Coherent Odds and Subjective Probability

Kim C. Border* Uzi Segalf
October 11, 2001

1 Introduction

Expected utility theory, first axiomatized by von Neumann and Morgen-
stern [33], was considered for many years to be the only acceptable norma-
tive theory for decision making under risk. von Neumann and Morgenstern
assumed the existence of probabilities, but it was soon proved that this as-
sumption is unnecessary, and the theory is meaningful even with subjective
probabilities (see Savage [29] and Edwards [8]). Despite the experimental
criticism of this theory (e.g. Allais [2] or MacCrimmon and Larsson [21]), it
was not until the late 1970’s that serious alternatives to this theory were of-
fered (e.g. Kahneman and Tversky [17] or Machina [22]). The most popular
of these alternatives, called the rank-dependent utility model (Quiggin [27];
see also further references in Section 2 below), assumes that decision makers
maximize an expected utility-type functional, where instead of the original
distribution function they use a (subjective) transformation of this function.
Another interpretation of this idea suggests that decision maker use non-
additive probabilities (Schmeidler [30]. For some recent applications and
axiomatizations of these theories and their extensions, see Abdellaoui [1],
Lopes and Oden [18], Miyamoto [25], Luce [19], Tversky and Kahneman [32],
or Wakker and Tversky [35]).

One of the strongest arguments against using non expected utility models
is that they lead to Dutch books, that is, to situations where a decision maker

*Division of the Humanities and Social Sciences, California Institute of Technology,
Pasadena CA 91125, USA
TDepartment of Economics, Boston College, Chestnut Hill MA 02467, USA



can be manipulated to lose money with probability one (see Machina [24]). In
the context of non-additive probabilities, this claim is based on the following
argument by de Finetti [7].

A set of odds posted by a bookie is coherent if it is impossible to make a
sure profit by betting against the bookie. de Finetti [7, p. 63], among others,
has argued that

[it is] precisely this condition of coherence which constitutes
the sole principle from which one can deduce the whole calculus
of probability: this calculus then appears as a set of rules to
which the subjective evaluation of probability of various events
by the same individual ought to conform if there is not to be a
fundamental contradiction among them.

The basis for this claim is the following theorem due originally to de
Finetti. A set of odds is coherent if and only if they are derived from a finitely
additive probability measure. (A very general version of this result may be
found in Heath and Sudderth [16]). To illustrate, assume that a bookie posts
odds of % on A, % on B, but % on AU B, even though AN B = &. Then a
smart bettor will sell the bookie a bet that pays $1 if A happens, charging
her % — &, he will sell her another bet that pays $1 if B happens for the same
price, and pay her %—I— ¢ for a bet that pays $1 is AU B happens. For ¢ < 11—8,
the bettor ends up with a sure gain of ¢ — 3¢ > 0.

de Finetti’s argument is normative. It does not necessarily apply to actual
behavior, but is more about an individual’s beliefs. Such beliefs are norma-
tively acceptable if the individual knows that it is impossible to exploit money
out of her, and de Finetti shows that this requirement is satisfied by posting
coherent odds, that is, odds that behave like a probability function. We do
not wish to argue with the normative appeal of de Finetti’s argument, but
would like to ask another question: Is it true that a bookie with incoherent
odds will be exploited, in the sense that she will necessarily lose money? As
mentioned above, this claim is often cited against some of the current models
used by psychologists and economists, where non-additive representations of
beliefs are sometimes employed. The question whether such preferences must
lead to bankruptcy is a practical, rather than a normative question. As we
show below, when bookies act strategically, it may well be optimal for them
to post incoherent odds. There is no contradiction between definition’s anal-
ysis and our results. de Finneti is seeking immunization against all possible



bettors, while we deal with a situation where the bookie interacts with a
given set of bettors.

Consider again the requirement ‘a set of rules to which the subjective
evaluation of probability ... ought to conform,” not as a normative rule
(with which we agree), but as a practical one. There are two behavioral in-
terpretations we can make of this statement. One is that being in a betting
environment forces a bookie to post odds in a way that makes her appear to
have a subjective probability. The other is that she has a subjective prob-
ability and that placing her in a betting environment enables us to uncover
her beliefs.

