp(z, x)
1 − δ + δp(z, x) + δp(y, z)

=
1 − δ + δp(x, y)

1 − δ + δp(x, y) + δp(z, x)

=
1 − δ + δp(y, z)

1 − δ + δp(y, z) + δp(x, y)
= a.

Suppose that δp(y, z) < δp(z, x). Then, we have δp(z, x) < δp(x, y)
and δp(x, y) < δp(y, z). However, these two inequalities together imply
δp(z, x) < δp(y, z), a contradiction. Thus, asymmetric probabilities within
an open interval (0, 1) cannot survive. Note that if p(x, y) = p(y, z) =
p(z, x), then we indeed obtain p(x, y) = (1−a)(1−δ)

δ(2a−1) .

Proof of Observation 2. First, note that in any EPCF, p(y, w) =
p(z, w) = 1, since y and z give players 1 and 2 the minimum payoff, re-
spectively (this implies p(y, y) = p(z, z) = 0, and to move to w is the only
incentive compatible path). We start with deterministic EPCFs.
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Case 1.a. Deterministic EPCFs with unique absorbing state x. From
Theorem 4.3, we know that x can be the only absorbing state of a deter-
ministic EPCF when δ is close to one, so we first find a deterministic EPCF
with its absorbing state at x.

For this to happen, we must have in particular that p(w, x) = 1. This in
turn requires that (i) vi(w, p) ≤ vi(x, p). Moreover, since x is an absorbing
state (p(x, x) = 1), we need (ii) v1(x, p) ≥ v1(y, p) (since the EPCF is
symmetric, we can focus on player 1). First, let us consider (i). Since
p(x, x) = 1, vi(x, p) = 1

1−δ > 0, and vi(w, p) = 0 + δvi(x, p). Obviously,
(i) is satisfied with a strict inequality. Thus, p(w, x) = 1 is incentive
compatible. Second, (ii) is investigated. Since the EPCF is fully specified
by the previous analysis, it is easy to see the value of v1(y, p): v1(y, p) =
a + δv1(w, p) = a + δ2v1(x, p). Thus, we have

v1(x, p) − v1(y, p) = (1 − δ2)v1(x, p) − a

= (1 − δ2)
1

1 − δ
− a

= 1 + δ − a ≥ 0.

Thus, if (and only if) a ≤ 1+ δ, we can support x as the unique absorbing
state of a deterministic EPCF.

Case 1.b. Deterministic EPCFs with unique absorbing state w. We an-
alyze a PCF with p(x, y) = p(y, w) = p(z, w) = p(w, w) = 1. [Since it is
deterministic, the EPCF must treat moves to y and z asymmetrically. The
only other case is the mirror image of this, to be analyzed in exactly the
same way.]

Since p(y, w) = p(z, w) = 1 always follows, we only need to focus on (i)
p(x, y) = 1 and (ii) p(w, w) = 1 (or p(w, x) = 0). First, we analyze (i): In
order to give player 1 an incentive to move from x, we need a+ δv1(w, p) ≥
v1(x, p). Note that v1(x, p) = 1 + δa + δ2v1(w, p) and v1(w, p) = 0. Thus,
what we need is a ≥ 1 + δa or a ≥ 1

1−δ . Second, we check (ii): It is
sufficient to show that player 2 (who suffers more by moving to x) does
not agree with moving to x. Thus, we need 0 = v2(w, p) ≥ v2(x, p) =
1 + δb + δ2v2(w, p) = 1 + δb. Therefore, if (and only if) (i) a ≥ 1

1−δ and
(ii) b ≤ −1

δ are satisfied, then w can be supported as the unique absorbing
state of a deterministic EPCF.

Case 1.c. Deterministic cyclical EPCF. We analyze a PCF with p(x, y) =
p(y, w) = p(w, x) = 1. We need two conditions: (i) a+δv1(w, p) ≥ v1(x, p),
and (ii) v2(x, p) ≥ v2(w, p) (since player 2 suffers more by moving to x).
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However, we know

vi(w, p) = δvi(x, p) for i = 1, 2,

v1(x, p) = (1 + δa + δ20) + δ3(1 + δa + δ20) + ... =
1 + δa

1 − δ3 ,

and

v2(x, p) = (1 + δb + δ20) + δ3(1 + δb + δ20) + ... =
1 + δb

1 − δ3 .

Thus, condition (i) becomes

a ≥ (1 − δ2)v1(x, p) = (1 − δ2)
1 + δa

1 − δ3 =
(1 + δ)(1 + δa)

1 + δ + δ2 .

This is equivalent to a ≥ 1 + δ. Condition (ii) boils down to v2(x, p) ≥ 0,
which is equivalent to b ≥ −1

δ . Hence, if (i) a ≥ 1 + δ and (ii) b ≥ − 1
δ are

satisfied, then this cyclical deterministic EPCF is supportable.

