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1 Introduction

This paper provides characterization theorems for preferences over <n that
can be represented by U(x1; : : : ; xn) = minfxkg, U(x1; : : : ; xn) = maxfxkg,
U(x1; : : : ; xn) =

P
u(xk), or combinations of these functional forms.

The problem of �nding characterization theorems for the additive and
minimum functional forms has been studied from the perspective of social-
choice theory, decision making under ignorance, and consumer theory. In
social choice theory, the arguments of the utility function U are (von Neu-
mann & Morgenstern) utilities of the members of the society. In decision
making under ignorance, the arguments are state-contingent utilities, while
in consumer theory, the arguments are commodities.

The standard assumptions on preferences made in this literature are some
form of continuity, monotonicity, symmetry, linearity, and separability. The
interpretation and importance of continuity and monotonicity1 are familiar
and well understood. The linearity assumption2 requires that rankings do
not change when one applies a common a�ne transformation to all compo-
nents. In the social-choice context it de�nes the extent to which individual
utilities are comparable. The assumption of complete separability states
that changing a common component of two vectors does not reverse a weak
preference. The main technical contribution of this paper is to study the
implications of a weaker version of the separability assumption. Under this
weaker assumption, called partial separability, changing a common compo-
nent of two vectors does not reverse strict preferences, but may turn strict
preferences into indi�erence (see Blackorby, Primont, and Russell [4] and
Mak [16]). Complete separability suggests that changes in one component
should have no a�ect over the desirability of the rest of the components. Par-
tial separability replaces this with a limited in
uence, namely that a change
in one component may not reverse preferences, but may make the rest of the
component immaterial.

This paper provides novel characterizations of the min and max criteria
and conditions under which preferences are represented by the sum of xi
over a subset of the domain and either the max or min of xi over the rest

1The social choice literature often refers to monotonicity assumptions as the Pareto
principle.

2In the decision theoretic literature, this assumption is known as constant (absolute
and relative) risk aversion.
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of the domain. To put these results in perspective, we brie
y review related
literature. Luce and Rai�a [15] survey the research of several authors on
the problem of decision making under ignorance done in the 1950s. Per-
haps the most elegant contribution in this group is due to Milnor [19]. He
presents axiomatic treatments of the maxmin and sum criteria. His charac-
terization of the Hurwicz (see [15]) � criterion (weighted average of maxmax
and maxmin) is based on a \column duplication" assumption that stipulates
that the ranking between a pair of vectors does not change if a component is
added to each vector that duplicates an existing component. This assump-
tion is plausible for problems of choice under ignorance (where the duplicate
component could be the result of an arbitrary rede�nition of the states of the
world), but is harder to justify in other applications, especially to the theory
of social choice. His characterization of the sum criterion (in the context of
decision making under ignorance, this is the principal of insu�cient reason)
depends on monotonicity and complete separability assumptions.

Maskin [18] provides a characterization of the sum and maxmin crite-
ria similar to Milnor's. He relates his results to the social choice literature.
Maskin relaxes the continuity assumption to provide characterizations of lex-
icographic maxmin and lexicographic maxmax criteria as well.

We assume throughout that preferences are symmetric, continuous, weak-
ly increasing, and satisfy partial separability. We supplement these assump-
tions with di�erent conditions to obtain the representation functions de-
scribed above. We introduce the assumptions formally in Section 2. By
focusing on partial separability rather than the stronger complete separabil-
ity axiom, this paper provides axioms that imply not only the sum represen-
tation, but also max, min, and combination of these two and sum.

If preferences are strictly monotonic, then partial separability implies
complete separability (see F�are and Primont [9]). In order to get more than
just additively separable representations we must permit some 
atness. In
Section 3 we analyze the implications of local 
atness with respect to one
variable at a point along the main diagonal. We show that if symmetry is
assumed, then the indi�erence curve through this point is either min or max.
Section 4 shows how an additional indi�erence monotonicity axiom implies
that if one indi�erence curve is described by the min function, then all lower
indi�erence curves are min as well, and that higher indi�erence curves are
either min or additively separable. Similarly, if one indi�erence curve is
described by the max function, then all higher indi�erence curves are max as
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well, and all lower indi�erence curves are either max or additively separable.
The third result, presented in Section 5, shows that a linearity axiom

combines with the partial separability axiom to guarantee that preferences
must be represented throughout their domain by min, max, or

P
xi. In this

section we also point out that the linearity axiom is stronger than necessary
to obtain this trichotomy. Under a weaker condition, preferences must be
represented throughout their domain by min, max, or

P
u(xi).

Section 6 discusses the connection between our results and a social choice
problem, where the question is how should society allocate indivisible goods
when it decides to use a lottery.

2 Axioms and Preliminary Results

Consider a preference relation � on <n. We denote by � and � the strict
and indi�erence relations, respectively. The preferences � are assumed to
be complete, transitive, and continuous. Denote e = (1; : : : ; 1) 2 <n and let
ei = (0; : : : ; 1; : : : ; 0). Assume:

(M) Monotonicity x� y implies x � y.3

(S) Symmetry For every permutation � of f1; : : : ; ng and for every x,

(x1; : : : ; xn) � (x�(1); : : : ; x�(n))

De�ne x�k to be the vector in <n�1 that is obtained from x by eliminating
component k, and let (x�k; yk) be the vector obtained from x by replacing
xk with yk.

All of the results of the paper depend on the following axiom.

(PS) Partial Separability For all x; y 2 <n and every k , if x = (x�k; xk)
� (y�k; xk), then (x�k; yk) � (y�k; yk) = y.

The partial separability axiom is weaker than the common separability
axiom:

(CS) Complete Separability For all x and y and for every k, (x�k; xk) �
(y�k; xk) i� (x�k; yk) � (y�k; yk).

3For x; y 2 <n, (x1; : : : ; xn)� (y1; : : : ; yn) i�, for all i, xi > yi.
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It follows immediately that complete separability implies partial sepa-
rability. The converse is of course not true (see for example Theorem 1).
However, if we make a stronger monotonicity assumption, such an equiva-
lence will follow.

(SM) Strict Monotonicity x 	 y implies x � y.

F�are and Primont [9] show that if the preferences � satisfy strict mono-
tonicity and partial separability, then they satisfy complete separability.