This second interpretation is clearly flawed. In a betting environment the
bookie does not bet, but serves as a go-between, enabling bettors to trade
bets between themselves. Of course, in a free market with full information,
the bettors do not need the bookie, but we assume here that bettors can
only buy (and sell) bets from and to the bookie. For example, if one bettor
believes that the probability of a certain event A is %, while another bettor
believes this probability to be %, the bookie will announce her willingness to
sell and buy, for a nominal fee, bets of $1 on A that pay $2 if A happens. The
first bettor will bet on A and the second bettor will sell the bookie a bet on
A. If A happens, the second bettor pays the bookie $2 that she in turn pays
back to the first bettor, if A does not happen no further payments are made.
In all cases the bookie nets the betting fees. Note that these calculations
were made regardless of the bookie beliefs.

But even if the bookie has to bet, it will be wrong to conclude her beliefs
from her rates, since the rate-fixing bookie is acting as a monopolist. For
example, if the bookie believes that the probability of the event A is %, but
bettors believe that the probability of this event is %, then her best strategy
is to set the odds on A at % — &. The bettors will thus bet on A, and
each dollar bet on A equals, from the bookie’s perspective, to the lottery
(1,2;1 — 55—, 1). The expected value of this lottery is (almost) 1 (see also
Corollary 1 below for a formal presentation of these claims).

In this paper we point out that as a behavioral rule, the first interpretation
suffers from a related flaw. It ignores the fact that the odds ratio posted
by a bookie is merely a strategic decision in a game being played against

the pool of bettors. What we need to do is examine the equilibria of the
underlying betting game in order to draw conclusions about the equilibrium
odds. Below we show how to construct environments in which this betting



game has subgame perfect equilibrium with incoherent odds, even though all
players possess additive probabilities.

It is true that these incoherent odds leave the bookie vulnerable to arbi-
trage — it’s just that our particular collection of bettors does not find this
arbitrage opportunity to be their most attractive collection of bets. If the
bettors were only to concentrate on the sure gain, they would have to behave
in a maximin fashion, behavior which most decision theorists would reject.
Once the game theoretic nature of Dutch book interactions is recognized, all
bets are off as to the kind of behavior we should expect to see.

Naturally, there are some unusual things about these environments. We
do not assume that the actual odds are common knowledge, or even com-
monly held. Indeed a difference of opinion is necessary for our structure. The
second thing that we need that is a bit unusual is that our bettors are not
expected utility maximizers. This does not bother us, since there is plenty
of evidence that many decision makers do violate the predictions of expected
utility theory (see, for example, Kahneman and Tversky [17], MacCrimmon
and Larsson [21], and Machina [23]). A bookie who is interested in choosing
the best strategy while confronting other people has to take the behavior
of her opponent as given. Even if she herself follows the rules of expected
utility theory (as we assume below), it will be foolish for her to act as though
everyone else also follows this theory, when they do not.

The claims of the paper should be understood as being practical and be-
havioral, and not as normative statements. Since there is a growing literature
(both in psychology and economics) of models that use non additive repre-
sentations of beliefs, we think that it is important to show that these models
cannot be dismissed on the false grounds that “everyone who follows these
models will go bankrupt.” We relate our analysis to this literature, and to
the literature on dynamic consistency and Dutch books, in Section 5 below.

2 A Game Theoretic Analysis

We consider the following simple situation. There are two disjoint events
A and B which exhaust the set of possible states. The bookie, who is an
expected utility maximizer, posts prices @ and b for one dollar bets on A and
B respectively. Bettors place bets after the prices are posted. A bettor may
either buy or sell bets at the posted prices. For our purposes we assume



that there are two bettors, and that the bookie knows their preferences (over
uncertain prospects) and their beliefs (concerning the likelihood of the two
events A and B).! We impose the following budget constraint on the bettors.
Each bettor has only one dollar and is not permitted to buy on credit nor is
he allowed to sell a bet (buy a negative quantity) unless he proves that he
possesses sufficient funds to pay off in the event he loses.