Case 2.a. Stochastic symmetric EPCFs with an absorbing state w. We
can set up value functions in a similar way as we did in Example 8. We
focus on player 1 without loss of generality (symmetry):

v1(x, p) = 1 +
δ

2
(v1(y, p) + v1(z, p)) ,

v1(y, p) = a + δv1(w, p),

v1(z, p) = b + δv1(w, p),

v1(w, p) = 0.

By substituting v1(w, p) = 0 to others, we obtain

v1(x, p) = 1 +
δ

2
(a + b) ,

v1(y, p) = a,

v1(z, p) = b.

Since a < 0 and b < 0, p(y, w) = p(z, w) = 1 are incentive compatible.
Moreover, p(w, w) = 1 can be supported if v1(x, p) ≤ 0, or a + b ≤ − 2

δ .
Now, the question is if we can support p(x, y) = 1

2 . The answer is yes, if
v1(y, p) ≥ v1(x, p), or a ≥ 2

2−δ + δ
2−δ b. Thus, if (i) a + b ≤ − 2

δ , and (ii)
a ≥ 2

2−δ + δ
2−δ b, then the above PCF is indeed an EPCF.1 Since condition

1We can also consider a PCF with p(y, w) = p(z, w) = p(w, w) = 1, p(x, y) = p(x, z) =
p, and p(x, w) = 1 − 2p for p ∈ (0, 1

2 ). It is easy to see that whenever there is such an
EPCF, we also have an EPCF described in the main text.
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(ii) is satisfied trivially (a is the highest payoff of all), condition (i) is the
only one that needs to be satisfied. That is, if a + b ≤ − 2

δ , then w can be
supported as unique absorbing state of a symmetric stochastic EPCF.

Case 2.b. Stochastic symmetric cyclical EPCFs. We analyze a PCF with
p(x, y) = p(x, z) = p ≤ 1

2 , and p(y, w) = p(x, w) = p(w, x) = 1. Again, the
key conditions are (i) v1(y, p) ≥ v1(x, p), and (ii) v1(x, p) ≥ v1(w, p). The
formula of v1(x, p) can be written as:

v1(x, p) = 1 + δ{p(v1(y, p) + v1(z, p)) + (1 − 2p)v1(x, p)}
= 1 + δp(a + b) + 2δ2pv1(w, p) + δ(1 − 2p)v1(x, p)

= 1 + δp(a + b) + 2δ3pv1(x, p) + δ(1 − 2p)v1(x, p).

Thus, we have

{1 − δ + 2δp − 2δ3p}v1(x, p) = 1 + δp(a + b),

or

v1(x, p) =
1 + δp(a + b)

(1 − δ)(1 + 2δp(1 + δ))
.

Now, we are ready to check condition (i). We need v1(y, p) = a+δ2v1(x, p) ≥
v1(x, p), or a

1−δ2 ≥ v1(x, p). Thus, we need

1 + δp(a + b)
(1 − δ)(1 + 2δp(1 + δ))

≤ a

(1 − δ)(1 + δ)

or

1 + δpa + δpb ≤ (1 + 2δp(1 + δ))a
1 + δ

=
a

1 + δ
+ 2δpa.

Hence, condition (i) boils down to

b ≤ { 1
(1 + δ)δp

+ 1}a − 1
δp

.

Now, condition (ii). This is equivalent to v1(x, p) ≥ 0, or a + b ≥ − 1
δp .

These two conditions together, we finally obtain,

−a − 1
δp

≤ b ≤ { 1
(1 + δ)δp

+ 1}a − 1
δp

.

Recall p ∈ (0, 1
2 ]. Thus, an stochastic EPCF with p(x, x) = 0 (p = 1

2 )
can be supported in the parameter range of −a − 2

δ ≤ b ≤ ( 2+δ+δ2

δ+δ2 )a − 2
δ .



44 KONISHI AND RAY

The second inequality is almost always satisfied if a > 1 (the prisoners’
dilemma) and δ close to unity. The first inequality is more demanding and
we need −2 ≤ a + b in the case of δ being close to unity.

What if p is less than 1
2? In this case, p(x, x) > 0 holds. To have this

situation, players 1 and 2 need to be indifferent between deviating from x

and staying at x. This implies the second inequality needs to hold as an
equality. Thus, we need have

b = { 1
(1 + δ)δp

+ 1}a − 1
δp

,

or

p =
1 − a

1+δ

δ(a − b)
.

Thus, if a ≥ 2, then there is no such p > 0 for any δ < 1, and we can only
have a stochastic EPCF with p = 1

2 . If a < 2, then the above p satisfies
the first inequality as long as δ > a − 1, and p < 1

2 can form a stochastic
EPCF.
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Figure Captions

FIG. 1. An Inefficient Outcome.

Figure 1 is supplied as ineff.eps.

FIG. 2. Symmetric EPCFs in the Prisoners’ Dilemma.

Figure 2 is supplied as obs2.eps.