It is useful to note equivalent forms of the partial separability assumption.
For x 2 <n, let 
k(x) = f�x�k : (�x�k; xk) � (x�k; xk) = xg. That is, 
k(x)
is the intersection of the upper set of x with the hyperplane where the k-
th component equals xk. Let N denote the set f1; : : : ; ng and N�k denote
N\fkg.

Proposition 1 Let U be a continuous utility function that represents �.
The following three conditions are equivalent.

1. For all x; y 2 <n, if x = (x�k; xk) � (y�k; xk), then (x�k; yk) �
(y�k; yk) = y.

2. There exist continuous f : <n�1 ! < and g : <2 ! < such that
U(x�k; xk) = g(f(x�k); xk) where g is nondecreasing in its �rst argu-
ment.

3. For each x; x0 2 <n either 
k(x0) � 
k(x) or 
k(x) � 
k(x0).

Proof Bliss [5] and Blackorby, Primont, and Russell [4, Theorem 3.2b, p. 57
and Theorem 3.3b, p. 65] prove that the last two conditions are equivalent.
Mak [16, Proposition (2.11)] proves the equivalence of the �rst and the third
conditions. �

If xk = x0k, then 
k(x) and 
k(x0) are upper sets of the same induced
preferences on <n�1 and are of course nested. Condition 3 of Proposition 1
is therefore restrictive only when xk 6= x0k. This condition does not require
that indi�erence curves of the induced preferences on <n�1 at the level where
the k-th component is xk or x0k will be the same. Blackorby, Primont, and
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Russell [4, pp. 43{46] and Mak [16] de�ne the set of variables N�k to be
separable from fkg if and only if the third condition in Proposition 1 holds.4

Some of our arguments derive local implications of our assumptions. In
order to extend these properties, we make other assumptions. The following
one, which we do not use until Section 5, is the strongest.

(L) Linearity For all x; y 2 <n,

1. For all �, x � y i� x+ �e � y + �e.

2. For all � > 0, x � y i� �x � �y.

In the decision theoretic literature this axiom is called constant risk aver-
sion, where together with the independence axiom it is known to imply ex-
pected value maximization.5 It is also widely used in the literature concern-
ing income distribution. In the social choice literature, where preferences
are de�ned over individual utilities, the axiom states that the ordering is
invariant with respect to a common positive a�ne transformation of utilities
(see Maskin [17]). In Section 6 we provide an example where this axiom may
seem acceptable.

To investigate the implications of the partial separability axiom, we need
the following de�nition.

De�nition 1 The two vectors x; y 2 <n are comonotonic if, for all k and
k0, xk > xk0 i� yk > yk0. For x 2 <n, the comonotonic sector M(x) is the
set of all points y such that x and y are comonotonic.

Two vectors are comonotonic if they have the same ranking of their com-
ponents. Observe that for � and � as in the de�nition of axiom L, the three
vectors x, x+ �e, and �x are comonotonic.

De�nition 2 Preferences � satisfy strict monotonicity at x if and only if
for all x0; x00 2 <n, x0 	 x 	 x00 implies x0 � x � x00.

4It is possible to amend the conditions of Proposition 1 and the partial separability
axiom to obtain the stronger notion of partial set separability, where a set of variables I
is partially separable from the set N n I. We do not make this assumption, but discuss it
brie
y in Section 6.

5For an analysis of constant risk aversion without the independence axiom, see Safra
and Segal [23].
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If the preferences � satisfy strict monotonicity at x, then the linear-
ity axiom implies that � satisfy strict monotonicity for all x0 2 M(x) and
hence symmetry implies strict monotonicity. In combination with the other
axioms, therefore, the linearity axiom implies that preferences will violate
strict monotonicity everywhere, or satisfy the complete separability axiom.
Weaker assumptions su�ce for most of our analysis.

We say that the preferences� are strictlymonotonic with respect to the k-
th component at the point x if for all x0k > xk > x00k, (x�k; x

0
k) � x � (x�k; x

00
k).

(CF) Comonotonic Flatness For every x, if the preferences are strictly
monotonic with respect to the k-th component at the point x, then they
are strictly monotonic with respect to this component for all y 2M(x).

Axioms relating to comonotonic vectors are popular in the literature con-
cerning income distribution and decision making under uncertainty. The
most popular alternative to expected utility theory, called rank dependent
(Quiggin [20]), assumes that the utility from an outcome xi, which is to be
obtained with probability pi, is multiplied by a function of pi, and the ad-
justed value of pi depends on xi's rank. Formally, denote p0 = 0 and let
x1 6 � � � 6 xn. The value of the lottery (x1; p1; : : : ;xn; pn) is given by

nX
i=1

u(xi)

2
4f
0
@ iX

j=0

pj

1
A � f

0
@i�1X

j=0

pj

1
A
3
5

where f(0) = 0, f(1) = 1, and f is increasing and continuous. Consider
now the set of lotteries (x1;

1
n
; : : : ;xn;

1
n
), and suppose that at a point where

all outcomes are distinct, (: : : ;xi + "; 1
n
; : : :) � (: : : ;xi;

1
n
; : : :). In expected

utility theory this indi�erence implies u(xi + ") = u(xi), therefore the indif-
ference holds regardless of the rest of the outcomes. In the rank dependent
model, on the other hand, this indi�erence may hold because f( i

n
) = f( i�1

n
)

(assume that the outcomes are ordered from lowest to highest). In that case,
indi�erence need not hold at xi if the outcome xj changes for j 6= i. On the
other hand, it does hold for all outcomes that are ranked i-th from below.
The comonotonic indi�erence axiom complies with this model.

The linearity axiom implies comonotonic 
atness, but of course not con-
versely. In combination with the symmetry axiom, however, comonotonic

atness implies that either preferences satisfy strict monotonicity globally,
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or they violate this axiom globally. For Theorem 1 we need an even weaker
assumption.

(IM) Indi�erence Monotonicity Let x and y be comonotonic, and sup-
pose that x � y. The preferences � satisfy strict monotonicity at x if,
and only if, they satisfy strict monotonicity at y.