Let x; denote the amount that bettor 7 bets on event A, and let y; denote
the amount on B. A negative value indicates a sale. As usual, for any
number x, x* denotes max{z,0} and z~ denotes max{—z,0}. Note that
v =at —z~. We can write the budget constraint for a bettor facing prices
a and b as

eyt Sl 4y (1)

Without loss of generality, we may restrict attention to prices satisfying a +
b < 1. For suppose a + b > 1. Then set ' = 1 —b and ¥/ = 1 —a, so
a’'+b < 1. For bettor ¢, set y! = —(1 —a)a;/a, and a7 = —(1 —b)y,;/b. These
new bets yield the same monetary payoffs in each event as the bets x; and
y;. Furthermore, they satisfy the budget constraint ' + 3’ < 1. Formally
then, the strategy set of the bookie is

S={(a,b):a>0,b>0,a+b<1}.

Once a bettor knows the rates a and b, he decides how much to buy and
sell on the two events A and B. His strategy set T is the collection of all
betting schemes satisfying his budget constraint:

b) + it (a,b) + w_(zab) n ?J_(Zab)

a?
+ 27 (a,b) + 3y (a,b) for all (a,b) € S}.

T:{@j)SHRQ i+
1

The fact that (&, ) is a function from S to R? reflects the fact that the bettor
decides how much to bet only after he learns the rates a and b.

! Alternatively, we may assume that there is a single bettor, but that the bookie has
some doubt about its identity. She believes that there is an even chance that this single
bettor 1s one of the above two bettors. Since the bookie is assumed to maximize expected
utility, her behavior in both environments will be the same (see Harsanyi [15]).



To complete the description of the game we need to specify payoffs as a
function of the strategies. Let U(a, b, x1,y1, 22, y2) denote the bookie’s payoff,
and let V;(a, b, x1,y1, x2,y2) denote the payoff of bettor ¢. Since each bettor’s
payoff depends only on his own bets, for simplicity we will write Vi(a, b, z;, ;).
The bookie moves first, so the appropriate equilibrium concept is subgame
pertect equilibrium.

Definition 1 A subgame perfect equilibrium, or equilibrium for brevity, of
the two bettor game is a vector (a,b, T1,71, T2,92) in S x T X T satisfying:

1. Bettors maximize their payoff taking a and b as given. That is, for each
bettor ¢ and for all (a,b) in S,

Vi (av b, ‘%i(av b), ﬁi(av b)) 2V (a, b,z, y))

for all (x,y) satisfying 2t +yt + =+ 4 < 1+a2" 4y .

2. The bookie maximizes her payoff taking & and § as given functions of

a and b. That is,

U (av bv*%l(av b)vﬁl(av b)v*%?(av 6)73)2(@7 b)) 2
Ua,V,31(a', b)), 51(a’, ), 22(a’, 1), §2(a, b))
for all (a',b') € 5.

The outline of the game is therefore this:

e The bookie announces rates ¢ and b at which she is willing to either
buy or sell bets.

e Each bettor with a budget constraint of $1 will buy and sell bets at the
posted odds so as to maximize his utility.

e Now that the bookie knows the lottery she will face for each given pair
of odds a and b, she will choose ¢ and b to maximize her utility.

For the remainder of our results, the players are assumed to evaluate
lotteries using one of the following three functionals. We explain the choice
of these functionals at the end of the section.



Rank-Dependent Utility (Quiggin [27]. For properties of this model see
Chew, Karni and Safra [6], Luce [19], and Wakker [34]). According to this
theory, there is a non-decreasing utility function v and a continuous proba-
bility transformation function ¢ : [0, 1] — [0, 1], strictly increasing and satis-
fying ¢(0) = 0 and ¢g(1) = 1, such that the value of a lottery with (subjective)
distribution function F'is

VIF) = [u(e)dgo F)w)

For a random variable taking on only two values, x < y, with probabilities ¢
and 1 — ¢, the formula for the value reduces to

Vi(z,qy,1 —q) = u(z)g(q) + u(y)[l — g(q)] (2)

Cumulative Prospect Theory This model was offered by Tversky and
Kahneman [32] as a modification of their earlier prospect theory [17], which
was claimed to violate monotonicity. (For an axiomatization of cumulative
prospect theory, see Wakker and Tversky [35]). According to this theory,
decision makers evaluate separately the positive part and the negative part
of each lottery (positive and negative with respect to the status quo point).
The value of each part is computed by taking the expected utility with respect
to distortions of the distribution function. Different distortion functions may
be used for the positive and the negative parts of the distribution. Obviously,
this model is more general than the rank-dependent utility model, where the
same distortion function is used for the whole distribution. For a random
variable taking on only two values, x < y, with probabilities ¢ and 1 — ¢, the
formula for the value reduces to

Vi(z,q;y,1—q) = u(z)g(q) + u(y)h(1 — q) (3)

If 2y > 0, then h(1 —¢) =1 — g(g¢), which is the functional form of eq. (2),
but if zy < 0 (that is, + < 0 < y), then A(1 — ¢) may be different from

L —yg(q).