This axiom is weaker than comonotonic 
atness is two respects. Let x
and y be comonotonic vectors. If at x the preferences are strictly monotonic
with respect to the k-th component and 
at with respect to the `-th compo-
nent, then axiom CF requires the same at y, while indi�erence monotonicity
is satis�ed even if preferences at y are strictly monotonic with respect to
the `-th component and 
at with respect to the k-th one. Secondly, unlike
the comonotonic 
atness axiom, where uniform behavior is required over the
whole comonotonic sector M(x), axiom IM only restricts behavior along the
comonotonic part of the indi�erence curve through x. Together with symme-
try, indi�erence monotonicity implies that if x � y, then the preferences �
satisfy strict monotonicity at x if, and only if, they satisfy strict monotonicity
at y. In the sequel, we use this version of axiom IM

Under the partial separability axiom, weak monotonicity of preferences
(that is, x � y implies x � y) guarantees that the functions f and g in
the representation in Proposition 1 can be taken to be weakly monotonic.
Under the stronger monotonicity condition M and under symmetry, we can
guarantee that both of the functions in the representation of Proposition 1
are increasing.6 Formally:

Proposition 2 Assume that the preferences � satisfy monotonicity, sym-
metry, and partial separability, and let U be a continuous utility function
that represents �. Then there exist increasing and continuous functions
f : <n�1 ! < and g : <2 ! < such that U(x�k; xk) = g(f(x�k); xk).

Proof Take x�k � y�k and assume f(x�k) 6 f(y�k). To simplify notation,
assume k > 1 and a = y1 = minj 6=k yj: Let z be obtained by permuting the
�rst and k-th components of (x�k; a): It follows that x�k > z�k > y�k. Weak
monotonicity and Prop. 1(2) imply that f is nondecreasing, hence

f(x�k) = f(z�k) = f(y�k) (1)

6The function h : <m ! < is weakly monotonic if x = y implies that h(x) > h(y). It
is increasing if x� y implies that h(x) > h(y).
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and therefore

U(y�k; a) = g(f(y�k); a) = g(f(x�k); a) = U(x�k; a) = U(z) =

(2)

U(z�k; x1) = g(f(z�k); x1) = g(f(x�k); x1) = U(x�k; x1)

where the second and seventh equations follow from eq. (1), the �rst, third,
sixth, and eighth equations follow from the de�nition of g and f , the fourth
equation follows from the symmetry axiom, and the �fth equation because the
k-th component of z is x1. It follows from eq. (2) that U(y�k; a) = U(x�k; x1);
which contradictsM since a < x1. This establishes that f is increasing. That
g is increasing (when its �rst argument is in the range of f) now follows
directly from axiom M. �

3 Monotonicity Along the Main Diagonal

Although partial separability restricts upper sets, and its veri�cation there-
fore needs the analysis of the preferences � at many points, it turns out that
when monotonicity and symmetry are also assumed, much information is
contained in the preferences' behavior along the main diagonal f�e : � 2 <g.
The present section is devoted to this analysis.

Fix a point �0e. The next proposition, which does not require linearity,
comonotonic 
atness, or indi�erence monotonicity, shows that preferences
are either strictly monotonic at this point, or the indi�erence curve through
the point is either min or max. As before, ei = (0; : : : ; 1; : : : ; 0).

Proposition 3 Let n > 3. Assume monotonicity, symmetry, and par-
tial separability, and suppose that there exist �0, " > 0, and m such that
�0e+ "em � �0e. Then x � �0e if, and only if, minfxig = �0.

Axiom PS places no restriction on monotonic preferences when n = 2,
and simple examples show that Proposition 3 does not hold when n = 2 (see,
e.g., the preferences that are represented by eq. (20) below). We will prove
Proposition 3 using Lemmas 1 and 2. A symmetric argument establishes the
next result.
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Proposition 4 Let n > 3. Assume monotonicity, symmetry, and par-
tial separability, and suppose that there exist �0, " > 0, and m such that
�0e� "em � �0e. Then x � �0e if, and only if, maxfxig = �0.

Lemma 1 Assume monotonicity, symmetry, and partial separability, and
suppose that there exist �0, a > 0, and 1 6 m < n � 1 such that �0e +Pm

i=1 ae
i � �0e. Then there exists � > 0 such that �0e +

Pm�1
i=1 aei +Pn�1

i=m �ei � �0e.

This lemma implies, in particular, that if it is possible to increase the value
of one component of a point �0e on the main diagonal without moving to a
strictly better point, then in an open neighborhood of �0e, the indi�erence
curve through �0e is derived from the min representation function.

Proof Suppose that there exist b > 0 and k such that

�0e+
m�1X
i=1

aei +
k�1X
i=m

bei � �0e (3)

but, for all " > 0,

�0e+
m�1X
i=1

aei +
k�1X
i=m

bei + "ek � �0e: (4)

We want to show that k = n. Assume that k < n. Let x�k = (x1; : : : ; xk�1;
xk+1; : : : ; xn) where xi = �0 + a for i < m, xi = �0 + b for m 6 i < k, and
xi = �0 for i > k. It follows from (3) that

(x�k; �
0) � �0e (5)

and for all 0 < " < a,

(x�k; �
0 + ") � �0e � �0e+

m�1X
i=1

aei + "ek (6)

where the strict preference follows from (4) and the indi�erence follows from
the assumption of the lemma and axiom S. By continuity, (6) implies that
there exists � > 0 such that if y = (�0 + �)e+

Pm�1
i=1 aei, then

(x�k; �
0 + ") � (y�k; �

0 + "): (7)
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Furthermore, unless the statement of the lemma holds true, it must be the
case that (y�k; �0) � �0e. It follows from (5) that

(y�k; �
0) � (x�k; �

0): (8)

Equations (7) and (8) violate axiom PS. Hence we have a contradiction,
proving that k = n. �

Lemma 2 Assume monotonicity, symmetry, and partial separability, and
suppose that there exist �0, a > 0, and 1 6 m < n � 1 such that �0e +Pm

i=1 ae
i � �0e. Then �0e+

Pn�1
i=1 ae

i � �0e.

In other words, the value of � in Lemma 1 is at least a.

Proof Suppose that for some k > 2,

�0e+
k�1X
i=1

aei � �0e (9)

but �0e+
Pk

i=1 ae
i � �0e. We want to show that k = n. Assume that k < n

and argue to a contradiction. First, we claim that there exists b > 0 such
that

�0e+
k�1X
i=1

aei + bek � �0e: (10)

If (10) did not hold, then it follows from (9) and continuity that for all " > 0,
there exists � > 0 such that

�0e+
k�1X
i=1

aei + "ek � �0e+
k�1X
i=1

aei +
nX

i=k

�ei: (11)

Applying axioms PS and M, we can conclude from (11) that

�0e+
k�2X
i=1

aei + �ek�1 + "ek � �0e+
k�2X
i=1

aei +
nX

i=k�1

�ei � �0e: (12)

But if k < n and � and " are su�ciently small, then by Lemma 1,

�0e+
k�2X
i=1

aei + �ek�1 + "ek � �0e: (13)
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Since (13) contradicts (12), (10) must hold.
Now let �b � supfb : �0e +

Pk�1
i=1 ae

i + bek � �0eg. We know that �b > 0
and we want to show that �b > a. Assume �b < a. Again by continuity it
follows that for all " > 0, there exists � 2 (0;�b) such that

�0e+
k�1X
i=1

aei + (�b+ ")ek � �0e+
k�1X
i=1

aei +
nX

i=k

�ei:

By PS

�0e+
k�2X
i=1

aei + �ek�1 + (�b+ ")ek � �0e+
k�2X
i=1

aei +
nX

i=k�1

�ei: (14)

However, by axiom S,

�0e+
k�2X
i=1

aei + �ek�1 + (�b+ ")ek � �0e+
k�2X
i=1

aei + (�b+ ")ek�1 + �ek (15)

and, provided that �b+ " 6 a, axiom M implies that

�0e+
k�2X
i=1

aei+(�b+")ek�1+�ek � �0e+
k�1X
i=1

aei+�ek � �0e+
k�1X
i=1

aei+�bek: (16)

Since

�0e+
k�1X
i=1

aei +�bek � �0e

by the de�nition of �b, (14), (15), and (16) combine to imply that

�0e � �0e+
k�2X
i=1

aei +
nX

i=k�1

�ei

a violation of axiom M. This contradiction establishes the lemma. �

Proof of Proposition 3 From Lemma 2 it is su�cient to show that supfx1 :
�0e + x1e

1 � �0eg = 1. Denote the supremum by a and assume that a is
�nite. By assumption a > �0. By Lemma 2 and n > 2, there exists � > 0
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such that �0e+ ae1 + �en � �0e. Therefore, by continuity and monotonicity,
there exists "0 > 0 such that

(�0 + �)e � �0e+ (a+ "0)e1 + �en: (17)

On the other hand, for su�ciently small �,

�0e+ (a+ "0)e1 � �0e � �0e+ �
n�1X
i=1

ei (18)

where the indi�erence follows from Lemma 1 and the strict preference fol-
lows from the de�nition of a. Eqs. (17) and (18) violate axiom PS. This
contradiction establishes the proposition. �

4 Indi�erence Monotonicity

Consider the function U : <n ! <, given by

U(x) =

8><
>:
Q
xi x 2 <n

++

minfxig otherwise
(19)

(See Fig. 1 for the case n = 2). This function satis�es monotonicity, sym-
metry, partial separability, and indi�erence monotonicity. As we show in
this section, to a certain extent, it is typical of the functions satisfying these
axioms.

Theorem 1 Let n > 3. The following two conditions on � are equivalent.

1. � satisfy monotonicity, symmetry, partial separability, and indi�erence
monotonicity.

2. � satisfy one of the following conditions.

(a) There exists �� 2 [�1;1] and a function u : (��;1) ! < with
limx#�� u(x) = �1, such that for � 6 ��, x � �e i� minfxig = �,
and for � > ��, x � �e i�

P
u(xi) = nu(�).

(b) There exists �� 2 [�1;1] and a function u : (�1; ��)! < with
limx"�� u(x) =1, such that for � > ��, x � �e i� maxfxig = �,
and for � < ��, x � �e i�

P
u(xi) = nu(�).
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Figure 1: The function U for n = 2

Adding a quasi concavity assumption in Condition 1 eliminates possi-
bility 2(b). Likewise, assuming quasi convexity eliminates 2(a). As noted
above, axiom PS is not restrictive when n = 2. Consequently the theorem
requires that n > 2. Even if we invoke the stronger linearity axiom instead of
indi�erence monotonicity, when n = 2, indi�erence curves in a comonotonic
sector must be parallel straight lines, but they are otherwise not restricted
(see Roberts [22, p. 430]). For example, the preferences over <2 that are
represented by the utility function

U(x1; x2) =

8><
>:

x1 + 2x2 x1 6 x2

2x1 + x2 x1 > x2

(20)

satisfy axioms M, S, L, and PS but cannot be represented by any of the
utility functions in the theorem.

By Propositions 3 and 4 we know that lack of strict monotonicity at a
point along the main diagonal implies that the indi�erence curve through
this point is either max or min. The next lemma utilizes the indi�erence
monotonicity axiom to obtain restrictions on upper and lower sets of such
indi�erence curves.
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Lemma 3 Assume that the preferences � satisfy monotonicity, symmetry,
partial separability, and indi�erence monotonicity. If for some point �0e and
for some " > 0, �0e + "ei � �0e, then for all � 6 �0, x � �e if and only if
minxi = �.

Proof Let V be a continuous representation of �. Suppose that for some
�0 and " > 0, �0e + "ei � �0e. By Proposition 3, x � �0e i� minxi = �0.
Suppose that for some � < �0, j, and "0 > 0, �e+ "0ej � �e. By symmetry,
these preferences hold for every j. We show that such preferences contradict
our assumptions. Suppose �rst that for some "00 > 0 and j, and for the same
�, �e � "00ej � �e. Then by Proposition 4, x � �e i� maxxi = �. Let
~� = supf� 6 �0 : x � �e i� maxxi = �g. The sup is attained by continuity.
If ~� = �0, then �0e +

Pn�1
i=1 e

i � �0e � en, a violation of monotonicity.
Likewise, we assume, wlg, that �0 = minf� > ~� : x � �e i� minxi = �g. It
follows that for every � 2 (~�; �0), the preferences � are strictly monotonic
at �e, and by axiom IM, the preferences are strictly monotonic along the
indi�erence curve through �e.