Disappointment Aversion (Gul [12]. This theory is by itself a special
case of Chew’s [5] semi-weighted utility theory). According to this theory,
the value of a lottery is given by
() / L —7(e) /
V(F)=—= dF _— dF 4
() [y u@ire) + e

(a4
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where « is the probability that /' yields an outcome above its certainty
equivalent C'(F'), and v(«) = o/[1 + (1 — «)f] for some number §.

According to disappointment aversion theory, the decision maker evalu-
ates outcomes that are better than the certainty equivalent of a lottery by
using an expected utility functional with a utility function u. He similarly
evaluates outcomes that are worse than the certainty equivalent. Finally, the
value of a lottery is a weighted sum of these two evaluations.

For a random variable taking on only two values, < y, with probabilities
q and 1 — ¢, the formula for the value reduces to the functional of eq. (2),

where g(g) = (1 - p)(1 — B)/[1 + B(1 - p)}

What is common to these three functionals is that they are not smooth at
x = y. Suppose, for example, that ¢ = %, and differentiate the right-hand side
of eq. (2) with respect to @~ at @ = y to obtain u/(x)g(q), while the derivative
with respect to y* at this point is u'(y)[1 — g(¢)] = v'(2)[L — g(q)]. If g(3) #
%, then these two derivatives differ, even though smooth preferences would
have implied the same derivative. This observation follows from a general
property, common to all these preferences, called first order risk aversion
(Segal and Spivak [31]). The non differentiability around the certainty line
plays a crucial role in our construction. (See also the Remark at the end of
the next section).

In the sequel we use eq. (2). Since it is special case of eq. (3), we obtain
that our analysis can be applied to all of the above models.? Note that when
both u and ¢ are concave (convex), the functional exhibits risk aversion
(seeking), see Chew, Karni, and Safra [6]. If ¢ is the identity function, then
this functional form reduces to expected utility.

3 The Bettors’ Decision Problem

Let ¢ and 1 — ¢ denote a bettor’s subjective probability of A and B (for
simplicity, we delete the index ¢). Given the prices @ and b where a + b < 1,
we may assume that =,y > 0, that is, the bettor does not sell bets on either
A or B. Suppose, for example, that y < 0. then as before, the bettor is
indifferent between selling y on B and betting —(1 — b)y/b on A at the rate

2As will become evident below, examples can also be constructed for the functional
form of eq. (3) where h(1 —q) # 1 —g(q). See the discussion at the end of Section 3 below.



a' =1—">. Since a < d', the bettor cannot be worse off by betting only on
A. Tt thus follows that the bettor’s budget constraint is

r+y <1 (5)

(See eq. (1)). Betting  on A and y on B, the bettor will face the following
uncertain prospect

X
(——x—y,q;%—x—y,l—q) (6)
a

Assuming the functional form of eq. (2), the bettor’s payoffs are given in

Table 1.

Bettor’s Value
Sl g (Bma—y) - gt (L -a )
2oL g —glu(2-o—y) +e0-gu (L= -y)
] R e

Table 1: Bettor’s Payoffs from Purchases of Bets © on A and y on B

The next lemma simplifies the analysis of the bettors’ best response be-
havior.

Lemma 1 [fu is (weakly) convex and if a + b < 1, then a bettor’s optimal
response is to Plunge by betting everything on A or on B, or else Hedge by
betting so as to receive the same payoff in either event. The payoffs are given

in Table 2.

Proof Suppose that x/a < y/b. Then

y}y(a—l—b)>b(:1;—|—y):>%—x—y>0



Action Bettor’s value

Plunge on A | u(—=1)g(1 —¢) +u (%) [1—g(1—4q)]

Plunge on B M—Uﬂ@+u(——JU—g@ﬂ
Hedge u (l%izb)

Table 2: Bettor’s relevant payoffs.

Hence the bettor should increase the outcome { —x —y to its highest possible
level by setting y = 1 — « (see the first case in Table 1). Since u is convex,
optimization leads to a corner solution, that is, either y =1 (and « = 0), or
x/a = y/b. Similarly, if @/a > y/b, then the bettor should set = 1, or fall
back to x/a = y/b. |

The bettor’s optimal strategy depends on which of the three options in
Table 2 yields the highest utility. We start with the case of linear utility,
u(x) = x. Define the parameters

g(1 —q)

R P gy

and
_1—yglq)

b= 9(q)

Since ¢ is concave, a > . Simple calculations prove the next lemma.

Lemma 2 If a bettor’s utility function u is linear and his probability trans-
formation function g is concave, then his optimal strategies are:

o Plunge on A whenever bja > «;
o Plunge on B whenever bla < 3;

o Hedge whenever 8 < b/a < a.

10



These strategies are depicted in Figure 1.

Note that when ¢ is linear, that is, when the bettor is risk neutral, o = 8
and he will buy either on A or on B, but not on both, unless b/a = o = 3,
in which case he is indifferent between all three strategies.

Plunge on A

Hedge

Plunge on B

a

Figure 1: Bettor’s optimal response (Linear utility)

It follows from Lemma 2 that if the bettor’s utility function is linear,® but
his probability transformation function is concave, then his optimal strategy
depends only on the ratio b/a. Since the bettor is buying bets, the bookie

always prefers to raise both prices proportionately. We thus get the following
result.

Theorem 1 [f all bettors maximize the functional form of eq. (2) with lin-
ear utility functions and concave probability transformation functions, and

the bookie’s preferences are monotonic, then the bookie’s equilibrium strategqy
satisfies a + b= 1.

3A functional form satisfying this requirement was suggested by Yaari [36].
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In the special case of identical expected value maximizing bettors, the
bookie will set the prices equal to the bettors’ subjective probabilities, so
that they are indifferent among all bets. Otherwise, the bettors will bet
everything on the event whose price is less than its subjective probability,
and the bookie benefits by raising the price of this event. In this case, the
bookie’s prices are the bettor’s subjective probabilities, not her own.

Corollary 1 With only one type of bettor, if u and g are linear (i.e., the
bettor is an expected value maximizer), then the equilibrium strategy of the

bookie is to set a = q and b =1—q (q and 1 — ¢ are the bettor’s subjective
probability of A and B).

In light of Theorem 1, if we want to create an equilibrium situation where
a + b < 1, it must be the case that not all utility functions are linear. From
Table 2 we learn that the bettor:

o Prefers to plunge on A than to plunge on B iff

1l —a

=g —g)+u (-9 =gz (D

=Dty (S50 0 gto)

o Prefers to plunge on A than to hedge iff

1l —a

R e T ] () I

o Prefers to plunge on B than to hedge iff

e T ] e B

These equations determine the sets of (a,b) pairs marking the bettor’s
indifference between each pair of strategies. For reasons that will become
clear soon, we would like these border lines to be as in the left panel of
Figure 2. In that case, the areas where each of the three strategies is optimal
are as depicted on the right panel of this figure. The regions are labelled with

12



AHB
Avs. H

HAB Avs. B A

vs. H H
HBA

ABH — BHA B

BAH

Figure 2: Bettor’s choices

the bettor’s preferences. That is, in the region marked “AHB,” the bettor
prefers plunging on A to hedging to plunging on B.

It is not hard to come up with numerical examples that will lead to such
a picture. Note that the transitivity of indifference guarantees that if two
of these curves intersect, then all three of them intersect at the same point.
Denote vy =1 —g(1 —¢) and 6 = 1 — ¢(¢), and assume wlg that u(—1) = 0.
Rewriting eq. (7)—(9), we obtain that the line of indifference A vs. B is given

by
e G (52 4 w

The line of indifference A vs. H is given by

=l () ] o

And the line of indifference B vs. H is given by

)

13




The following example will produce curves as in Figure 2. Let the utility u
for a bettor be of the following form.

B ek z =0
u(z) = z+1 <0

For k > 1 this is a (weakly) convex increasing function. Set

s = —In[l —g(1 — q)]

and
t=—In[l —g(q)].