By axiom IM and continuity it is possible to �nd an open box B =
(�0��; �0+�)n around �0e such that the preferences� are strictly monotonic
on the set C = B

T
fx : minxi < �0g. Since, by monotonicity, indi�erence

curves are connected on C, and since strict monotonicity and axiom PS
imply axiom CS, it follows from Segal [24] that � on C can be represented
by a transformation of an additively separable function. Using symmetry we
obtain that on C, V (x) = h(

Pn
i=1 v(xi)) for continuous, strictly increasing

functions h and v. Choose 0 < a0 < �, and for a 2 (0; a0] construct a
sequence xm(a) 2 C of the form xmj (a) = �0 + a for j > 1 and xm1 (a) " �

0.
Let x(a) = limm!1 xm(a) = �0e+a

Pn
i=2 e

i. By assumption, V is continuous
at x(a0), and since �0 + a 2 (�0 � �; �0 + �), it follows that v is continuous
at �0 + a for all a 2 (0; a0]. Moreover, for all a 2 (0; a0], h is continuous at
v(�0) + (n� 1)v(�0+ a). To see this, note that by the strict monotonicity of
v, v(a) < v(a0) for all a 2 (0; a0). Hence v(�0) + (n � 1)v(�0 + a) = v(x1) +
(n � 1)v(�0 + a00) for some x1 < �0 su�ciently close to �0 and a00 2 (a; a0).
Since x1e1+a00

Pn
i=2 e

i 2 C, h is continuous at v(�0)+(n�1)v(�0+a). Since
V (xm(a)) = h(v(xm1 (a))+ (n� 1)v(�0+ a)), we have, by the continuity of V ,
h, and v,

V (x(a)) = h((n� 1)v(�0 + a) + v(�0)):

14



Since V (x(a)) is constant for a > 0, this equation contradicts the strict
monotonicity of h and v. �

Proof of Theorem 1 (2) =) (1): Monotonicity, symmetry, and indi�er-
ence monotonicity are obviously satis�ed. We will use the second part of
Proposition 1 to obtain the PS axiom. For part 2(a), let

f(x1; : : : ; xn�1) =

8>>>><
>>>>:

minfxkg minfxkg 6 ��

exp

 
n�1X
k=1

u(xk)

!
+ �� minfxkg > ��

and

g(y1; y2) =

8>><
>>:

minfy1; y2g minfy1; y2g 6 ��

exp
�
ln(y1 � ��) + u(y2)

�
+ �� minfy1; y2g > ��

For Part 2(b) of the theorem, let

f(x1; : : : ; xn�1) =

8>>>><
>>>>:

maxfxkg maxfxkg > ��

� exp

 
�

n�1X
k=1

u(xk)

!
+ �� maxfxkg 6 ��

and

g(y1; y2) =

8>><
>>:

maxfy1; y2g maxfy1; y2g > ��

� exp
�
ln(�y1 + ��) � u(y2)

�
+ �� maxfy1; y2g 6 ��

(1) =) (2): If, for all �, � are strictly monotonic at �e, then by IM the
preferences � satisfy SM. By symmetry it follows that such preferences can
be represented by

P
u(xi) for a strictly increasing, continuous function u (see

Debreu [6] and Gorman [10]).
If there exists � such that the preferences � are not strictly monotonic

at �e, then, by symmetry, there are three possibilities.
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1. There exists " > 0 such that for all "0 < ", �e+ "0e1 � �e � �e� "0e1.

2. There exists " > 0 such that for all "0 < ", �e+ "0e1 � �e � �e� "0e1.

3. There exists " > 0 such that for all "0 < ", �e+ "0e1 � �e � �e� "0e1.

As in the proof of Lemma 3, it follows by Propositions 3 and 4 that the
third case violates monotonicity. We show here that the �rst case implies the
representation of part 2(a) of the theorem. The proof that the second case
implies 2(b) is similar.

Suppose the �rst case holds, and let �� = supf� : 9" > 0 such that
�e + "e1 � �eg. If �� = 1, we are through. Otherwise, it follows by
Lemma 3 that for all � 6 ��, x � �e i� minfxig = �.

By de�nition, for all � > �� the preferences � are strictly monotonic at
�e. By IM, they are strictly monotonic on (�;1)n. Again by Debreu [6]
and Gorman [10], there exists a function u : (��;1) ! < such that these
preferences satisfy x � �e i�

P
u(xi) = nu(�). Finally, if limx#� u(x) >

�1, then there are two points y; y0 such that minfyig = minfy0ig = �, but
limx#y

P
u(xi) 6= limx#y0

P
u(xi), while y � y0, a contradiction. �

Note the role that axiom IM plays in the proof.

Example 1 De�ne U : <n ! < by

U(x) =

8>>>>>>>><
>>>>>>>>:

minfxig minfxig > 1

nY
i=1

minfxi; 1g minfxig 2 [0; 1]

minfxig minfxig < 0

The preferences that are represented by this function are monotonic, sym-
metric, quasi-concave, and satisfy axiom PS. They fail to satisfy the conclu-
sion of the theorem, as an interval over which preferences are strictly mono-
tonic along the diagonal is sandwiched between two non-empty sets in which
preferences are minxi. The example fails to satisfy the assumptions of the
theorem. Although preferences are strictly monotonic at �e for � 2 (0; 1),
preferences are not strictly monotonic for all points on such an indi�erence
curve.
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5 Linearity and Comonotonic Flatness

In this section we discuss the implications of axiom L on our results.

Theorem 2 Let n > 3. The following two conditions on the preferences �
over <n are equivalent.

1. � satisfy monotonicity, symmetry, linearity, and partial separability.

2. � can be represented by one of the following functions.

(a) U(x1; : : : ; xn) = maxfxkg.

(b) U(x1; : : : ; xn) = minfxkg.

(c) U(x1; : : : ; xn) =
P
xk.

When partial separability is replaced with complete separability, Maskin
[17] proves the equivalence of the �rst condition and the third possible rep-
resentation in a social choice framework.

Proof (2) =) (1): Since on comonotonic sectors, the three functions sug-
gested by the theorem are linear, and since the changes that are permitted by
axiom L do not take a point to a new comonotonic sector, it follows that all
three functions satisfy axiom L. Monotonicity and symmetry are obviously
satis�ed. Using Proposition 1, the PS axiom follows easily. For case (a),
let f(x1; : : : ; xn�1) = maxfxkg and g(x1; x2) = maxfx1; x2g; for case (b), let
f(x1; : : : ; xn�1) = minfxkg and g(x1; x2) = minfx1; x2g; and for case (c), let
f(x1; : : : ; xn�1) =

P
xk and g(x1; x2) = x1 + x2.

(1) =) (2): Since axiom L is a property of preferences, rather than of rep-
resentation functions, we can choose U such that U(�e) = �. Then for every
x,

U(�x) = �U(x) and U(x+ �e) = U(x) + � (21)

We �rst analyze preferences that satisfy the complete separability axiom.