The parameters s and ¢ depend only on the bettor’s belief ¢ and his prefer-
ences through ¢. By choosing ¢ and the concave function ¢ carefully, we can
choose s and t to be arbitrary positive numbers.

Eq. (10)—(12) can now be rewritten as

ak
b=—— (Avs. B
k—a(s—1) (A vs. B)
po O (A vs. H)
=T vs.
b*t
a:k—bt (B vs. H)

Figure 2 depicts these loci for the case s = 1.8, t = 1.5, and k£ = 1, although
it is not drawn to scale.

Remark Although our analysis was done with respect to only three func-
tional forms (rank-dependent utility, cumulative prospect theory, and dis-
appointment aversion), it is clear how it can be extended to more general
utility functions. In order to create areas as in Figure 2, we need to evaluate
the lottery of eq. (6) by using a functional form such that for the set of bets
satisfying * + y = k, the functional is convex in z, and has a kink at the
point © = ay/b. The convexity is needed to guarantee that the bettor will
either bet on A, or on B. The kink is needed to make sure that hedging may
also be optimal. Such a kink is closely related to the concept of first order
risk aversion (see Segal and Spivak [31]), a condition that is satisfied by all
three functional forms discussed above.
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4 The Bookie’s Optimal Strategy

Suppose that when the bettor is indifferent between plunging and hedging,
the bettor will plunge. (This will turn out to be the case in our equilibrium.)
Even in this case, if there is only one bettor, the logic that when the bettor
is plunging, the bookie wants to raise the price of the bettor’s bet and when
he’s hedging, the bookie wants to raise both prices, drives the equilibrium
prices to satisfy a +b = 1. Of course, since the boundary lines are nonlinear,
the bookie may have to change the price ratio while raising the prices.

It is this phenomenon that allows us to construct an equilibrium with
a—+b < 1. Since the set of directions in which we can raise prices depends on
the prices, if there are heterogeneous bettors, these sets of directions may not
overlap. That is, it may be impossible to raise prices and keep both bettors
making the same bets.

Suppose that the bookie is maximizing an expected utility functional and
that there are two bettors, I and II, with optimal strategies as indicated in
Figure 3. There are five points of special interest, labelled P, (), R, S, and T
Point () has the largest a for which both bettors will plunge on A, and point
T has the largest b for which both bettors will plunge on B. At point R,
Bettor I hedges while II plunges on A. At S, I plunges on B, while II hedges.
The segment joining R and S has both bettors hedging. Finally, at point
P. Bettor I is plunging on B and Bettor II is plunging on A. It is easy to
see that the bookie’s expected utility will be maximized at one of P, Q, T,
or on the segment RS. Letting p and 1 — p denote the bookie’s subjective
probabilities of A and B, her expected utilities are given in Table 3.

It is possible to choose values for p, sy, t5, k;, sr7, tr7, and kj7, and a
concave increasing utility u for the bookie so that point P has the highest
expected utility. For instance, choose ky = 2.857, kjy =1, s = 2857, t; =1,
srr =3, trr = 12 (Figure 3 is based on these values, although it is not drawn
to scale) and p = .2. For the bookie’s utility choose

I x = =2
u(z) = dr+6 x< 2.

Then to three decimal places, the bookie’s expected utilities are given in
Table 4. In the equilibrium of this game the bookie chooses P and does not
post additive prices.*

*The utility function given above is not differentiable at = —2, but it can be smoothed
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Figure 3: Two bettors
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Table 3: Bookie’s candidate strategies.
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Point (a,b) Expected utility
P | (248,.727) | 0.080
Q | (.091,.909) | -13.200
R | (:250,.750) | -0.400
s [ (259,.741) | -0.215
T | (.923,.077) | -7L.600
RS 0.000

Table 4: Bookie’s candidate strategies: Numerical example.

To be fair, there is another equilibrium, where the bettors hedge when
indifferent, in which the bookie posts additive prices and her expected utility
is zero. Our point is that there is at least one equilibrium (in fact the bookie’s
favorite) in which she sets non additive prices.