Lemma 4 Let M be a comonotonic section of <n. If the preferences � on
M satisfy monotonicity, linearity and complete separability, then they can be
represented by a function of the form

P
akxk.
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Maskin [17] proved this lemma (with a1 = � � � = an = 1) under the
additional assumption of symmetry.

Proof By an extension of theorems of Debreu [6] and Gorman [10] (see
Wakker [26]), we know that � on M can be represented by

P
uk(xk), so

on M , U(x) = h(
P
uk(xk)) for some increasingly monotonic function h. By

eq. (21) we obtain for all x 2M and su�ciently small �

h
�X

uk(xk + �)
�
= h

�X
uk(xk)

�
+ � (22)

and for � su�ciently close to 1

h
�X

uk(�xk)
�
= �h

�X
uk(xk)

�
: (23)

The functions h and uk, k = 1; : : : ; n are monotonic, therefore almost ev-
erywhere di�erentiable. The rhs of eq. (22) is di�erentiable with respect to
�, therefore h and uk are di�erentiable functions. Di�erentiate this equation
with respect to � to obtain

h0
�X

uk(xk + �)
�
�
X

u0k(xk + �) = 1: (24)

In particular, for � = 0 we obtain

h0
�X

uk(xk)
�
�
X

u0k(xk) = 1: (25)

Di�erentiate eq. (22) with respect to x` and obtain

h0
�X

uk(xk + �)
�
u0`(x` + �) = h0

�X
uk(xk)

�
u0`(x`): (26)

>From eq. (24) and eq. (25) it follows that h0(
P
uk(xk+�)) and h0(

P
uk(xk))

are not zero. Therefore, if u0`(x`) = 0, then by eq. (26), for all �, u0`(x`+�) =
0, and u`(x`) � a`. If, for all `, u0`(x`) = 0, then by the above argument
the claim is satis�ed with a1 = � � � = an = 0. Otherwise, suppose wlg
that u01(x1) 6= 0. If, for all other `, u0`(x`) = 0, then � are represented by
v(x1) := h(u1(x1) +

Pn
k=2 ak), where for every �,

v(x1 + �) = h

 
u1(x1 + �) +

nX
k=2

ak

!
=

h

 
u1(x1) +

nX
k=2

ak

!
+ � = v(x1) + �:
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(The second equation follows by eq. (22)). Similarly, by eq. (23), v(�x1) =
�v(x1). Hence v is linear. So suppose u01(x1) 6= 0 and u02(x2) 6= 0. From
eq. (26) it follows that

u01(x1 + �)

u01(x1)
=

h0 (
P
uk(xk))

h0 (
P
uk(xk + �))

=
u02(x2 + �)

u02(x2)
:

Fix x2 and consider x1 and � as variables to obtain that

u01(x1 + �)

u01(x1)
= g(�) =) u01(x1 + �) = g(�)u01(x1): (27)

The solution of this functional equation is u01(x1) = �e�x1 and g(�) = eb�

(see Acz�el [1, p. 143, Theorem 2]). Hence u1(x1) = a1e
b1x1 + c1 if � 6= 0, and

u1(x1) = a1x1 + c1 if � = 0. Similarly, for every k, if u0k(xk) 6= 0, then either
uk(xk) = ake

bkxk + ck, bk 6= 0, or uk(xk) = akxk + ck. Since we can de�ne
h�(z) = h(z +

P
ck), we can assume wlg that ck = 0 for all k.

If for some k, uk(xk) = akxk, then from eq. (27) it follows that g(�) = 1.
On the other hand, if uk(xk) = ake

bkxk , then g(�) = ebk�. In other words,
either for every k such that u0k 6= 0 we have uk(xk) = ake

bkxk , or for all such
k, uk(xk) = akxk.

Suppose the �rst case. By eq. (25), if
P
uk(xk) does not change, then

neither should
P
u0k(xk). Moreover, since by monotonicity h0 is almost ev-

erywhere non-zero,
P
uk(xk) and

P
u0k(xk) have the same indi�erence curves.

In particular, at each point
P
uk and

P
u0 should have the same MRS

(marginal rate of substitution). The MRS between k and ` for
P
uk is given

by akbke
bkxk=a`b`e

b`x`, while the corresponding MRS for
P
u0k is given by

akb
2
ke

bkxk=a`b
2
`e

b`x`, hence bk = b` = b. Di�erentiate eq. (23) with respect to
�, set � = 1, and obtain

h0
�X

uk(xk)
�
�
X

xku
0
k(xk) = h

�X
uk(xk)

�
:

Therefore, the MRS between k and ` for the function
P
xku

0
k(xk) must be

the same as the corresponding MRS for
P
uk(xk). It follows that

akbe
bxk + akb

2xke
bxk

a`bebx` + a`b2x`ebx`
=

akbe
bxk

a`bebx`
=) b = 0

hence the claim of the lemma. �
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Conclusion 1 If we add symmetry to the assumptions of Lemma 4 we ob-
tain that � can be represented by

P
xk (see Maskin [17]).

Suppose now that there exists a point x where the preferences � satisfy
strict monotonicity. As noted above (see discussion after De�nition 2), the
linearity axiom then implies that the preferences � are strictly monotonic.
Lemma 4 then implies the third possible representation of the theorem. On
the other hand, if for some x, i, and " > 0, x + "ei � x, then linearity
implies that for all �, �e+ "ei � �e. Proposition 3 then implies the second
possible representation of the theorem. Finally, if for some x, i, and " > 0,
x � "ei � x, then the �rst possible representation of the theorem likewise
follows by Proposition 4. �

The linearity axiom plays two roles in the proof of Theorem 2. First,
it enables us to show that when preferences are completely separable, then
they can be represented by a linear function. Second, it guarantees that a
failure of monotonicity will hold throughout a comonotonic sector. Theorem
1 provides one characterization of preferences when the linearity axiom does
not hold, while Example 1 demonstrates that some assumption is needed to
have control over the way in which local violations of monotonicity in
uence
the global behavior of preferences. To isolate the second role of the linearity
axiom, we discuss the implications of replacing linearity with the weaker
condition of comonotonic 
atness.

Theorem 3 Let n > 3. The following two conditions on the preferences �
are equivalent.

1. � satisfy monotonicity, symmetry, comonotonic 
atness, and partial
separability.

2. � can be represented by one of the following functions.

(a) U(x1; : : : ; xn) = maxfxkg.

(b) U(x1; : : : ; xn) = minfxkg.

(c) U(x1; : : : ; xn) =
P
u(xk) for some strictly increasing u.

Proof AxiomCF implies IM, therefore Propositions 3 and 4 guarantee that
when preferences fail to be strictly monotonic, they can be represented by
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either the min or the max function. By Proposition 2, if preferences satisfy
axiom SM, then they satisfy axiom CS. By Debreu [6] and Gorman [10] the
theorem follows. �

Figure 2 summarizes Theorems 1{3. In all three cases we assume that
the preferences satisfy monotonicity, symmetry, and partial separability.

Linearity
=)

� �

Comonotonic

Flatness

Indi�erence
Monotonicity=)

m m m

maxfxig

minfxig

P
u(xi)

maxfxig

minfxig

P
xi

minfxig below �0e

h(
P
u(xi)) above

maxfxig above �0e

h(
P
u(xi)) below

Figure 2: Theorems 1{3

Remark All the results of the paper can be obtained for a symmetric box
(a; b)n � <n. The only place where a more detailed (but trivial) argument
is needed is when the linearity axiom is invoked.7 We omit this discussion.
Note however that the box needs to be symmetric, as our results strongly
depend on the symmetry axiom. This is in contrast with papers dealing with
complete separability, where the main diagonal usually plays no important
role.8

7In the context of social choice, Blackorby and Donaldson [3] assume complete separa-
bility and split linearity into ratio-scale comparability and translation-scale comparability.
If they assume only the multiplicative part of linearity (ratio-scale comparability) their
assumptions characterize a form of generalized mean. Their arguments are complicated
by the sign of xi, hence domain restrictions could be important when one assumes only
the second condition in the linearity assumption.

8An exception is Wakker [26], where preferences are de�ned over a comonotonic sector.
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6 Harsanyi and Rawls

Social welfare functions are usually functions of individual (von Neumann
& Morgenstern) utilities. This approach and its axiomatic foundations have
a serious 
aw. vN&M utility functions are unique up to increasing a�ne
transformations, but only one version of each utility function appears in the
social welfare function. It is not clear which representation of individual pref-
erences should enter the social welfare function. (For a rigorous discussion of
this problem, see Weymark [27].) Recently, three similar (axiomatic) choices
of a�ne transformations were o�ered by Dhillon and Mertens [7], Karni [14],
and Segal [25]. Here we suggest another possible choice of the vN&M utility
functions and illustrate some of the paper's results. The trick is to have so-
cial preferences de�ned directly over allocations, without making references
to individual preferences. This is possible because of the speci�c set-up of
the social choice problem we discuss.

An n-person society has to allocate, with probability p, m < n units of an
indivisible good. For example, there is a p-probability that the country will
have to go to war, in which case the army will need to draft m extra soldiers.
If each person can receive at most one unit of this good,9 then there are

�
n

m

�
pure social policies, none of which are egalitarian. Indeed, by de�nition, it
is impossible to obtain an egalitarian ex post distribution of the m units.
But society is not bound, ex ante, to choose such a pure policy. As argued
by Harsanyi [11, 12, 13], society can randomize, and may have preferences
over such randomizations. In our case, society may assign each member i
a probability pi, denoting the probability this person will be drafted. The
constraints are

1.
P
pi = pm; and

2. pi 6 p, i = 1; : : : ; n.

Society can randomize over pure social policies (that is, over m person
selections) such that exactly m people will be drafted, and the probability
person i will be selected is pi (see the Appendix for such a procedure). We
assume that society has preferences � over distributions of the form (p1;

9If individuals could receive more than one unit (while others received none), then the
assumption that society is indi�erent regarding the actual receiver of each unit (see below)
is much less appealing.
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: : : ; pn).10 Assuming that society's preferences depend only on (p1; : : : ; pn)
is a strong assumption. It requires that society is indi�erent between two
random social policies that lead to the same distribution of prizes. Such
preferences may, but need not, favor egalitarian distributions over uneven
ones. These preferences are ex ante, and they compare probability allocations
that cannot be compared ex post. Speci�cally, once society knows whether
it is in war, the probability p is no longer relevant, and the new social choice
problem becomes to draft m people into the army. One may indeed suggest
deferring such decisions till later, moreover, since m too may change, to wait
until we know exactly how many soldiers need to be drafted.

The separation of the actual social choice problem from other situations
that could have, but did not happen, is far from being obvious. Harsanyi [12]
is usually understood to assume such separation. Yaari [28] points out that
such a separation may make (weighted) utilitarian and Rawlsian allocations
identical. The issue is formally explored in Segal [25], where it is assumed
that a solution must apply simultaneously to all possible sets of resources.
We o�er a similar approach, and would like social preferences to hold at
the point where the eventuality of war is still uncertain, and the number of
recruits m may change. Next we try to justify the assumptions of Theorem 1
in the context of this social choice problem.

Monotonicity and partial separability need some explanation. If p and m
are �xed, then the �rst constraint makes the \if" part of the monotonicity
axiom empty. We therefore assume that p and m can vary, and that social
preferences are over the set (0; 1)n. The monotonicity axiom asserts that if
p or m are increasing, and each member of society receives at least some of
the added probability, then society is better o�.11

Partial separability too is reasonable in the present context. Changing
the probability for one person should not strictly reverse the induced order on
the rest of the probability distribution. This assumption makes sense even if
there are special links between individuals. Suppose, for example, that 15%

10Observe that although these are probabilities, the vector (p1; : : : ; pn) is not a prob-
ability distribution, as

P
pi = pm. Further, since precisely m people are drafted, the

probabilities are not stochastically independent.
11Of course, if the items to be allocated are considered \bads" (for example, draft

service), then either the monotonicity axiom should be reversed, or one should rede�ne
the commodity to be allocated. In the draft example, the good should be \not serving in
the army," and society will have n�m units of this good.
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or the population are of race r1, while the remaining 85% are of race r2. For
simplicity, let n = 100. Let " be close to zero, and consider the following
four distributions.

i = 1; : : : ; 14 i = 15 i = 16; : : : ; 100
A pi =

1
2

pi =
1
2

pi =
1
2

B pi =
1
2 pi = 1 pi =

1
2
� 1

170

C pi = " pi =
1
2 pi =

1
2

D pi = " pi = 1 pi =
1
2
� 1

170

If the allocation is not racially biased (as is the case with allocations
A and B), then society will probably (strictly) prefer the more egalitarian
distribution A to B. However, if the allocation favors group r2, society
may prefer to compensate at least some of the members of group r1, hence
D � C. Partial separability alone does not rule out such preferences, since
changing person 1's outcome from 1

2 to " may make society indi�erent, and
then changing person 2's outcome from 1

2
to " may reverse these preferences.