5 Conclusions

In a related paper [4] we pointed out that strategic behavior on the part of
the bookie may eliminate the Dutch book argument against violations of the
law of conditional probability. The analysis there too involves two bettors
(with different beliefs). A major difference between the results of the current
paper and the results obtained in [4] is that here, at least in one equilibrium
situation, the bookie’s optimal strategy must involve a violation of probabil-
ity theory. In [4], on the other hand, the most we can get is a situation where
posting non-multiplicative rates is as good as using multiplicative ones.
Several recent nonexpected utility models are based on the assumption
that decision makers do not obey some of the basic rules of probability theory.
Schmeidler [30] and Gilboa [10] present models of behavior with non addi-
tive probabilities. One possible interpretation of the rank-dependent utility
model (Quiggin [27]) is that it distorts the probabilities in such a way that

in a neighborhood of —2 without changing any of the relevant expected utilities. Thus we
could specify differentiable utility with the same equilibrium.
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their values are no longer additive. This is clearly the meaning of the proba-
bility weighting function of Kahneman and Tversky’s [17] prospect theory. It
is this intuition that is carried over into their cumulative model [32]. We do
not claim that the reason for these violations is that people behave strategi-
cally. Nor do we want to suggest that the correct interpretation of the above
mentioned models is game theoretic. However, we believe that these models
and empirical evidence cannot be rejected as irrelevant on the grounds that
violations of probability theory expose the decision maker to a Dutch book.
All of these models analyze the behavior of a single agent. Dutch books must
involve at least two agents, therefore the correct framework is game theoretic,
and one must assume that agents behave strategically. Traditional analyses
of Dutch books assume that the person offering choices to the subject is
much more sophisticated than the subject. Our approach is more symmetric
in that the bookie is at least as sophisticated as the bettors.

Our major claim is that when people behave strategically, that is, when
they are willing to deliberately misrepresent their beliefs and tastes in or-
der to exploit some possible gains from trade, it is wrong to interpret the
betting rates they announce as their subjective probabilities of the different
events. Instead, these rates should be understood as the prices at which
subjects are willing to trade certain goods (simple lotteries tickets). If the
market is non-competitive and prices are manipulable by agents—and the
framework of Dutch books is basically non-competitive—then the observed
rates at which subjects are willing to exchange goods typically do not equal
their true subjective rates (known in the economic literature as the marginal
rate of substitution).

The idea that rules of behavior can be justified by Dutch books is not
restricted to probability theory. In recent years there was a growing body of
literature on the employment of Dutch books in enforcing dynamic consis-
tency (see e.g. Green [11], Hammond [13, 14], Machina [24], Epstein and Le
Breton [9], Border and Segal [3], and Sarin and Wakker [28]). These works
either try to show that violations of dynamic consistency imply vulnerability
to Dutch books (Green [11], Hammond [13, 14], and Border and Segal [3]), or
they offer alternative definitions of dynamic consistency that do not expose
decision makers to Dutch books. None of these models assumes strategic
behavior on the side of the decision maker. The analysis of such a behavior
may well change our view of dynamic consistency.

18



References

[1] Abdellaoui, M. 2001. “A genuine rank-dependent generalization of the
von Neumann—Morgenstern expected utility theorem,” FEconometrica,
forthcoming.

[2] Allais, M. 1953. “Le comportement de ’lhomme rationnel devant le risque:
Critique des postulats et axiomes de ’ecole Americaine,” Fconometrica

21:503-546.

[3] Border, K.C. and U. Segal. 1994. “Dynamic consistency implies approxi-
mately expected utility,” Journal of Economic Theory 63:170-188.

[4] Border, K.C. and U. Segal. 1994. “Dutch books and conditional proba-
bility,” Eeconomic Journal 104:71-75.

[5] Chew, S.H. 1989. “Axiomatic utility theories with the betweenness prop-
erty,” Annals Op. Res. 19:273-298.

[6] Chew, S.H., E. Karni, and Z. Safra. 1987. “Risk aversion in the theory of
expected utility with rank dependent preferences,” Journal of Economic

Theory 42:370-381.

[7] de Finetti, B. 1964. “Foresight: Its logical laws, its subjective sources.”
In H. E. Kyburg, Jr. and H. E. Smokler, eds., Studies in Subjective Prob-
ability, pp. 57-118. Wiley, New York.

[8] Edwards, W. 1955. “The prediction of decisions among bets,” Journal of
Ezxperimental Psychology 50:201-214.