Note, however, that such a reversal of preferences is ruled out by partial set
separability (see footnote 4).12

The linearity axiom has two parts, homogeneity and additivity. In the
present context, homogeneity suggests that social preferences for probability
distributions conditional on p are always the same. In other words, soci-
ety has preferences for distributions of the probabilities needed to select m
individuals out of n. These preferences do not depend on the probability
that society will actually need to select these people. The additivity part
suggests that if m increases, and the added probability is equally distributed,
the preferences between two distributions do not change.

The most controversial of our assumptions is symmetry. This axiom is of-
ten used in the social choice literature in reference to utilities.13 Our model so
far has no utilities (in fact, we did not even introduce individual preferences),
so the symmetry axiom needs a fresh defense. In the absence of information
about individual well being, it is plausible for the social planner to treat
individual members of society as having equal rights to allocations. That

12A strict reversal of preferences is not consistent with the assumptions used in any of
our theorems. For all of the functional forms identi�ed in these theorems, it is impossible
for society to strictly prefer A to B and to strictly prefer D to C.

13See, for example, Diamond [8], or Ben-Porath, Gilboa, and Schmeidler [2]
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is, the preferences over allocations should be independent of the identities of
the agents. The symmetry axiom requires precisely this level of anonymity,
namely that probability distributions are ranked with no reference to the
identity of the individuals receiving these probabilities.14

Given our assumptions, Theorem 2 implies15 that society ranks probabil-
ity distributions of the form (p1; : : : ; pn) by one of the following three social
welfare functions: 1.

P
pi; 2. minfpig; and 3. maxfpig. Note that given the

constraint
P
pi = pm, rule 1 e�ectively says that society is indi�erent over

all feasible probability distributions.
Suppose that all members of society are expected utility maximizers.

Choose a normalization of the utilities from the indivisible good such that
u1(0) = � � � = un(0) = 0, and u1(1) = � � � = un(1) = 1. Then pi stands
not only for the probability that person i will receive a unit of the good,
but also for his expected utility from the lottery this probability generates.
Rule 1 above is therefore the same as Harsanyi's [11, 12] social welfare func-
tion, while 2 is a Rawlsian-like [21] function. Note that we do not claim
that 1 yields a utilitarian social ranking, because nothing in our model en-
ables us to compare individual utilities. Indeed, as argued by Weymark [27],
utilitarianism is inconsistent with the above normalization unless initially
u1(1) = � � � = un(1).

If instead of linearity we assume indi�erence monotonicity we may get a
combination of Harsanyi and Rawls. For example, de�ne

Ua;�(p1; : : : ; pn) =

8><
>:

minpi minpi 6 a

exp(
P
u�;a(pi)) + a minpi > a

Where

ua;�(p) =

8><
>:

log(p� a) a < p 6 �

log(��a)
�

p p > �

As � ! a, the area where indi�erence curves of Ua;� are linear becomes almost
the whole upper set of the indi�erence curve minfpig = a. In other words,
these social preferences are Rawlsian up to a certain threshold, beyond which
they are Harsanyian.

14For a similar intuition, but with a di�erent notion of symmetry, see Segal [25].
15See the remark after Theorem 3.
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Appendix: Choosing m out of n People

To simplify the analysis, we assume throughout that p = 1, that is, society
knows for sure that it will need to draft m people.

For a set An = f1; : : : ; ng, let Sm;n be the set of all m-elements subsets
of An. Let p = (p1; : : : ; pn) 2 <

n
+ such that

P
pi = m. We want to show that

there are qS; S 2 Sm;n such that

1. For every S, qS 2 [0; 1].

2.
P

S qS = 1.

3. For every i,
P

S:i2S qS = pi.

The task is obvious either when m = 1 (qfig = pi), or when m = n (for
every i, pi must be 1, and qAn

= 1). Let m < n, and suppose we found
appropriate q-vectors for all (m0; n0) 6= (m;n) such that m0 6 m and n0 6 n.
We now show how to construct the vector q for the pair m;n.

If for some i, pi = 1, then assume, wlg, that pn = 1, get the vector q0

for the pair m;n � 1, and de�ne qS = 0 if n 62 S and qS = q0Snfng if n 2 S.
If for some i, pi = 0, then assume, wlg, that pn = 0, get the vector q0 for
the pair m;n � 1, and de�ne qS = 0 if n 2 S and qS = q0Snfng if n 62 S.
Otherwise, assume, wlg, that for all i, 0 < p1 6 p2 6 � � � 6 pn < 1. De�ne
q� = qf1;:::;mg = minfp1; 1 � png, and set ri =

pi�q
�

1�q� for i = 1; : : : ;m and

ri =
pi

1�q�
for i = m + 1; : : : ; n. Clearly, for all i, ri 2 [0; 1],

P
ri = m,

and either r1 = 0 or rn = 1. In the �rst case, de�ne for i = 2; : : : ; n,
r0i = ri+1, �nd a vector q0 that solves the problem for the pair m;n � 1
with the vector r0, de�ne qS = p1 for S = f1; : : : ;mg, qS = 0 for all other
sets S containing person 1, and qS = (1 � p1)q0S0 otherwise, where j 2 S0

i� j + 1 2 S. Since
P

S�f2;:::;ng q
0
S = 1, it follows that

P
S qS = 1. By

de�nition,
P

S:12S qS = p1. For all other i = 2; : : : ;m,
P

S:i2S qS = p1 + (1 �
p1)

P
S�f2;:::;ng:i2S q

0
S0 = p1 + (1 � p1)ri = pi. Finally, for i = m + 1; : : : ; n,P

S:i2S qS = (1� p1)
P

S�f2;:::;ng:i2S q
0
S0 = (1 � p1)ri = pi.

If rn = 1, then solve the problem for m�1; n�1 for r1; : : : ; rn�1, and get
the vector q0. De�ne qS = pnq

0
Snfng if n 2 S, and qS = 0 otherwise.
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