[9] Epstein, L.G. and M. Le Breton. 1994. “Dynamically consistent beliefs
must be Bayesian,” Journal of Economic Theory

[10] Gilboa, 1. 1987. “Expected utility with purely subjective non-additive
probabilities,” Journal of Mathematical Fconomics 16:65-88.

[11] Green, J.R. 1987. “ ‘Making book against oneself,” the independence
axiom and non-linear utility theory,” Quarterly Journal of Economics

102(4):785-796.

19



[12] Gul, F. 1991. “A theory of disappointment aversion,” FEconometrica
59:667-686.

[13] Hammond, P. 1988: “Consequentialism and the independence axiom.”
In Risk, decision, and rationality. Ed.: B. Munier. Dordrecht, Holland:
D. Reidel, pp. 503-515.

[14] Hammond, P. 1988: “Consequentialist foundations for expected utility,”
Theory and Decision 25:25-78.

[15] Harsanyi, J. 1967: “Games with incomplete information played by
“Bayesian” players,” Management Science 14:159-182.

[16] Heath, D. and W. Sudderth. 1972. “On a theorem of de Finetti, odd-
smaking, and game theory,” Annals of Mathematical Statistics 43:2072—
2077.

[17] Kahneman, D. and A. Tversky. 1979. “Prospect theory: An analysis of
decision under risk,” Econometrica 47:263-291.

[18] Lopes, L.L. and G.C. Oden. 1999. “The role of aspiration level in risky
choice: A comparison of cumulative prospect theory and SP/A theory,”

Journal of Mathematical Psychology 43:286-313.

[19] Luce, R.D. 1988. “Rank dependent, subjective expected-utility repre-
sentations,” Journal of Risk and Uncertainty 1:305-332.

[20] Luce, R.D. 2001. “Reduction invariance and Prelec’s weighting func-
tions,” Journal of Mathematical Psychology 45:167-179.

[21] MacCrimmon, K.R., and S. Larsson. 1979.: “Utility theory: Axioms
versus ‘paradoxes’.” In M. Allais and O. Hagen, Eds.: FErpected Utility
Hypotheses and the Allais Paradox. Dordrecht: D. Reidel.

[22] Machina, M.J. 1982. “ ‘Expected utility” analysis without the indepen-
dence axiom,” Fconometrica 50:277-323.

[23] Machina, M.J. 1987. “Choice under uncertainty: problems solved and
unsolved,” Journal of Economic Perspectives 1:121-154.

20



[24] Machina, M.J. 1989. “Dynamic consistency and non-expected utility
models of choice under uncertainty,” Journal of Economic Literature

26:1622-1668.
[25] Miyamoto, J.M. 1999. “Quality-adjusted life years (QALY) utility mod-

els under expected utility and rank dependent utility assumptions,” Jour-

nal of Mathematical Psychology 43:201-237.

[26] Prelec, D. 1998. “The probability weighting function,” FEconometrica
66:497-528.

[27] Quiggin, J. 1982. “A theory of anticipated utility,” Journal of Economic
Behavior and Organization 3:323-343.

[28] Sarin, R. and P.P. Wakker. 1993. “Consistency in Dynamic choice situ-

ations,” mimeo.

[29] Savage, L.J. 1954. Foundations of Statistics, New York, John Wiley.

[30] Schmeidler, D. 1989. “Subjective probability and expected utility with-
out additivity,” Feonometrica 57:571-587.

[31] Segal, U. and A. Spivak, 1990. “First order versus second order risk
aversion,” Journal of Economic Theory 51:111-125.

[32] Tversky, A. and D. Kahneman. 1992. “Advances in prospect theory: Cu-
mulative representation of uncertainty,” Journal of Risk and Uncertainty

5:297-323.

[33] von Neumann, J. and O. Morgenstern. 1944. Theory of Games and Eco-
nomic Behavior, Princeton, Princeton University Press.

[34] Wakker, P.P. 1994. “Separating marginal utility and probabilistic risk
aversion,” Theory and Decision 36:1-44.

[35] Wakker, P.P. and A. Tversky. 1993. “An axiomatization of cumulative
prospect theory,” Journal of Risk and Uncertainty 7:147-176.

[36] Yaari, M.E. 1987. “The dual theory of choice under risk,” Econometrica
55:95-115.

21



